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Abstract

An analytical model was developed to understand the physics and predict the functional performance of a pin puller. The 

formulated model is based on one-dimensional gas dynamics for an ideal gas. Resistive forces against pin shaft movement 

were measured in quasi-static mechanical tests, the results of which were incorporated into the model. The expansion 

chamber pressure and the pin shaft displacement were measured from an actual firing test and compared to the model 

prediction. The gas generation rate was adjusted by a correction factor, and the heat transfer rate was obtained through 

parametric analysis. The validity of the model is assessed for additional firing tests with different amounts of pyrotechnic 

charge. This model can provide knowledge on how the pin puller functions, and on which design parameters contribute the 

most to the actuation of the pin puller. Using this model, we estimate the functional safety factor by comparing the energy 

generated by the pyrotechnic charge to the energy required to accomplish the function.
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1. Introduction

A pin puller is one of the cartridge-actuated-devices (CADs) 

that are widely used in military and aerospace applications 

[1]. Figure 1 shows a schematic of a newly developed pin 

puller for releasing a missile from a launch tube. The pin 

puller consists of a pyrotechnic initiator, a pin shaft, housing, 

and locking mechanism. The initiator, usually mounted on 

the housing by a thread, contains the pyrotechnic charge and 

bridge-wires. The shear pin is used initially to hold the pin 

shaft in place, and the O-rings fitted on the pin shaft are used 

to prevent the combustion gases from leaking. 

As a firing current is applied to the bridge-wires, the burning 

pyrotechnic charge pressurizes the expansion chamber of the 

housing. High pressurized gases exert a force on the pin shaft, 

resulting in cutting off the shear pin and accelerating the pin 

shaft downward to the bottom of the housing. If the generated 

force is sufficient to overcome the resistive forces against pin 

shaft movement, it can be retracted into the intended stroke. 

The retraction to the predetermined stroke results in missile 

release.

Generally, due to the excessive energy of the moving pin 

shaft, various energy absorption mechanisms are employed 

near the end of the stroke to reduce the pyrotechnic shock 

and to prevent rebound of the pin shaft. In the present study, 

a particular energy absorption mechanism was devised called 

the “locking mechanism”. The locking mechanism prevents 

the pin shaft from bouncing after reaching the full stroke. 

The locking is achieved by plastic deformation caused by 

dimensional interference between the stud of the housing 
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Figure Captions 

Figure 1. Pyrotechnically actuated pin puller 

Figure 2. Illustration of pin puller subsystem
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and bore of the pin shaft; that is, the diameter of the stud 

is slightly larger than that of the bore (see Fig. 2 for details). 

As the moving distance of the pin shaft increases to a near 

full stroke, the pin shaft is eventually anchored due to the 

energy dissipation by plastic deformation. In this respect, 

the locking mechanism is a special energy absorbing system 

that converts the kinetic energy of the moving pin shaft into 

plastic deformation energy. 

For the pin puller of the present study, the housing and 

pin shaft are both made of stainless steel, 17-4pH. The pin 

shaft mass mp is 0.0144 kg. The initial internal volume of 

the expansion chamber Vo is 650 mm3, and the full stroke 

of the pin shaft is 9.2 mm. The shear pin is made of 6061-

T6 aluminum with a diameter of 0.8 mm. The stud at the 

locking mechanism is made of STS 304. The pyrotechnic 

initiator contains 53 mg of ZrKClO4 (Zirconium Potassium 

Per-chlorate (ZPP)) powder pressed onto the bridge-wires. A 

stainless steel closure disk is welded at the end of the charge 

column in the initiator to guarantee a hermetic seal.

Usually, CADs are used where mission-critical function 

is needed. For example, failure of the pin puller can lead 

to missile launch failure. Therefore, very high reliability 

is necessary, and reliability evaluation is very important 

for both estimation and demonstration. According to the 

traditional reliability method, reliability can be evaluated 

using failure data obtained from a large number of functional 

tests. In the case of the CADs, however, reliability evaluation 

is not easy in reality due to their ‘one-shot’ nature; CADs 

cannot be used after being fired because the firing test is 

accompanied by irreversible processes such as burning of 

the pyrotechnic charge and destruction of components. Due 

to this destructive nature, the pin puller cannot be tested 

repeatedly for reliability evaluation, unlike other mechanical 

or electronic systems. Eventually, available failure data for 

reliability evaluation are limited in terms of cost and time. 

