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Abstract

When manufactured parts undergo large deformations during the manufacturing process, the global specifications of a part 

based on the concept of tolerance zone defined in the ISO 1101 standard [1] enable one to control the part’s global defects. 

However, the extent of this tolerance zone is too large when the objective is to minimize local defects, such as hollows and 

bumps. Therefore, it is necessary to address local defects and global defects separately. This paper refers to the ISO 10579 

standard [2] for flexible parts, which enables us to define a stressed state in order to measure the part by straightening it 

to simulate its position in the mechanism. The originality of this approach is that the straightening operation is performed 

numerically by calculating the displacement of a cloud of points. The results lead to a quantification of the global defects 

through various simple models and enable us to extract local defects. The outcome is an acceptable tolerance solution. The 

procedure is first developed for the simple example of a steel bar with a rectangular cross section, then applied to an industrial 

case involving a complex 3D surface of a turbine blade. The specification is described through ISO standards both in the free 

state and in the straightened state.
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1. The context and the scientific objective

1.1 The context

The problem addressed in this study is how to separate 

local defects (hollows, bumps, flat spots, jumps…) from global 

defects in parts which are supposedly rigid, but actually are 

distorted (Fig. 1).

In the first application, the part being considered has 

a constant cross section and is twisted or distorted due to 

the manufacturing process or to transportation. The part is 

straightened during assembly. Significant global defects are 

tolerated, but some residual defects can be unacceptable 

because of functional requirements, such as appearance.

The second example concerns the manufacturing of 

slender parts in which local defects must be detected because 

they could compromise strength or performance.
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1. The context and the scientific objective

1.1 The context

The problem addressed in this study is how to 

separate local defects (hollows, bumps, flat

spots, jumps…) from global defects in parts 

which are supposedly rigid, but actually are 

distorted (Fig. 1).

In the first application, the part being 

considered has a constant cross section and is 

twisted or distorted due to the manufacturing 

process or to transportation. The part is 

straightened during assembly. Significant global 

defects are tolerated, but some residual defects

can be unacceptable because of functional 

requirements, such as appearance.

The second example concerns the 

manufacturing of slender parts in which local 

defects must be detected because they could 

compromise strength or performance.

Fig. 1. Examples of parts and defects

The detection of local defects requires the 

surface to be measured using a large number of 

closely-spaced points. The resolution must be 

adjusted to the size of the defect being sought.

For example, using scanning or optical 

measurement techniques, the resolution can be 

as small as 0.3 mm.  However, the objective is 

not to measure the roughness or waviness of the 

part.

Traditional form specification is unsuitable 

because acceptable global defects can be much 

larger than the maximum acceptable local 

defects.

Metrology techniques are used to compare the 

measured part to the nominal CAD model and 

display the deviations at various points. The 

specification is satisfied if all the points are 
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Fig. 1. ��Examples of parts and defects
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The detection of local defects requires the surface to be 

measured using a large number of closely-spaced points. 

The resolution must be adjusted to the size of the defect 

being sought. For example, using scanning or optical 

measurement techniques, the resolution can be as small 

as 0.3 mm.  However, the objective is not to measure the 

roughness or waviness of the part.

Traditional form specification is unsuitable because 

acceptable global defects can be much larger than the 

maximum acceptable local defects.

Metrology techniques are used to compare the measured 

part to the nominal CAD model and display the deviations 

at various points. The specification is satisfied if all the 

points are inside the tolerance zone defined by the ISO 1101 

standard [1]. 

In our new approach, an intermediate, distorted model 

(e.g. through twisting or bending) is defined. The residual 

deviation between the distorted model and the measured 

part is calculated. In addition, the parameters of the 

deformation can be used to assess the quality of the actual 

part.

1.2 Bibliographical review

This work discusses two applications in the fields of 

metrology, defect analysis, calculation and tolerancing. 

The measurements were carried out using a coordinate 

measuring machine for the first application and an optical 

measuring device for the turbine blade.

All measuring devices have their own characteristics 

and particularities. Li [3] presented a general state-of-the-

art of various types of measuring machines. Even though 

the emphasis is primarily on CMM measurement, the 

characteristics, advantages and drawbacks of contact-free 

techniques for free-form inspection are also discussed.

Similarly, Savio [4] presented and compared contact and 

non-contact inspection tools along with some applications. 

His study focuses more particularly on the shape of a turbine 

blade and the problem of the distribution of points along the 

aerodynamic profile. The difficulty is that the curvature of an 

airfoil becomes very high near the thin edges. The choice of 

the density of the points on an airfoil is a common concern. 

In our work, the points were sampled on the pressure side 

and the suction side, excluding the edges in order to avoid 

problems in fitting the actual profile to the CAD model.

Several studies were aimed at the identification of 

manufacturing defects in parts.

Radvar-Esfahlan [5, 6] proposed an inspection 

methodology based on a knowledge of predictable defects, 

such as the effect of gravity or residual strains on large slender 

parts. Assuming conservation of distance, he applied a finite 

element simulation to a CAD model, then performed rigid 

registration with the sampled scanned workpiece, and finally 

used non-rigid registration to eliminate the springback effect 

of the manufacturing process.

The registration of point clouds with the CAD model is 

an important step in the analysis process. Many works have 

used Bourdet’s concept of small displacement torsor [7], 

which lends itself particularly well to small strains and small 

displacements. The next references used that approach to 

build mathematical models of defects.

Zhu [8] conducted an exhaustive study on the efficient 

registration of free-form surfaces. Along with Savio [4], he 

raised the issue of the point density of the sample. He used 

the root-mean-square error criterion, which depends on 

the entire sample of points rather than on the end points or 

boundary points alone. The least-squares method we used 

in this paper for registration and calculation led us to choose 

a homogeneous point distribution. Zhu noted that after 

he performed the registration the turbine blade became 

“slightly twisted”: our work shows how such a defect can be 

identified and quantified.

Various types of models for the representation of parts 

with defects can be found in the literature along with the 

association method used to fit the model to the measured 

element.

The modal method developed by Samper [9] uses the 

identification of real surfaces from a defect base composed of 

a series of eigenmodes of the surfaces. The first eigenmodes 

are associated with a surface’s size and position, then with 

its orientation. The subsequent modes present ripples of 

decreasing periods which can be used to represent sheer, 

concavity and all the smaller ripples which can occur on a 

surface. A Fourier model is used for the decomposition. This 

work can be extended to roughness. 

