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Abstract

In this paper, the unsteady aerodynamics and blade structural dynamics of an experimental bearingless rotor were analyzed. 

Due to the multiple load path and nonlinear behavior of a bearingless rotor, sophisticated structural modeling and structural-

aerodynamic coupled analysis is required. To predict the internal load and deformation of an experimental bearingless rotor, 

trim analysis was implemented. The results showed good agreement when compared with those predicted by CAMRAD II the 

rotorcraft comprehensive analysis. It is possible to extend the present structural-aerodynamic combined analysis to further 

advanced configurations of the bearingless rotor in the future. 
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1. Introduction

In order to design a bearingless rotor, the capability to 

predict internal loads and structural deflection accurately is 

crucial. The precise prediction of these quantities guarantees 

safety of a bearingless rotor design. The prediction of large 

elastic deflections at its inboard will also be important. A 

snubber, which is located between the flexbeam and torque 

tube, influences the imaginary hinge position. To achieve 

a benign prediction, accurate aerodynamic-structural 

coupled analysis is required. Also, an analysis that considers 

the detailed components such as snubber and pitch link, is 

required.

In previous studies, there have been various attempts to 

analyze bearingless rotors. Hodges [1] performed stability 

analysis for a bearingless rotor using FLAIR, based on the 

moderate deflection beam formulation. His results regarding 

the damping coefficient showed a good correlation with the 

measurements obtained from the small-scale rotor test [2, 3]. 

Lim and Lee [4] analyzed the aeroelastic characteristics of a 

bearingless rotor. They used large deflection beam theory 

which relies upon a simplified assumption on the cross 

sectional analysis. They predicted the damping coefficient, 

which showed good agreement with measurements. The 

aeroelastic response was also obtained by a time-marching 

solution procedure under the small perturbation assumption. 

However, the internal loads and structural deflection were 

not estimated. Staruk, et al. [5] suggested three-dimensional 

structural models for the multiple flexible bodies. Three 

rotor types were created: a bearingless rotor, an articulated 

rotor, and a teetering rotor. Static and dynamic analyses for 

those rotors were performed. However, the aeromechanical 
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response of a rotating blade in atmosphere was not obtained. 

Anathan and Bearder [6] conducted a CFD-CSD coupled 

analysis on an MDART bearingless rotor [7, 8] and its internal 

loads were obtained. Prediction of the internals load near 

the blade tip showed good correlation with measurements. 

However, verification of the structural deflection was not 

performed.

Recently, an accurate formulation considering geometrical 

nonlinearities was adopted for bearingless rotor analysis. 

CAMRAD II [9] is a rotorcraft comprehensive analysis 

program, utilizing the displacement-based, geometrically-

exact beam formulation. CAMRAD II provides a multi-

body configuration that is constrained within the average 

displacement or rotation of the elements at the connecting 

point [10]. In a more detail, the blade and flexbeam are 

connected by the structural dynamic interface which is 

defined half-way between the two ends, with axes aligned 

with the blade root frame. Connecting axes are defined at the 

interface point, and then the constraint equation requires 

that the connecting axes on the two sides (the blade and 

flexbeam) of the interface should have the same origin and 

orientation [11]. Regarding the aerodynamics-structural 

coupled analysis, CAMRAD II is capable of predicting various 

physical quantities for a bearingless rotor. However, because 

it uses a displacement-based formulation, additional post-

processing will be required to obtain the internal loads. Its 

structural modeling capability is restricted to only a few 

pre-selected simple configurations of the bearingless rotor. 

Sotoudeh and Hodges [12, 13] introduced fully intrinsic 

equations, which satisfied the geometrical nonlinearities 

without displacement or rotation variables, for a bearingless 

rotor. They analyzed the internal loads for a simplified 

bearingless rotor and the results showed good agreement 

when compared with those predicted by DYMORE. However, 

they used an imaginary, simple bearingless rotor, which 

has uniform material properties along its span. Also, fully 

intrinsic equations, which were a force-based formulation, 

required additional post-processing to obtain the structural 

deflections and rotations.

Chun, et al. [14], introduced aerodynamic-structural 

analysis based on the mixed variational geometrically-

exact beam formulation and the finite-state dynamic inflow 

aerodynamics.  The advantage of the mixed variational 

formulation is that displacements, rotations, internal 

forces, moments, linear/angular momenta are extracted 

directly. They analyzed the internal loads and structural 

deflection in a bearingless rotor. Their structural model 

showed good agreement with DYMORE, and the relevant 

aerodynamic-structural analysis was verified by comparison 

with CAMRAD II. They adopted a Lagrange multiplier for 

multi-body analysis. However, the model uses excessive 

inflow values which came from the summation of an initial 

inflow term of the uniform inflow model and the converged 

inflow values. In this way, discrepancies were induced in the 

aerodynamic prediction, compared with those predicted by 

CAMRAD II. Also, a snubber was located on the first beam 

element of the inboard. It was not possible at that time to 

locate such a snubber in an arbitrary location. They used 

experimental bearingless rotor to validate their analysis. But 

comparisons between analysis and measurement were not 

included.