In this respect, evaluating the reliability of such one-shot 

devices has become a troublesome challenge. 

The traditional reliability methods [2-5] have another 

shortcoming, since they depend on a large number of actual 

firings. Firing tests do not give the information needed 

to understand the functional performance of the device. 

Nonetheless, they are necessary to observe actual device 

behavior. A lack of understanding about the functional 

performance can lead to catastrophic failures when the 

device is applied to unexpected conditions. This means that 

the physics of the device should be understood to reduce the 

failure probability and to improve the design. 

For this reason, computational modeling approaches can 

be helpful. Over the last two decades, a great deal of research 

has been carried out on computational modeling related to 

the performance of several types of CAD [6-14]. These works 

provide information on the CAD system physics, which 

enables designers to predict and analyze the performance 

of devices. Most of the works, however, have focused 

merely on the calculation of the combustion phenomena 

of the pyrotechnic charge varying with pin shaft motion. 

In contrast, scant information is available in the literature 

on models that include all the parameters that govern the 

functional performance, and that deal with the effects of 

the design parameters on the performance. Therefore, the 

aforementioned works are not sufficient to fully understand 

the physics of the device.

The objective of this work is to develop an analytical 

model that includes all parameters that govern the function 

of the pin puller. This practical model is designed to aid in 

understanding how the pin puller functions, which design 

variables dominantly affect the function, and the size of the 

functional margin. 

The outline of this paper is as follows. A mathematical 

model for pin puller physics is described in Sec. 2. The 

experiments used to derive the major performance 

parameters for the model are summarized in Sec. 3. The 

model is then verified and modified in Sec. 4 by comparing 

the pressure-time traces and displacements of the pin shaft 

for various amounts of pyrotechnic charge. In section 5, 

the safety factor estimation for the designed pin puller is 

discussed.

2. Mathematical Model

A mathematical model was developed to simulate the 

performance of the pin puller. Understanding of the physics 
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of the pin puller, such as pin shaft motion and pressure 

variation in the expansion chamber, is generally difficult, 

even if a large number of firing tests are conducted. This is 

because the performance variables are complexly dependent 

on each other. For example, burning of the pyrotechnic 

charge increases the pressure and temperature of the 

expansion chamber, which in part recursively affects its 

burning characteristics. This is attributed to the dependency 

of the burning rate on pressure and temperature. Also, 

the pin shaft movement similarly affects the pressure and 

temperature; namely, the volume of the expansion chamber 

is increased as the pin shaft moves, resulting in a decrease of 

the pressure and temperature. 

Because of these difficulties, we formulated a 

mathematical model based on the energy conservation 

equation and other constitutive equations (related to force 

balancing and geometrical constraint), which can predict 

the expansion chamber pressure as well as the pin shaft 

displacement as functions of time. Figure 2 is a schematic of 

the pin puller for model calculation. In this model, several 

assumptions are adopted: all flow variables are uniform 

inside the chamber; the combustion gas behaves as an 

ideal gas; and only the contribution of reaction gases is 

considered, whereas that of the condensed phase is ignored. 

Also, for simplicity of calculation, the wall between the space 

filled by the pyrotechnic charge and the expansion chamber 

is not considered, although there is a metal rupture disk of 

the initiator. In reality, the disk ruptures when the pressure 

exceeds a certain level, allowing the product gases to flow 

into the expansion chamber. 

The conservation equations for the expansion chamber are:

3
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In Eq. (2), p is a correction factor based on the non-ideal gas characteristics, and lossQ is a 
parameter associated with heat transfer to the housing (see Sec. 4.1 for details). The genm  is the 
mass flow rate generated by the burning pyrotechnic charge which can be calculated by 
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Table 1. Combustion products
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Table Captions 

Table 1. Combustion products 

Reactant (state) Combustion Product (state, mole fraction) 
Zr (s) + KClO4 (s) 

 + Graphite (s) + Viton (s) 
ZrO2 (l, 0.32249) + KCl (g, 0.1869) + O (g, 0.14274)  
+ Cl (g, 0.8003) + O2 (g, 0.06907) + CO (g, 0.06746)  
+ K (g, 0.05823) + ZrO2 (g, 0.02576) + KF (g, 0.01218) 
+ etc. 