In [10], Adragna presented a state-of-the-art review of 

the modal method, beginning with the techniques based on 

vibration studies, such as Formosa’s work [11]. In addition, 

Adragna introduced shape defects called “technological 

modes”. He proposed to create a modal basis composed of 

defects which may occur during the manufacturing process, 

but cannot be defined directly by decomposition into 

vibration modes. One of the drawbacks of the decomposition 

into eigenmodes is that the mode shapes are continuous, 

whereas a technological mode can include a peak, a step 

or an abrupt change of slope in the geometry. Adragna 

recommended that technological modes be put at the 

beginning of the modal basis because they are likely to occur 

frequently.

A similar approach was followed by Favrelières [12], who 
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characterized the actual geometry using a decomposition 

into an orthogonal basis of vibration modes.

Other methods of the same type have been developed, e.g., 

in the case of plane parts, the decomposition of shape defects 

into Fourier series by Capello [13] and the identification of 

shape defects by discrete cosine transform by Huang [14].

The analysis of shape defects in cylindrical surfaces was 

addressed in several works. For example, Summerhays [15] 

and Henke [16] recreated shape errors using an association 

of Fourier series and Chebyshev polynomials completed by 

a basis made of measured eigenmodes. Cho [17] carried out 

a similar study and compared his results with those of Damir 

[18].

These types of analyzes are applicable when the shape or 

the cause of the defect is unknown. Otherwise, the origin 

of the deviations can help define a mathematical model to 

represent the defect.

In the aviation industry, the measurement of long tubes 

is carried out using a part holder which consists of fixed 

supports. For such a case, Mounaud [19] applied an upward 

force to each section in order to cancel the effect of gravity. 

Radvar-Esfahlan [5, 6] did the same using a finite element 

calculation.

1.3 The scientific issue

The main problem consists in identifying a local geometric 

defect (e.g. a hollow or a bump) in a globally deformed part 

and in proposing a functional tolerancing methodology 

according to ISO standards.

First, we will introduce the approach through the example 

of a flat part which is identified using a cloud of points 

obtained with a Coordinate Measuring Machine (CMM). 

Then, we will extend the method to the case of a complex 

surface, such as a blade, which is measured using a large 

cloud of points.

2. ��Identification methodology for the two 
types of defects 

2.1 Digital straightening

2.1.1 Notations

The following notations will be used throughout the paper:

Pi	 a point on the nominal (CAD) surface 

Mi	 a measured point

Ei	�� the initial deviation between the 

measured point Mi and the point on the 

nominal surface 

z	 vector of the beam’s axis

dPi(dxi,dyi,dzi)	�� vector displacement of point Pi dues to 

digital straightening

ni(nxi,nyi,nzi)	�� vector normal to the nominal surface at Pi

ei	�� the residual deviation after straightening: 

ei = Ei – tdPi∙ni

2.1.2 Part identification

Initially, the part being studied was deliberately distorted 

by tightening it in a vise and applying a torque using a 

wrench.

Then, the distorted part was measured using a CMM. A 

coordinate system was defined based on 14 points in the 

built-in zone (the green zone on the left), and 154 points 

were measured in the distorted zone (the red zone on the 

right of Fig. 2).

2.1.3 Definition of the distorted model

The global form defects were identified using a 

mathematical model to represent the global deformations of 

the part.

Considering the distortion applied to the test part, the 

model (Fig. 3) consists of a plane zone on the left and, on the 

right beyond line D, the superposition of a parabolic model 

representing bending and a helicoid representing torsion.

Thus, the deformed shape is characterized by the 

deflection f and the angle a at the end of the part. The designer 

can choose the equations which express the deflection and 

the rotation.

For example, the displacement in y direction due to 

bending in the (O, x, y) plane on point Pi(xi,yi,zi) is:

- 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊 (nxi,nyi,nzi) vector normal to the 
nominal surface at Pi

- ei the residual deviation after 
straightening: ei = Ei – 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕 ∙ 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

2.1.2 Part identification

Initially, the part being studied was

deliberately distorted by tightening it in a vise

and applying a torque using a wrench.

Then, the distorted part was measured using a

CMM. A coordinate system was defined based 

on 14 points in the built-in zone (the green zone 

on the left), and 154 points were measured in 

the distorted zone (the red zone on the right of 

Fig. 2).

Fig. 2. The measurement of the part

2.1.3 Definition of the distorted model

The global form defects were identified using

a mathematical model to represent the global 

deformations of the part.

Considering the distortion applied to the test 

part, the model (Fig. 3) consists of a plane zone

on the left and, on the right beyond line D, the 

superposition of a parabolic model representing

bending and a helicoid representing torsion.

Thus, the deformed shape is characterized by 

the deflection f and the angle a at the end of the 

part. The designer can choose the equations 

which express the deflection and the rotation.

Fig. 3. The deformation model

For example, the displacement in y direction 

due to bending in the (O, 𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚) plane on point 

Pi(xi,yi,zi) is:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓.
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖²
𝐿𝐿𝐿𝐿²

The angular deflection of section zi is:

𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿

The displacement in y direction of a point 

Pi(xi,yi,zi) due to torsion is :

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎. 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖.𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿

The general expression of the deformed shape 

is: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖²
𝐿𝐿𝐿𝐿²

+ 𝑎𝑎𝑎𝑎. 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖.𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿

Under the small displacement torsor

assumption [7], the displacement 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is a linear 

function of parameters f and a.

Thus, the objective is to find the parameters f

and a which best represent the part.

2.1.4 The association principle

We chose the least-squares method to carry 

out the association between the actual part and 
6
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2.1.2 Part identification

Initially, the part being studied was

deliberately distorted by tightening it in a vise

and applying a torque using a wrench.

Then, the distorted part was measured using a

CMM. A coordinate system was defined based 

on 14 points in the built-in zone (the green zone 

on the left), and 154 points were measured in 

the distorted zone (the red zone on the right of 

Fig. 2).

Fig. 2. The measurement of the part

2.1.3 Definition of the distorted model

The global form defects were identified using

a mathematical model to represent the global 

deformations of the part.

Considering the distortion applied to the test 

part, the model (Fig. 3) consists of a plane zone

on the left and, on the right beyond line D, the 

superposition of a parabolic model representing

bending and a helicoid representing torsion.

Thus, the deformed shape is characterized by 

the deflection f and the angle a at the end of the 

part. The designer can choose the equations 

which express the deflection and the rotation.
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Under the small displacement torsor assumption [7], the 

displacement dyi is a linear function of parameters f and a.

Thus, the objective is to find the parameters f and a which 

best represent the part.

2.1.4 The association principle

We chose the least-squares method to carry out the 

association between the actual part and the model.

The case of Fig. 2 was implemented as an Excel worksheet 

using the deformation model defined in 2.1.3. The measured 

point coordinates were used to calculate the straightened 

coordinates:

the model.