In this paper, comparisons of the internal loads and 

structural deflection between analysis and measurement 

for a full-scale experimental bearingless rotor is attempted. 

Especially, the aerodynamic-structural analysis constructed 

in Ref. 14 will be further improved.  The aerodynamic module 

will be refined to consider accurate inflow quantities. The 

structural model will be improved including an arbitrary 

snubber location. To validate such further improvements, 

a full-scale experimental bearingless rotor, which was 

developed and whirl-tested by the Korea Aerospace Research 

Institute [15] will be used. Trim analysis will be conducted 

both for hover and forward flight conditions. Its prediction 

results regarding the internal loads and structural deflection 

will be compared with other predictions. Also, further 

improvement to the aerodynamic-structural analysis will 

be attempted for a full-scale experimental bearingless rotor. 

By adopting the present improved analytical procedure, 

prediction on the internal loads and structural deflection 

will be enabled. Its result will be used for verification of 

the design safety and accurate behavior prediction of a 

bearingless rotor. Finally, such improved aerodynamic-

structural coupled analysis will be applicable to other vehicle 

structures such as launch vehicles with a multi load path and 

high aspect ratio wing.

2.  Extensions from the Previously Suggested 
Analytical Model

Chun, et al. [14] developed aerodynamic-structural 

analysis applicable to a bearingless rotor. However, there 

were few areas that required further improvement. The 

present analytical model is obtained by extending the 

aerodynamic-structural analysis developed in Ref. 14. The 

four important improvements that were added are as follows.

• � �Multi-body � structural � model � considering � kinematic �

constraints and boundary conditions

A multi-body structural model considering kinematic 

constraints had already been developed in Ref. 14. However, 
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the practical boundary condition of each component, such 

as the free torque tube root and clamped flexbeam root, were 

not considered. The multi-body connected structural model 

was constrained considering both kinematic constraints and 

the practical boundary condition of each beam element. 

The present beam model identifies the specific parameters 

related to each boundary condition.

• � �Arbitrary �snubber �location

In Ref. 14, the snubber was located near the first inboard 

beam element. Thus, it could not predict the inboard blade 

deflection since the distance between the snubber and 

the hub was considerable. In this paper, the capability to 

consider an arbitrary snubber location was incorporated.

• � �Implementation �of �the �pitch �control �system

The rotor pitch control components were not included in 

the structural model in Ref. 14. In this paper, the pitch link 

was modeled as a combination of an elastic linear spring and 

a linear viscous damper. Thus, the present structural analysis 

included the pitch control system to consider a realistic 

configuration of the rotor system.

• � �Accurate �airload �estimation �by �using �the �precise �inflow �

quantity

The aerodynamic model included in Ref. 14 provided an 

incorrect inflow quantity. The incorrect value was added 

to the inflow quantity, and it induced an inaccurate thrust 

prediction. In this paper, the estimation of the inflow value 

was improved

2.1 Multi-component connection

A rotor blade, a torque tube, and flexbeams were modeled 

as one-dimensional beam elements. An example of the 

bearingless rotor is shown in Fig. 1. At the clevis location, 

these components were attached in a complicated fashion. 

The multi-body dynamic analysis was introduced in order 

to satisfy interconnecting kinematic relationships among 

those components. The one-dimensional beam model and 

kinematic relationships are derived in Ref. 14.

Chun, et al. [14] used a nonlinear intrinsic beam 

formulation originally suggested by Hodges [17]. In that 

structural model, the kinematic constraints were established 

at the clevis location for multi-body modeling. The total 

energy of the multi-body system, which consists of multiple 

beam elements, was obtained by assembling the energy 

equations for each beam, as follows.

the pitch link was modeled as a combination of an elastic linear spring and a linear viscous damper. 

Thus, the present structural analysis included the pitch control system to consider a realistic 

configuration of the rotor system.

• Accurate airload estimation by using the precise inflow quantity

The aerodynamic model included in Ref. 14 provided an incorrect inflow quantity. The incorrect 

value was added to the inflow quantity, and it induced an inaccurate thrust prediction. In this paper, the 

estimation of the inflow value was improved

2.1 Multi-component connection

A rotor blade, a torque tube, and flexbeams were modeled as one-dimensional beam elements. An 

example of the bearingless rotor is shown in Fig. 1. At the clevis location, these components were 

attached in a complicated fashion. The multi-body dynamic analysis was introduced in order to satisfy 

interconnecting kinematic relationships among those components. The one-dimensional beam model 

and kinematic relationships are derived in Ref. 14.