Table 2. Parameters for model calculation 

parameter value parameter value 

r 2.4E-5 (m) stroke 9.2E-3 (m) 

Ap 1.756E-4 (m2)  Vini 0.627E-6 (m3)

a 0.741 (in/s)  Fsh 123 (N) 

n 0.182 � 0.379 

Tf 4810 (K)  Wp 0.294 (N) 

�� 2.44E3 (kg/m3) γ 1.1038 
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The pin shaft can move to the full stroke only if the force induced by gas pressure, ��� ,
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forces of ��� and ���; and the locking force of ���. The ��� can be determined either by the shear 
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According to the Parker O-ring handbook [16], this frictional force is a function of pressure, and 
thus is employed in the model by interpolation of the graph in the handbook as follows: 
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with the unit of pressure P given in psi (pound per square inch). The latter is the friction between 
the pin shaft end and the bore of the object to be released (in this instance, a missile), which 
depends on the angle   and the object’s weight as illustrated in Fig. 2. This frictional force is 
modeled as follows: 
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where  is a friction coefficient that is determined from a compression test, as described in 
Section 3.1.3. 

In Eq. (8), ���, generated by plastic deformation at the locking mechanism, is the force needed 
to hinder the pin shaft movement. The force ��� varies in such a manner that it is zero from the 
start point to where the contact end of the moving pin shaft first meets the stud, and it is then 
steeply increased. This force depends on radial stresses and the contact area of the overlapped 
region. Calculating this force analytically is quite difficult: it includes the relatively large plastic 
flow of the two distinct metals due to the dimensional overlap, unknown dynamic response of the 
metals, and complicated contact surface changes. Due to this difficulty, the force in the model 
calculation is determined by the experiment described in section 3.1.2.  

We have now established the governing equations to evaluate the pressure in the expansion 
chamber and the pin shaft movement. These equations must be converted into forms that are easy 
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In Eq. (12), the second term in the numerator of the right-hand side is introduced to take into 
account the loss by air resistance at the front of the moving pin shaft and the weight of the pin 
shaft itself, and the third term is also employed for the loss due to volume increase by movement 
of the pin shaft. These ODEs should be solved simultaneously. The Runge-Kutta integration 
scheme can be used for the calculation.  

Experiment 
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In order to complete the model formulation, we need to specify some parameters that cannot 
be determined analytically in the previous section: Fsh, Flm, and Fld. The first two parameters are 
associated with classical problems of metal-cylinder shearing and interference-shaft-tube fitting, 
respectively [17, 18]. Although the phenomena are well known in practical applications, 
appropriate analytical solutions are hard to find because of the theoretical difficulty. In addition, 
the dynamic effects involved in this study make these problems more difficult. Very fast 
movement of the pin shaft creates an impact load. In this situation, solving the complex problems 
involving the deformation mode change, strain hardening effect, strain wave propagation, and a 
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3. Experiment

3.1 Mechanical Tests

In order to complete the model formulation, we need 

to specify some parameters that cannot be determined 

analytically in the previous section: Fsh, Flm, and Fld. The 

first two parameters are associated with classical problems 

of metal-cylinder shearing and interference-shaft-tube 

fitting, respectively [17, 18]. Although the phenomena are 

well known in practical applications, appropriate analytical 

solutions are hard to find because of the theoretical difficulty. 

In addition, the dynamic effects involved in this study make 

these problems more difficult. Very fast movement of the 

pin shaft creates an impact load. In this situation, solving 

the complex problems involving the deformation mode 

change, strain hardening effect, strain wave propagation, 

and a large metal flow would be another research topic 
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beyond the scope of the present study. Hence, we chose the 

experimental method to specify these parameters by quasi-

static mechanical tests.