The case of Fig. 2 was implemented as an

Excel worksheet using the deformation model 

defined in 2.1.3. The measured point 

coordinates were used to calculate the 
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(𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

𝐿𝐿𝐿𝐿2

− 𝑎𝑎𝑎𝑎.
(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). (𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝐿𝐿𝐿𝐿

The objective of the least-squares method is 

to minimize the sum of the squared residual 

deviations with respect to the nominal plane (0, 

x, z). In order to do that, we introduced a cell 

containing the sum of the squared yresidual into 

the Excel file, then minimized that cell by 

varying the parameters a and f thanks to the 

Excel solver:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 =  �(𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

2.2 Results of the digital straightening 

operation

The results are shown in Fig. 4.

Fig. 4. Deviations Ei of the plane part (a) and 

deviations ei after digital straightening (b)

Figure 4a shows that the part can be viewed 

as a twisted beam with maximum deviation Ei

max = -0.616 mm.

Fig. 4b was obtained after digital 

straightening with an angle a = -0.0192 rad ≈ -

1.1 ° and a deflection f = -0.037 mm. The 

residual deviations after digital straightening 

correspond to local defects. In that configuration, 

the maximum deviation was ei max = 0.192 mm.

The fact that the residual deviation ei max is 

smaller than Ei max proves that the proposed 

model represents the part’s actual shape quite 

well.

7

The objective of the least-squares method is to minimize 

the sum of the squared residual deviations with respect to 

the nominal plane (0, x, z). In order to do that, we introduced 

a cell containing the sum of the squared yresidual into the Excel 

file, then minimized that cell by varying the parameters a 

and f thanks to the Excel solver:

the model.

The case of Fig. 2 was implemented as an

Excel worksheet using the deformation model 

defined in 2.1.3. The measured point 

coordinates were used to calculate the 

straightened coordinates:

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓.
(𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

𝐿𝐿𝐿𝐿2

− 𝑎𝑎𝑎𝑎.
(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). (𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝐿𝐿𝐿𝐿

The objective of the least-squares method is 

to minimize the sum of the squared residual 

deviations with respect to the nominal plane (0, 

x, z). In order to do that, we introduced a cell 

containing the sum of the squared yresidual into 

the Excel file, then minimized that cell by 

varying the parameters a and f thanks to the 

Excel solver:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 =  �(𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

2.2 Results of the digital straightening 

operation

The results are shown in Fig. 4.

Fig. 4. Deviations Ei of the plane part (a) and 

deviations ei after digital straightening (b)

Figure 4a shows that the part can be viewed 

as a twisted beam with maximum deviation Ei

max = -0.616 mm.

Fig. 4b was obtained after digital 

straightening with an angle a = -0.0192 rad ≈ -

1.1 ° and a deflection f = -0.037 mm. The 

residual deviations after digital straightening 

correspond to local defects. In that configuration, 

the maximum deviation was ei max = 0.192 mm.

The fact that the residual deviation ei max is 

smaller than Ei max proves that the proposed 

model represents the part’s actual shape quite 

well.

7

2.2 Results of the digital straightening operation

The results are shown in Fig. 4.

Figure 4a shows that the part can be viewed as a twisted 

beam with maximum deviation Ei max = -0.616 mm.

Fig. 4b was obtained after digital straightening with an 

angle a = -0.0192 rad ≈ -1.1 ° and a deflection f = -0.037 mm. 

The residual deviations after digital straightening correspond 

to local defects. In that configuration, the maximum 

deviation was ei max = 0.192 mm.

The fact that the residual deviation ei max is smaller than 

Ei max proves that the proposed model represents the part’s 

actual shape quite well.

The deflection thus applied enables one to identify the 

bending defect. The negative value of f along the y-axis 

shows that in the actual shape one end points downwards 

(Fig. 4a). The negative angle represents a negative twisting 

about the z-axis.

2.3 Evolution of the sections

The residual deviations at each point after digital 

straightening characterize the part. The principle of the 

method consists in associating each section with a nominal 

profile and using the least-squares method to minimize the 

deviation between the nominal profile and the measured 

points (Fig. 5). Each section is characterized by two 

parameters, a translation w of the center of the section and 

a rotation δ.

The evolution of the two parameters w and δ of several 

sections of the part after digital straightening (Fig. 6) gives a 

good indication of the defects along the z-axis of the part. In 

that particular case, the evolution is smooth, but this figure 

could also have shown a wave or a jump, which could have 

been unacceptable.

Today, there is no specification enabling one to tolerance 

this continuity of the evolution of sections. A general 

the model.

The case of Fig. 2 was implemented as an

Excel worksheet using the deformation model 

defined in 2.1.3. The measured point 

coordinates were used to calculate the 

straightened coordinates:

𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓.
(𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

𝐿𝐿𝐿𝐿2

− 𝑎𝑎𝑎𝑎.
(𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). (𝑧𝑧𝑧𝑧𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝐿𝐿𝐿𝐿

The objective of the least-squares method is 

to minimize the sum of the squared residual 

deviations with respect to the nominal plane (0, 

x, z). In order to do that, we introduced a cell 

containing the sum of the squared yresidual into 

the Excel file, then minimized that cell by 

varying the parameters a and f thanks to the 

Excel solver:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 =  �(𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2

2.2 Results of the digital straightening 

operation

The results are shown in Fig. 4.

Fig. 4. Deviations Ei of the plane part (a) and 

deviations ei after digital straightening (b)

Figure 4a shows that the part can be viewed 

as a twisted beam with maximum deviation Ei

max = -0.616 mm.

Fig. 4b was obtained after digital 

straightening with an angle a = -0.0192 rad ≈ -

1.1 ° and a deflection f = -0.037 mm. The 

residual deviations after digital straightening 

correspond to local defects. In that configuration, 

the maximum deviation was ei max = 0.192 mm.

The fact that the residual deviation ei max is 

smaller than Ei max proves that the proposed 

model represents the part’s actual shape quite 

well.
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Fig. 4. ��Deviations Ei of the plane part (a) and deviations ei after digital 
straightening  (b)

The deflection thus applied enables one to

identify the bending defect. The negative value 

of f along the y-axis shows that in the actual 

shape one end points downwards (Fig. 4a). The

negative angle represents a negative twisting

about the z-axis.

2.3 Evolution of the sections

The residual deviations at each point after 

digital straightening characterize the part. The 

principle of the method consists in associating

each section with a nominal profile and using

the least-squares method to minimize the 

deviation between the nominal profile and the 

measured points (Fig. 5). Each section is

characterized by two parameters, a translation w

of the center of the section and a rotation δ.

Fig. 5. Deviations of a section after 

straightening

The evolution of the two parameters w and δ

of several sections of the part after digital 

straightening (Fig. 6) gives a good indication of 

the defects along the z-axis of the part. In that 

particular case, the evolution is smooth, but this 

figure could also have shown a wave or a jump,

which could have been unacceptable.

Fig. 6. Evolution of the position and orientation 

parameters of the part’s sections

Today, there is no specification enabling one 

to tolerance this continuity of the evolution of 

sections. A general definition of the 

“straightness of the part’s axis” could be 

introduced at the center of each section, which 

would require the construction of the axis of a

part of any shape.

2.4 Tolerancing of the part

The ISO 10579 standard [2] enables one to 

define a protocol for straightening a part. This 

straightening is usually achieved by applying 

loads, e.g. by holding the part with clamps.

8

Fig. 5. ��Deviations of a section after straightening
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definition of the “straightness of the part’s axis” could be 

introduced at the center of each section, which would 

require the construction of the axis of a part of any shape.

2.4 Tolerancing of the part

The ISO 10579 standard [2] enables one to define a protocol 

for straightening a part. This straightening is usually achieved 

by applying loads, e.g. by holding the part with clamps.

The originality of our approach is that straightening is not 

performed physically, but digitally. Therefore, tolerancing 

must be expressed by an equation which characterizes this 

digital straightening (Fig. 7). Consequently, this makes it 

possible to specify the shape of a side, of a section or of the 

entire part.

The tolerances marked “F” (for “free”) must be satisfied in 

the free state, i.e. without straightening, with deviations Ei. 

The unmarked tolerances must be satisfied in the stressed 

state after digital straightening, i.e. with the deviations ei 

(Fig. 8).

2.5 Other examples of distorted models

Regardless of the part’s configuration, its global defects 

must be defined using a parametric model.

For a cylindrical part, it is easy to define a model using 4 

parameters:

- the cone angle

- the base radius

- the ovality

- the radial deflection at the center of the generatrix.

For large beam-like parts with constant cross sections, 

many bending models can be imagined depending on the 

loading cases and boundary conditions applied to the beam. 

This work proposes two deformation modes for this type of 

part:

Mode 1: (Fig. 9) Built-in condition at A and deflection at 

B with a readjustment of the beam’s direction and the base 

coordinate system through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a beam with 

constant cross section, the deformed shape is a polynomial 

of degree 3.
The deflection thus applied enables one to

identify the bending defect. The negative value 

of f along the y-axis shows that in the actual 

shape one end points downwards (Fig. 4a). The

negative angle represents a negative twisting

about the z-axis.

2.3 Evolution of the sections

The residual deviations at each point after 

digital straightening characterize the part. The 

principle of the method consists in associating

each section with a nominal profile and using

the least-squares method to minimize the 

deviation between the nominal profile and the 

measured points (Fig. 5). Each section is

characterized by two parameters, a translation w

of the center of the section and a rotation δ.

Fig. 5. Deviations of a section after 

straightening

The evolution of the two parameters w and δ

of several sections of the part after digital 

straightening (Fig. 6) gives a good indication of 

the defects along the z-axis of the part. In that 

particular case, the evolution is smooth, but this 

figure could also have shown a wave or a jump,

which could have been unacceptable.

Fig. 6. Evolution of the position and orientation 

parameters of the part’s sections

Today, there is no specification enabling one 

to tolerance this continuity of the evolution of 

sections. A general definition of the 

“straightness of the part’s axis” could be 

introduced at the center of each section, which 

would require the construction of the axis of a

part of any shape.

2.4 Tolerancing of the part

The ISO 10579 standard [2] enables one to 

define a protocol for straightening a part. This 

straightening is usually achieved by applying 

loads, e.g. by holding the part with clamps.
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Fig. 6. ��Evolution of the position and orientation parameters of the 
part’s sections

Fig. 7. Tolerancing of the part

The originality of our approach is that 

straightening is not performed physically, but 

digitally. Therefore, tolerancing must be 

expressed by an equation which characterizes 

this digital straightening (Fig. 7). Consequently, 

this makes it possible to specify the shape of a 

side, of a section or of the entire part.

The tolerances marked “F” (for “free”) must

be satisfied in the free state, i.e. without 

straightening, with deviations Ei. The unmarked 

tolerances must be satisfied in the stressed state 

after digital straightening, i.e. with the 

deviations ei (Fig. 8).

Fig. 8. Specifications relative to the free state 

and after digital straightening

2.5 Other examples of distorted models

Regardless of the part’s configuration, its 

global defects must be defined using a

parametric model.

For a cylindrical part, it is easy to define a

model using 4 parameters:

- the cone angle
- the base radius
- the ovality
- the radial deflection at the center of the 

generatrix.

For large beam-like parts with constant cross 

sections, many bending models can be imagined 

depending on the loading cases and boundary

conditions applied to the beam. This work 

proposes two deformation modes for this type of 

part:

Mode 1: (Fig. 9) Built-in condition at A and 

9

Fig. 7. Tolerancing of the part

Fig. 7. Tolerancing of the part

The originality of our approach is that 

straightening is not performed physically, but 

digitally. Therefore, tolerancing must be 

expressed by an equation which characterizes 

this digital straightening (Fig. 7). Consequently, 

this makes it possible to specify the shape of a 

side, of a section or of the entire part.

The tolerances marked “F” (for “free”) must

be satisfied in the free state, i.e. without 

straightening, with deviations Ei. The unmarked 

tolerances must be satisfied in the stressed state 

after digital straightening, i.e. with the 

deviations ei (Fig. 8).

Fig. 8. Specifications relative to the free state 

and after digital straightening

2.5 Other examples of distorted models

Regardless of the part’s configuration, its 

global defects must be defined using a

parametric model.

For a cylindrical part, it is easy to define a

model using 4 parameters:

- the cone angle
- the base radius
- the ovality
- the radial deflection at the center of the 

generatrix.

For large beam-like parts with constant cross 

sections, many bending models can be imagined 

depending on the loading cases and boundary

conditions applied to the beam. This work 

proposes two deformation modes for this type of 

part:

Mode 1: (Fig. 9) Built-in condition at A and 
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Fig. 8. ��Specifications relative to the free state and after digital 
straightening

deflection at B with a readjustment of the 

beam’s direction and the base coordinate system 

through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a 

beam with constant cross section, the deformed 

shape is a polynomial of degree 3.

Mode 2: (Fig. 9) Pinned connections (i.e. no

translations) at ends A and B, and a deflection f

at the center of the beam. Twisting of the part 

around the z-axis with angles a at B and 0 at A 

(Fig. 9 and 10).

Fig. 9. Examples of deformation modes

For the second mode, a twist angle is applied 

at B. The resulting shape is a helicoid (Fig. 10). 