3.2 Shear force of the shear pin, Fsh

With specimens of the inert pin puller, the compression 

test was carried out using Instron 5582, capable of 100,000 

N. The cross-head speed was set to 100 mm/min, as fast as 

possible, in order to simulate the shear pin that undergoes 

impact loading of high strain rate. The applied axial force and 

displacement were simultaneously recorded. Figure 3 shows 

the applied axial force during compression as a function of 

distance for five inert pin pullers.

The curves reveal a somewhat peculiar characteristic in 

that the load values decrease gradually after the plateaus, 

in contrast to the rapid drop usually seen in stress-strain 

curves. The average maximum load is 123 N, which is slightly 

higher than the shear load that can be analogized from the 

shear strength of 207 MPa for a heat-treated AL6061-T6 rod 

of 0.8 mm diameter. These results are due to the inexact 

shear behavior of the pin (e.g., bending effect) due to the 

gap between the parts for dimensional tolerance. Despite 

the complicated load-displacement shape shown in Fig. 3, 

the Fsh is simplified to a right triangle shape in the model. 

In other words, the force increases linearly to 123 N, and 

then becomes zero. This is because there are insignificant 

effects on the resistive forces because the shear force itself 

is relatively low.

3.3 Locking Force, Flm

The locking force was measured using a compression test 

similar to the method used for the shear pin. Here, the locking 

force, a major resistive force against pin shaft movement, 

refers to the force absorbed by the locking mechanism. 

Figure 4 shows the test result with three specimens of the 

inert pin pullers. As the displacement increases, the force 

rises relatively rapidly at the beginning, and then gradually 

flattens out, reaching a maximum of 5,000 N. The inflection 

region belongs to the yield point of the materials. 

The force-displacement trace in Fig. 4 was modeled by the 

curve fitting as follows:
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where l is the pin shaft displacement. However, there is a disparity between variables: the 
variable in Eq. (17) is the displacement, whereas the independent variable in Eqs. (11) ~ (16) is 
time. This force-displacement, however, can be incorporated into force-time in the model, as we 
know the displacement of the pin shaft at every time increment in solving the ODEs.  
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(11) ~ (16) is time. This force-displacement, however, can 

be incorporated into force-time in the model, as we know 

the displacement of the pin shaft at every time increment in 

solving the ODEs. 

3.4 Shaft Frictional Force, Fld

A frictional resistance occurs when the pin shaft retreats 

from the hole of the object to be released, i.e., the missile. 

The friction is dependent on the weight of the object 

and the inclined angle 
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A frictional resistance occurs when the pin shaft retreats from the hole of the object to be 
released, i.e., the missile. Ed: highlight – refer Ed note 4. The friction is dependent on the 
weight of the object and the inclined angle   with respect to the horizontal. The static friction 
coefficient  in Eq. (10) is needed to calculate the force Fld. The coefficient can be estimated 
from the experiment as depicted in Fig. 5. A force is applied perpendicularly to the pin shaft 
using a special apparatus to simulate the weight of the object. Under this condition, a 
compression force is applied along the longitudinal axis of the pin shaft by the Instron. The first 
force applied is called the “applied force” and the second force applied is called the “frictional 
force”. Ed: highlight – it is unclear what ‘former’ and ‘latter’ refer to. The frictional force 
increases linearly with the applied force, as shown in Fig. 6. The ratio of the frictional force to the 
applied force, corresponding to the proportional constant  , is 0.379.  

Firing Test 

Through the model calculation, we can obtain such parameters as the gas density by 
combustion of the pyrotechnic charge, the pressure in the expansion chamber, and the 
displacement, velocity, and acceleration of the pin shaft as functions of time. Firing tests of the 
pin puller with different amounts of pyrotechnic charge were conducted to assess the model 
validity. With the test apparatus shown in Fig. 7, both the chamber pressure and pin shaft 
displacement were measured as functions of time. The experimental results are compared to the 
calculated results. Ed: highlight –refer Ed note 5.

A piezo-resistive type pressure transducer (Kulite model XTL-163-190) with a sensing surface 
diameter of 3.7 mm was used at a sampling rate of 1 MHz. The transducer was flush-mounted on 
the housing of the pin puller, enabling us to acquire fast-response and accurate data [19]. For 
storing the data, an Agilent oscilloscope (Model Infinium 54831B) and a signal conditioning 
amplifier (Instrument division 2310) were used. 

A DC-output potentiometer (Model LPS-30, CTA plus) was used for measuring the 
displacement of the pin shaft. The adaptor rod was placed between the potentiometer and the end 
of the pin shaft in order to make contact between them. To install the adaptor rod, a hole was 
drilled on the bottom of the housing as shown in Fig. 7. The sampling rate of this data was also 1 
MHz.

Results

Model Validation 

The parameters used for model calculation are listed in table 2.  Figures 8 and 9 show the time 
traces of pressure and displacement, respectively, for pin pullers with 53 mg of ZPP. The thin 
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3.5 Firing Test

Through the model calculation, we can obtain such 

parameters as the gas density by combustion of the 

pyrotechnic charge, the pressure in the expansion 

chamber, and the displacement, velocity, and acceleration 

of the pin shaft as functions of time. Firing tests of the 

pin puller with different amounts of pyrotechnic charge 

were conducted to assess the model validity. With the test 

apparatus shown in Fig. 7, both the chamber pressure and 

pin shaft displacement were measured as functions of time. 

The experimental results are compared to the calculated 

results. 

A piezo-resistive type pressure transducer (Kulite model 

XTL-163-190) with a sensing surface diameter of 3.7 mm was 

used at a sampling rate of 1 MHz. The transducer was flush-

mounted on the housing of the pin puller, enabling us to 

acquire fast-response and accurate data [19]. For storing the 

data, an Agilent oscilloscope (Model Infinium 54831B) and 

a signal conditioning amplifier (Instrument division 2310) 

were used.

A DC-output potentiometer (Model LPS-30, CTA plus) 

was used for measuring the displacement of the pin shaft. 

The adaptor rod was placed between the potentiometer and 

the end of the pin shaft in order to make contact between 

them. To install the adaptor rod, a hole was drilled on the 

bottom of the housing as shown in Fig. 7. The sampling rate 

of this data was also 1 MHz.

4. Results

4.1 Model Validation

The parameters used for model calculation are listed in 

table 2. Figures 8 and 9 show the time traces of pressure and 

displacement, respectively, for pin pullers with 53 mg of ZPP. 

The thin lines are for the test data and the thick lines are for 

the calculated data. These curves were obtained under the 

condition that there were no objects to be released, meaning 

that there is no frictional force, Fld. It is seen that the model 

yields results that are in fairly good agreement with the test 

data. For the best fitting of the curves, the correction factor 
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lines are for the test data and the thick lines are for the calculated data. These curves were 
obtained under the condition that there were no objects to be released, meaning that there is no 
frictional force, Fld. It is seen that the model yields results that are in fairly good agreement with 
the test data. For the best fitting of the curves, the correction factor  p  and the heat loss rate 

factor lossQ in the model were adjusted to 0.68 and 161 J/kg s, respectively. The correction factor 

p was taken into account because of the non-ideal gas characteristics of the pyrotechnic 
combustion products, energy loss caused by interaction between the combustion gas and products 
in a condensed phase, and the rupture of the initiator’s closure disk. The heat loss rate factor lossQ

is difficult not only to calculate theoretically but also to obtain experimentally.  

The pin shaft begins to move at 0.1 ms after the pressure in the expansion chamber starts to 
rise, and then reaches its full stroke of 9.2 mm at about 0.7 ms. This implies that the maximum 
velocity of the pin shaft is about 24 m/s. As soon as the pin shaft reaches its full stroke, the 
pressure curve decreases with time at a minimal gradient, which is supposedly due to heat 
transfer to the housing.  

Effect of pyrotechnic charge amounts 

Additional firing tests were conducted to confirm whether the model validity is maintained 
for different amounts of pyrotechnic charge. In these tests, a range of 33 mg ~ 63 mg of ZPP was 
used in the pin puller. The test data were compared to the model calculations in terms of the 
pressure and the displacement versus time in Figs. 10 and 11, respectively. It can be seen that the 
predicted and measured results agree for both pressure and pin shaft displacement. Although 
several firing tests were conducted for the same amount of ZPP, only typical data is represented 
in the figures for simplicity.  