If the angle is too large, it is necessary to 

determine the displacements of some points 

along the x and y axes because the small 

displacement assumption [7] is not satisfied.

Fig. 10. A twisted model

For each model, the equations giving the 

displacement at each point must be defined 

using the following parameters:

- a the rotation angle
- fx, fy the deflections in x and y 

direction (Fig. 9)

Mode 1:

The displacement of point Pi is decomposed in 

x and y directions:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

Mode 2:

0 < z < L/2:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿
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Fig. 9. ��Examples of deformation modes
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Mode 2: (Fig. 9) Pinned connections (i.e. no translations) 

at ends A and B, and a deflection f at the center of the beam. 

Twisting of the part around the z-axis with angles a at B and 

0 at A (Fig. 9 and 10).

For the second mode, a twist angle is applied at B. The 

resulting shape is a helicoid (Fig. 10). If the angle is too 

large, it is necessary to determine the displacements of some 

points along the x and y axes because the small displacement 

assumption [7] is not satisfied.

For each model, the equations giving the displacement at 

each point must be defined using the following parameters:

- a	 the rotation angle

- fx, fy	 the deflections in x and y direction (Fig. 9)

Mode 1: 

The displacement of point Pi is decomposed in x and y 

directions:

deflection at B with a readjustment of the 

beam’s direction and the base coordinate system 

through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a 

beam with constant cross section, the deformed 

shape is a polynomial of degree 3.

Mode 2: (Fig. 9) Pinned connections (i.e. no

translations) at ends A and B, and a deflection f

at the center of the beam. Twisting of the part 

around the z-axis with angles a at B and 0 at A 

(Fig. 9 and 10).

Fig. 9. Examples of deformation modes

For the second mode, a twist angle is applied 

at B. The resulting shape is a helicoid (Fig. 10). 

If the angle is too large, it is necessary to 

determine the displacements of some points 

along the x and y axes because the small 

displacement assumption [7] is not satisfied.

Fig. 10. A twisted model

For each model, the equations giving the 

displacement at each point must be defined 

using the following parameters:

- a the rotation angle
- fx, fy the deflections in x and y 

direction (Fig. 9)

Mode 1:

The displacement of point Pi is decomposed in 

x and y directions:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
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+ 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
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2𝐿𝐿𝐿𝐿3
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
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+ 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
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Mode 2:

0 < z < L/2:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿

10

deflection at B with a readjustment of the 

beam’s direction and the base coordinate system 

through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a 

beam with constant cross section, the deformed 

shape is a polynomial of degree 3.

Mode 2: (Fig. 9) Pinned connections (i.e. no

translations) at ends A and B, and a deflection f

at the center of the beam. Twisting of the part 

around the z-axis with angles a at B and 0 at A 

(Fig. 9 and 10).

Fig. 9. Examples of deformation modes

For the second mode, a twist angle is applied 

at B. The resulting shape is a helicoid (Fig. 10). 

If the angle is too large, it is necessary to 

determine the displacements of some points 

along the x and y axes because the small 

displacement assumption [7] is not satisfied.

Fig. 10. A twisted model

For each model, the equations giving the 

displacement at each point must be defined 

using the following parameters:

- a the rotation angle
- fx, fy the deflections in x and y 

direction (Fig. 9)

Mode 1:

The displacement of point Pi is decomposed in 

x and y directions:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =
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Mode 2:

0 < z < L/2:

deflection at B with a readjustment of the 

beam’s direction and the base coordinate system 

through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a 

beam with constant cross section, the deformed 

shape is a polynomial of degree 3.

Mode 2: (Fig. 9) Pinned connections (i.e. no

translations) at ends A and B, and a deflection f

at the center of the beam. Twisting of the part 

around the z-axis with angles a at B and 0 at A 

(Fig. 9 and 10).

Fig. 9. Examples of deformation modes

For the second mode, a twist angle is applied 

at B. The resulting shape is a helicoid (Fig. 10). 

If the angle is too large, it is necessary to 

determine the displacements of some points 

along the x and y axes because the small 

displacement assumption [7] is not satisfied.

Fig. 10. A twisted model

For each model, the equations giving the 

displacement at each point must be defined 

using the following parameters:

- a the rotation angle
- fx, fy the deflections in x and y 

direction (Fig. 9)

Mode 1:

The displacement of point Pi is decomposed in 

x and y directions:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

Mode 2:

0 < z < L/2:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿

10𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖.

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

L/2 < z < L:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

Other models can be created, e.g. for parts 

with varying sections. The finite element

method can be used to calculate the deflection at

each point under a nominal force or moment [5],

[6]. Due to the linearity assumption, one obtains 

the deformed shape as a function of the force 

and moment.

By comparing several calculation criterions,

one can select parameter values which minimize

the sum of the deviation absolute values

3. Application to complex industrial surface

3.1 Application to a turbine blade

In the context of the manufacturing of 

aeronautical parts, Snecma wishes to improve its

understanding of the deviations measured on 

turbine blades (Fig.11). Indeed, the measured 

deviations can be due to various types of defects 

on different scales. For example, a 0.05 mm

distortion along the trailing edge has a greater

impact on performance than a 0.3 mm global 

defect due to twisting of the part. However, the 

former generates turbulences, whereas the latter 

only deflects the air flow.

Our approach was applied to a blade designed 

by Snecma using a cloud of points, spanning the 

entire part (about 600,000 points), obtained by 

means of an optical measuring tool [20].

The main objective was to quantify the 

deviations Ei between the actual part and the 

nominal geometry, then the deviations ei

between the actual part and the distorted 

geometry.

3.2 Identification of the global form 

defects

Two studies were carried out using the

deformation modes defined previously:

- clamping of the blade at its base in the 
turbine wheel, with no twisting (Fig. 11, 
Mode 1)

- a deflection in the central area of the 
blade with a twist (Fig. 11, Mode 2)
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L/2 < z < L:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖.

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

L/2 < z < L:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

Other models can be created, e.g. for parts 

with varying sections. The finite element

method can be used to calculate the deflection at

each point under a nominal force or moment [5],

[6]. Due to the linearity assumption, one obtains 

the deformed shape as a function of the force 

and moment.

By comparing several calculation criterions,

one can select parameter values which minimize

the sum of the deviation absolute values

3. Application to complex industrial surface

3.1 Application to a turbine blade

In the context of the manufacturing of 

aeronautical parts, Snecma wishes to improve its

understanding of the deviations measured on 

turbine blades (Fig.11). Indeed, the measured 

deviations can be due to various types of defects 

on different scales. For example, a 0.05 mm

distortion along the trailing edge has a greater

impact on performance than a 0.3 mm global 

defect due to twisting of the part. However, the 

former generates turbulences, whereas the latter 

only deflects the air flow.