Discussion 
Usually, failure of pyrotechnic devices causes catastrophic failures of the total system because 

of the vital applications required of the pyrotechnic devices. Ed: highlight – the original is a 
little vague; also, ‘their’ is unclear. In this study, for example, failure of the pin puller may lead 
to mission failure of missiles since the onset of the next launch event is determined by whether 
the pin puller functions properly. The pin puller thus needs to have high reliability, and the 
evaluation of its reliability may be very important. Reliability evaluation of this type of device, 
however, is not easy, due to its ‘one-shot’ behavior. Because repeated tests are impossible, a large 
number of devices are thus needed to evaluate reliability with statistical significance. However, 
only several tens of the pin pullers are realistically available for the test. Ed: highlight – the 
original is incorrect as an expression; did you mean “…only a few tens of thousands of the pin 
pullers…”? Furthermore, the tests can be performed at the final phase of the development, 
meaning that it is difficult to modify the design parameters. In this context of reliability, a model 
that can explain the physics of the pin puller is critically needed. Ed: highlight – colloquial. The 
model we have developed can provide information on gas production by pyrotechnic combustion, 

 and the heat loss rate factor 
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Figure 5. Inert pin puller for measuring static frictional force
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Figure 6. Frictional force versus applied force (solid line represents a linear fit) 
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Figure 7. Cross sectional view of the actual firing test set-up
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4.2 Effect of pyrotechnic charge amounts

Additional firing tests were conducted to confirm 

whether the model validity is maintained for different 

amounts of pyrotechnic charge. In these tests, a range of 

33 mg ~ 63 mg of ZPP was used in the pin puller. The test 

data were compared to the model calculations in terms of 

the pressure and the displacement versus time in Figs. 10 

and 11, respectively. It can be seen that the predicted and 

measured results agree for both pressure and pin shaft 

displacement. Although several firing tests were conducted 

for the same amount of ZPP, only typical data is represented 

in the figures for simplicity. 

5. Discussion

Usually, failure of pyrotechnic devices causes catastrophic 

failures of the total system because of the vital applications 

required of the pyrotechnic devices. In this study, for 

example, failure of the pin puller may lead to mission 

failure of missiles since the onset of the next launch event 

is determined by whether the pin puller functions properly. 

The pin puller thus needs to have high reliability, and 

the evaluation of its reliability may be very important. 

Reliability evaluation of this type of device, however, is not 

easy, due to its ‘one-shot’ behavior. Because repeated tests 

are impossible, a large number of devices are thus needed 

to evaluate reliability with statistical significance. However, 

only several tens of the pin pullers are realistically available 

for the test. Furthermore, the tests can be performed at 

the final phase of the development, meaning that it is 

difficult to modify the design parameters. In this context of 

reliability, a model that can explain the physics of the pin 

puller is critically needed. The model we have developed 

can provide information on gas production by pyrotechnic 

combustion, pressure evolution in the expansion chamber, 

resistance to pin shaft motion, and dynamics such as moving 

displacement, velocity, or acceleration of the pin shaft, 

particularly in the beginning phase of development. It may 

be worth considering that most of this information is difficult 

to obtain from the firing tests. This analytical model can be 

applicable for probabilistic approaches, requiring much 

Table 2. Parameters for model calculation

14

Table Captions 

Table 1. Combustion products 

Reactant (state) Combustion Product (state, mole fraction) 
Zr (s) + KClO4 (s) 

 + Graphite (s) + Viton (s) 
ZrO2 (l, 0.32249) + KCl (g, 0.1869) + O (g, 0.14274)  
+ Cl (g, 0.8003) + O2 (g, 0.06907) + CO (g, 0.06746)  
+ K (g, 0.05823) + ZrO2 (g, 0.02576) + KF (g, 0.01218) 
+ etc. 

Table 2. Parameters for model calculation 

parameter value parameter value 

r 2.4E-5 (m) stroke 9.2E-3 (m) 

Ap 1.756E-4 (m2)  Vini 0.627E-6 (m3)

a 0.741 (in/s)  Fsh 123 (N) 

n 0.182 � 0.379 

Tf 4810 (K)  Wp 0.294 (N) 

�� 2.44E3 (kg/m3) γ 1.1038 
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repeated calculation, for later reliability prediction of the pin 

puller.