Our approach was applied to a blade designed 

by Snecma using a cloud of points, spanning the 

entire part (about 600,000 points), obtained by 

means of an optical measuring tool [20].

The main objective was to quantify the 

deviations Ei between the actual part and the 

nominal geometry, then the deviations ei

between the actual part and the distorted 

geometry.

3.2 Identification of the global form 

defects

Two studies were carried out using the

deformation modes defined previously:

- clamping of the blade at its base in the 
turbine wheel, with no twisting (Fig. 11, 
Mode 1)

- a deflection in the central area of the 
blade with a twist (Fig. 11, Mode 2)
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𝐿𝐿𝐿𝐿3
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𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

L/2 < z < L:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4(L − z𝑖𝑖𝑖𝑖)3 + 3L2. (L − z𝑖𝑖𝑖𝑖)

𝐿𝐿𝐿𝐿3

+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿

Other models can be created, e.g. for parts 

with varying sections. The finite element

method can be used to calculate the deflection at

each point under a nominal force or moment [5],

[6]. Due to the linearity assumption, one obtains 

the deformed shape as a function of the force 

and moment.

By comparing several calculation criterions,

one can select parameter values which minimize

the sum of the deviation absolute values

3. Application to complex industrial surface

3.1 Application to a turbine blade

In the context of the manufacturing of 

aeronautical parts, Snecma wishes to improve its

understanding of the deviations measured on 

turbine blades (Fig.11). Indeed, the measured 

deviations can be due to various types of defects 

on different scales. For example, a 0.05 mm

distortion along the trailing edge has a greater

impact on performance than a 0.3 mm global 

defect due to twisting of the part. However, the 

former generates turbulences, whereas the latter 

only deflects the air flow.

Our approach was applied to a blade designed 

by Snecma using a cloud of points, spanning the 

entire part (about 600,000 points), obtained by 

means of an optical measuring tool [20].

The main objective was to quantify the 

deviations Ei between the actual part and the 

nominal geometry, then the deviations ei

between the actual part and the distorted 

geometry.

3.2 Identification of the global form 

defects

Two studies were carried out using the

deformation modes defined previously:

- clamping of the blade at its base in the 
turbine wheel, with no twisting (Fig. 11, 
Mode 1)

- a deflection in the central area of the 
blade with a twist (Fig. 11, Mode 2)

11

Other models can be created, e.g. for parts with varying 

sections. The finite element method can be used to calculate 

the deflection at each point under a nominal force or 

moment [5], [6]. Due to the linearity assumption, one obtains 

the deformed shape as a function of the force and moment.

By comparing several calculation criterions, one can 

select parameter values which minimize the sum of the 

deviation absolute values 

3. Application to complex industrial surface

3.1 Application to a turbine blade

In the context of the manufacturing of aeronautical 

parts, Snecma wishes to improve its understanding of the 

deviations measured on turbine blades (Fig.11). Indeed, the 

measured deviations can be due to various types of defects 

on different scales. For example, a 0.05 mm distortion along 

the trailing edge has a greater impact on performance than 

a 0.3 mm global defect due to twisting of the part. However, 

the former generates turbulences, whereas the latter only 

deflects the air flow.

Our approach was applied to a blade designed by Snecma 

using a cloud of points, spanning the entire part (about 

600,000 points), obtained by means of an optical measuring 

tool [20].

The main objective was to quantify the deviations Ei 

between the actual part and the nominal geometry, then 

the deviations ei between the actual part and the distorted 

geometry.

3.2 Identification of the global form defects

Two studies were carried out using the deformation 

deflection at B with a readjustment of the 

beam’s direction and the base coordinate system 

through two parameters, decY(bottom) and 

decY(top). By similarity with the bending of a 

beam with constant cross section, the deformed 

shape is a polynomial of degree 3.

Mode 2: (Fig. 9) Pinned connections (i.e. no

translations) at ends A and B, and a deflection f

at the center of the beam. Twisting of the part 

around the z-axis with angles a at B and 0 at A 

(Fig. 9 and 10).

Fig. 9. Examples of deformation modes

For the second mode, a twist angle is applied 

at B. The resulting shape is a helicoid (Fig. 10). 

If the angle is too large, it is necessary to 

determine the displacements of some points 

along the x and y axes because the small 

displacement assumption [7] is not satisfied.

Fig. 10. A twisted model

For each model, the equations giving the 

displacement at each point must be defined 

using the following parameters:

- a the rotation angle
- fx, fy the deflections in x and y 

direction (Fig. 9)

Mode 1:

The displacement of point Pi is decomposed in 

x and y directions:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) . (𝐿𝐿𝐿𝐿 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡). 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿

+ 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−z𝑖𝑖𝑖𝑖3 + 3L. z𝑖𝑖𝑖𝑖2

2𝐿𝐿𝐿𝐿3

Mode 2:

0 < z < L/2:

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿
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Fig. 10. ��A twisted model

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑.
−4z𝑖𝑖𝑖𝑖3 + 3L2. z𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿3
+ 𝑎𝑎𝑎𝑎. 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖.
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Other models can be created, e.g. for parts 

with varying sections. The finite element

method can be used to calculate the deflection at

each point under a nominal force or moment [5],

[6]. Due to the linearity assumption, one obtains 

the deformed shape as a function of the force 

and moment.

By comparing several calculation criterions,

one can select parameter values which minimize

the sum of the deviation absolute values

3. Application to complex industrial surface

3.1 Application to a turbine blade

In the context of the manufacturing of 

aeronautical parts, Snecma wishes to improve its

understanding of the deviations measured on 

turbine blades (Fig.11). Indeed, the measured 

deviations can be due to various types of defects 

on different scales. For example, a 0.05 mm

distortion along the trailing edge has a greater

impact on performance than a 0.3 mm global 

defect due to twisting of the part. However, the 

former generates turbulences, whereas the latter 

only deflects the air flow.

Our approach was applied to a blade designed 

by Snecma using a cloud of points, spanning the 

entire part (about 600,000 points), obtained by 

means of an optical measuring tool [20].

The main objective was to quantify the 

deviations Ei between the actual part and the 

nominal geometry, then the deviations ei

between the actual part and the distorted 

geometry.

3.2 Identification of the global form 

defects

Two studies were carried out using the

deformation modes defined previously:

- clamping of the blade at its base in the 
turbine wheel, with no twisting (Fig. 11, 
Mode 1)

- a deflection in the central area of the 
blade with a twist (Fig. 11, Mode 2)
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Fig. 11. The blade model

3.3 Calculation of the amplitudes of the 

global defects

3.3.1 Initial registration

The measurements were performed by 

Snecma using an optical system developed by 

GOM [20], which consists in a stereovision 

device projecting an array of blue fringes (to 

avoid interaction with the natural light [4]).

The points were measured in a measurement 

coordinate system. The first fitting of the point 

cloud with the CAD model was achieved by

considering several surfaces and matching 6

target points with the corresponding CAD 

surfaces (Fig. 12). These surfaces were not 

machined and provided a constant coordinate 

system throughout the manufacturing process.

This is the raw reference frame.

Fig. 12. The fitting of the cloud of points

The time required to perform these operations 

(acquisition of the point cloud and registration) 

was about 10 minutes for an accurate view of 

the whole part with triangulation, but the initial 

setting is time-consuming (about 4 hours), so 

profitability is very dependent on the number of 

parts measured.

3.3.2 Point extraction for straightening

The objective is to determine the 

straightening parameters, particularly deflection 

and twisting, to be applied to the point cloud in 

order to minimize the sum of the squared 

deviations. The Excel solver was used so the 

operation would remain as generic as possible.

In order to avoid numerical problems and 

excessive computation time because of too 

many points, the calculation was performed on

only a few sections (Fig. 13).
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Fig. 11. ��The blade model
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modes defined previously:

- clamping of the blade at its base in the turbine wheel, 

with no twisting (Fig. 11, Mode 1)

- a deflection in the central area of the blade with a twist 

(Fig. 11, Mode 2)

3.3 Calculation of the amplitudes of the global de-
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3.3.1 Initial registration

The measurements were performed by Snecma using an 

optical system developed by GOM [20], which consists in 

a stereovision device projecting an array of blue fringes (to 

avoid interaction with the natural light [4]).

The points were measured in a measurement coordinate 

system. The first fitting of the point cloud with the CAD model 

was achieved by considering several surfaces and matching 6 

target points with the corresponding CAD surfaces (Fig. 12). 

These surfaces were not machined and provided a constant 

coordinate system throughout the manufacturing process. 

This is the raw reference frame.

The time required to perform these operations (acquisition 

of the point cloud and registration) was about 10 minutes 

for an accurate view of the whole part with triangulation, 

but the initial setting is time-consuming (about 4 hours), 

so profitability is very dependent on the number of parts 

measured.

3.3.2 Point extraction for straightening

The objective is to determine the straightening parameters, 

particularly deflection and twisting, to be applied to the 

point cloud in order to minimize the sum of the squared 

deviations. The Excel solver was used so the operation would 

remain as generic as possible.

In order to avoid numerical problems and excessive 

computation time because of too many points, the 

calculation was performed on only a few sections (Fig. 13).

The least-squares calculation requires that the real point 

Mi coordinates and the normal ni components of the surface 

are known.

The construction of the sample is illustrated in Fig. 14. 

The optical measurements lead to a cloud of real points and 

a triangular mesh connecting these points. The expected 
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setting is time-consuming (about 4 hours), so 
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and twisting, to be applied to the point cloud in 
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deviations. The Excel solver was used so the 

operation would remain as generic as possible.

In order to avoid numerical problems and 

excessive computation time because of too 

many points, the calculation was performed on

only a few sections (Fig. 13).
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Fig. 12. ��The fitting of the cloud of points Fig. 13. The measured cloud and the sample 

extracted

The least-squares calculation requires that the 

real point Mi coordinates and the normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

components of the surface are known.

The construction of the sample is illustrated

in Fig. 14. The optical measurements lead to a

cloud of real points and a triangular mesh 

connecting these points. The expected sections 

are generated in the CAD system by extracting a

small number of nominal points Pi along the 

section line (38 points per section in this 

particular experiment). At each point 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of a 

nominal section, the deviation Ei between the 

mesh and the CAD model is defined along the 

normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊. The lines (Pi,𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊) and the mesh 

intersect at points Mi considered as real points:

Ei = 𝒅𝒅𝒅𝒅𝒊𝒊𝒊𝒊𝑴𝑴𝑴𝑴𝒊𝒊𝒊𝒊
𝒕𝒕𝒕𝒕 ∙ 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

The points along the trailing edge are 

excluded from the calculation because the local 

radius is too small and the normal vectors are 

not constant with regard to deviation dues to 

twist.

Thus, each section is characterized by a series 

of nominal points Pi from the CAD model, the 

normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊 at each point and the deviation Ei

with respect to the actual surface materialized 

by the mesh of the measured points.

This extraction was automated through a

quick development in the CATIA CAD software. 

As written before and in order to avoid 

numerical problems due to the curvature, the 

sample distribution was created without taking 

into account the leading and trailing edges.

13

Fig. 13. ��The measured cloud and the sample extracted

Fig. 14. Construction of the sample for the calculation of the straightening parameters

3.3.3 Calculation of the distorted model’s 

parameters using the Excel solver

After the straightening operation, the 

deviations become ei:

ei = Ei - 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕 ∙ 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

The calculation of the straightening / torsion 

parameters for the sample defined previously 

answers to the following problem:

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝟏𝟏𝟏𝟏:        𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) ;  𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡) ;

𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚) ;  𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡);  𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥; 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑)

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝟐𝟐𝟐𝟐:       𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 (𝛼𝛼𝛼𝛼;  𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥; 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑)

𝑤𝑤𝑤𝑤ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷 ∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2,

𝑤𝑤𝑤𝑤𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤ℎ ei = Ei - 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕 ∙ 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

At each point Pi, the deformation models lead 

to 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 according to chosen mode.

Then, the Excel solver changes the values of 

the parameters in order to minimize the sum of 

the squared deviations. The computation time is 

only a few seconds, depending on the size of the 

sample.

Another calculation could minimize the sum 

of the shape defects in the 9 sections by 

minimizing:

𝐷𝐷𝐷𝐷 = 2�𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(|𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖|)
9

𝑗𝑗𝑗𝑗=1

One advantage of that method would be that 

the calculation would be unaffected by the 

density of the point cloud.
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Fig. 14. Construction of the sample for the calculation of the straightening parameters
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sections are generated in the CAD system by extracting a 

small number of nominal points Pi along the section line 

(38 points per section in this particular experiment). At each 

point Pi of a nominal section, the deviation Ei between the 

mesh and the CAD model is defined along the normal ni. The 

lines (Pi,ni) and the mesh intersect at points Mi considered 

as real points:

Fig. 13. The measured cloud and the sample 

extracted

The least-squares calculation requires that the 

real point Mi coordinates and the normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

components of the surface are known.