Reliability is the possibility of the success of a system. 

Success of the pin puller can be defined as the pin shaft 

retreating to the predetermined position when fired. 

As stated earlier, this is possible only when the force 

generated by combustion of the pyrotechnic charge is 

capable of overcoming other resistive forces. According to a 

deterministic design concept, the possibility of success can 

therefore be simply represented as a margin of safety, which 

in this case is the ratio of the generated forces to the resistive 

forces against pin shaft movement. The pin puller functions 

successfully if 

10
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because both F��� and F��� vary with time. The points in time at which each force is evolved 
differ, and the aspects of variation for each force also differ significantly. Ed: highlight – refer 
Ed note 6. In this instance, the definition of impulse (i.e., the product of force and time) or 
energy (i.e., the product of force and displacement), instead of the two forces, can be more 
valuable. Figure 12 shows the calculation results represented by this definition, in the case where 
the pin puller has 53 mg ZPP, when the weight of the missile is 115N and the launch angle is 30 
degree. 

From this viewpoint, success in the current work can be defined again as the ratio of the 
generated energy to the consumed energies:  ����
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� �. The generated energy ���� is obtained by 

the integration of the force ��� with respect to the displacement, whereas the consumed energy 
���� is the sum of the relevant integration values of the four resistive forces, F��, F��, F��, and 
F��. The magnitude of these energies is represented in Fig. 13, normalized by the generated 
energy.  

As can be seen in Fig. 13, the largest consumption of energy, corresponding to approximately 
47 percent of the generated energy, occurs in the locking mechanism to prevent rebound of the 
pin shaft. The next consumption is performed by the O-ring friction, which is more than five 
percent of the generated energy. It is interesting to note that the energy consumption by the 
friction between the pin shaft and the object to be released is the smallest. Consequently, the 
functional safety factor is approximately 1.84, which in fact is thought to be adequate [20].  

The amount of pyrotechnic charge is a crucial variable that determines the possibility of 
success for the pin puller. However, larger amounts of pyrotechnic charge are not always better 
solutions, because excessive charge creates a higher pyrotechnic shock with detrimental effects. 
In the model calculation with 62.6 mg of ZPP, the safety factor increases to 2.19. The proper 
amount of pyrotechnic charge can be controlled through this model. 

It is important, however, that this performance modeling approach rules out the variance of 
performance variables. The possibility of success should be carefully considered in that all the 
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that all the variables included in the manufacture and design 

have certain randomness and probabilistic fluctuations.

6. Conclusions

A model was developed to predict the performance of 

the pin puller. This model is based on one-dimensional gas 

dynamics and empirical relationships obtained from the 

quasi-static mechanical tests. This simple model obtains 

results that are in good agreement with the test data overall 

by adjusting correction factors. The present model makes 

it possible not only to understand the very complicated 

pin puller physics involving the pressure in the expansion 

chamber and the displacement of the pin shaft with time, 

but also to know the effects of variables on the performance. 

A particular strong point of the present study is that this 

information can be obtained from a small number of firing 

tests or inert tests in the beginning phases of development. 

Because of this advantage, the current approach can be 

applied to design one-shot devices used in aerospace and 

military applications. 
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lm locking mechanism 
or O-ring 
pr pressure 
res resistive 
sh shear 

	 Ratio of specific heats
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P Chamber pressure (Pa) 
loss Heat transfer rate (J/s) 

Rg Universal gas constant (8.3143ⅹ103 J/kilomole K) 
r Radius of ZPP grain (m) 
rb Burning rate (m/s) 
T Temperature (K) 
Tf Gas flame temperature (K) 
t Time (s) 
V Volume (m3)
Vo Initial volume of expansion chamber (m3)
vp Pin shaft velocity (m/s) 
Wm Load weight (N) 
Wp Work done by pin shaft (N) 
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T Temperature (K) 
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 Angle (Rad) 

g Gas fraction of the combustion products (0.43) 
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b                             burning
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Subscripts

b	 burning

con	 consumed

g	 gas

gen	 generated

ini	 initial

ld	 load

lm	 locking mechanism

or	 O-ring

pr	 pressure

res	 resistive

sh	 shear