The construction of the sample is illustrated

in Fig. 14. The optical measurements lead to a

cloud of real points and a triangular mesh 

connecting these points. The expected sections 

are generated in the CAD system by extracting a

small number of nominal points Pi along the 

section line (38 points per section in this 

particular experiment). At each point 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of a 

nominal section, the deviation Ei between the 

mesh and the CAD model is defined along the 

normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊. The lines (Pi,𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊) and the mesh 

intersect at points Mi considered as real points:

Ei = 𝒅𝒅𝒅𝒅𝒊𝒊𝒊𝒊𝑴𝑴𝑴𝑴𝒊𝒊𝒊𝒊
𝒕𝒕𝒕𝒕 ∙ 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊

The points along the trailing edge are 

excluded from the calculation because the local 

radius is too small and the normal vectors are 

not constant with regard to deviation dues to 

twist.

Thus, each section is characterized by a series 

of nominal points Pi from the CAD model, the 

normal 𝒏𝒏𝒏𝒏𝒊𝒊𝒊𝒊 at each point and the deviation Ei

with respect to the actual surface materialized 

by the mesh of the measured points.

This extraction was automated through a

quick development in the CATIA CAD software. 

As written before and in order to avoid 

numerical problems due to the curvature, the 

sample distribution was created without taking 

into account the leading and trailing edges.
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One advantage of that method would be that the calculation 

would be unaffected by the density of the point cloud.

3.4 Digital straightening of the actual part

With the values obtained, a displacement field was 

applied to the whole set of the measured points.

Then, the new cloud of points obtained after digital 

straightening was imported into CATIA for comparison with 

the nominal model. Finally, the residual deviations (local 

defects) were obtained through a deviation analysis and 

plotted as a color map (Fig. 15). 

The values obtained (hidden for confidentiality) show the 

global shape defects of the blade (deflection and twisting).

The color map of the residual deviations characterizes 

the local defects of the surface. In our example, the main 

defects, before digital straightening, are a lack of material on 

the suction side of the leading edge and an excess of material 

on the pressure side. After digital straightening we note that 

some deviations was due to global defects.

 

3.5 Blade tolerancing

As explained in Section 2.4 in the case of a simple example, 

this geometric analysis method can be specified with tools 

of the ISO 10579 standard [2], leading to the definition of a 

stressed state.

Figure 16 shows the blade case with deformation Mode 1. 

The coordinate system is defined directly on the CAD model 

created from the measurement cloud.

As mentioned before, the specifications can be controlled 

at two different states (stressed or free), depending on the 

presence of modifier F. So there are two dedicate check 

procedures for both case.

The first one, with F modifier, consists to verify if the 

measurement cloud is included in the tolerance zone, 

defined by the ISO specification, immediately after the 

measurement clouds registration on the datum reference 

frame of the CAD model. In that case no digital straightening 

is realized, this is the “free” state.

In the second case, without F modifier, the measurement 

cloud is fitted on the CAD model next digitally straighten in 

a “stressed” state defined by defect modes, then straighten 

points cloud is compared to the tolerance zone.

The last two figures correspond to the industrial 

requirement to analyze the defects and validate the 

conformity of a blade.

 

4. Conclusion

The digital straightening method presented in this work 

can be applied to slender parts with constant or variable 

sections, or even to thin parts such as sheet metal or 
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crankcases, once the deformation model has been chosen.

The ISO tolerancing proposed is based on a dual 

specification in the free state and in the straightened state 

through a digital process, leading to the deformation 

equation and the objective function to be minimized.

In the case of the simple part discussed in section 2, the 

measurements were carried out by means of a measuring 

machine. For the blade, the measurement of a large point 

cloud was performed using an optical device.

In both cases, the model’s parameters characterized 

the general shape of the part. The residual deviations after 

straightening led to the representation of the local defects.

Several types of straightening models can be tested in 

order to identify the global shape deviations and the smaller 

3.4 Digital straightening of the actual 

part

With the values obtained, a displacement field 

was applied to the whole set of the measured 

points.

Then, the new cloud of points obtained after 

digital straightening was imported into CATIA 

for comparison with the nominal model. Finally,

the residual deviations (local defects) were

obtained through a deviation analysis and 

plotted as a color map (Fig. 15). 

The values obtained (hidden for 

confidentiality) show the global shape defects of 

the blade (deflection and twisting).

The color map of the residual deviations

characterizes the local defects of the surface. In 

our example, the main defects, before digital 

straightening, are a lack of material on the 

suction side of the leading edge and an excess of 

material on the pressure side. After digital 

straightening we note that some deviations was 

due to global defects.

Fig. 15. Comparison before / after digital straightening depending on the mode selected
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Fig. 15. Comparison before / after digital straightening depending on the mode selected

3.5 Blade tolerancing

As explained in Section 2.4 in the case of a

simple example, this geometric analysis method 

can be specified with tools of the ISO 10579 

standard [2], leading to the definition of a

stressed state.

Fig. 16 shows the blade case with 

deformation Mode 1. The coordinate system is

defined directly on the CAD model created from

the measurement cloud.

As mentioned before, the specifications can 

be controlled at two different states (stressed or 

free), depending on the presence of modifier F.

So there are two dedicate check procedures for 

both case.

The first one, with F modifier, consists to 

verify if the measurement cloud is included in 

the tolerance zone, defined by the ISO 

specification, immediately after the 

measurement clouds registration on the datum 

reference frame of the CAD model. In that case 

no digital straightening is realized, this is the 

“free” state.

In the second case, without F modifier, the 

measurement cloud is fitted on the CAD model 

next digitally straighten in a “stressed” state 

defined by defect modes, then straighten points 

cloud is compared to the tolerance zone.

The last two figures correspond to the 

industrial requirement to analyze the defects and

validate the conformity of a blade.

Fig. 16. Blade tolerancing by digital straightening with ISO 10579
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Fig. 16. Blade tolerancing by digital straightening with ISO 10579
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residual deviations of the part. In addition, the smoothness 

of the variation in the directions of the part’s sections can be 

described.

The residual defects can be easily visualized as color 

maps. The corresponding computation time is small (only 

a few seconds), but the time required for the measurements 

remains too long (4 hours setup time + 10 minutes per 

part for the measurements and triangulation). Today, 

this method can be used only to qualify a manufacturing 

process or to perform a sample measurement during 

production.

New portable optical measurement systems should make 

it possible to measure parts directly in the workshop and 

to check raw parts and machined workpieces in only a few 

seconds.

However, additional effort is required in order to be able 

to adjust the density of the point clouds for determining 

the straightening parameters, especially at the leading 

and trailing edges, using the least-squares criterion and 

comparing the results with those of the minimization 

criterion of the sum of the sectional shape defects.

The demonstrator which has been achieved meets the 

needs of Snecma Company. The company decided to 

integrate this application into the CATIA environment to use 

it in the central metrology services, especially to validate the 

production process of raw or finished blades.
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