Chun, et al. [14] used a nonlinear intrinsic beam formulation originally suggested by Hodges [17]. In 

that structural model, the kinematic constraints were established at the clevis location for multi-body 

modeling. The total energy of the multi-body system, which consists of multiple beam elements, was 

obtained by assembling the energy equations for each beam, as follows.

mb tt fbΠ =Π +Π +Π (1)

Through the mixed variational formulation, the discretized governing equation of each beam was 

obtained with 18N+12 degrees of freedom, including the displacements and rotations, internal forces 

and moments, as well as the linear and angular momenta. The present geometrically exact beam 

formulation was expressed in terms of the displacement, rotation, internal forces and moments, linear 

and angular momenta. Thus, important mechanical quantities, such as internal forces and moments, can 

be obtained directly from the beam formulation. Equation (2) shows the unknown vector for each beam 

formulation.

5 

(1)

Through the mixed variational formulation, the discretized 

governing equation of each beam was obtained with 18N+12 

degrees of freedom, including the displacements and 

rotations, internal forces and moments, as well as the linear 

and angular momenta. The present geometrically exact beam 

formulation was expressed in terms of the displacement, 

rotation, internal forces and moments, linear and angular 

momenta. Thus, important mechanical quantities, such as 

internal forces and moments, can be obtained directly from 

the beam formulation. Equation (2) shows the unknown 

vector for each beam formulation.

{ }1 1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ TT T T T T T T T T T T T

N N N N N N N NX u F M P H u F M P Hθ θ= Λ Λ Λ Λ

(2)

The hatted terms in Eq. (2) correspond to the unknowns related to boundary conditions. In this paper, 

the main blade and torque tube were modeled as free-free beams. The flexbeam was modeled as a 

clamped-free beam. The unknown vectors related to boundary conditions are summarized in Table 1.

At the clevis location, the assumption of cantilevered adjacent components was used. Hence, each 

component would exhibit the same rotation angle as that of the clevis [14]. To enforce the kinematic 

constraints among the components in the present structural model, Lagrange multipliers were used as 

shown in Fig. 2. The energy equations for the clevis constraint were expressed as follows.

( ) ( ), , 0tt fbC u C uθ θ= = (3)

The constraint energy equations were modeled in accordance with the total energy equation, Eq. (1). 

Therefore, the revised total energy equation and its variational form were obtained as follows.

mb tt fb tt tt fb fbC Cλ λΠ = Π +Π +Π + + (4)

0mb tt fb i i i iC Cλ λ∂Π = ∂Π + ∂Π + ∂Π + ∂ + ∂ =∑ ∑ (5)

Equation (5) can be expressed as a simple form in Eq. (6).

( ) 0S LF X F− = (6)

where FS is the structural operator, and FL is the external loads operator. X is the total unknown 

structural state variable which is as follows.

{ }T

total mb tt fb mb tt mb fbX X X X X X− −= (7)

where Xmb-tt and Xmb-fb are the unknown variables in the constraint equation between the main blade-

torque tube and main blade-flexbeam. The Newton-Raphson method was employed to solve the 

nonlinear equation, Eq. (6). In this procedure, Jacobi matrices were required. The complete Jacobi 

matrix consists of elemental matrices. The structural operator in Eq. (6) is divided into elemental 

structural operator, as shown in Eq. (8).

( ) { }mb tt fb mb tt mb fbS S S S S SF X F F F F F
− −

= (8)

Thus, the complete Jacobi matrix is derived in Eq. (9).

6 
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total mb tt fb mb tt mb fbX X X X X X− −= (7)

where Xmb-tt and Xmb-fb are the unknown variables in the constraint equation between the main blade-
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6 

(3)

The constraint energy equations were modeled in Fig. 1. Example of the bearingless rotor [16]

22 

Fig. 1.  Example of the bearingless rotor

Table 1. Unknowns for the boundary conditions
Table 1. Unknowns for the boundary conditions

Clamped Free
Boundary condition u0, θ0 = 0 F0, M0 = 0
Boundary unknowns X = {F0 M0 u1 θ1 F1 M1 P1 H1…} X = {u0 θ0 u1 θ1 F1 M1 P1 H1…}
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accordance with the total energy equation, Eq. (1). Therefore, 

the revised total energy equation and its variational form 

were obtained as follows.

{ }1 1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ TT T T T T T T T T T T T

N N N N N N N NX u F M P H u F M P Hθ θ= Λ Λ Λ Λ

(2)

The hatted terms in Eq. (2) correspond to the unknowns related to boundary conditions. In this paper, 

the main blade and torque tube were modeled as free-free beams. The flexbeam was modeled as a 

clamped-free beam. The unknown vectors related to boundary conditions are summarized in Table 1.

At the clevis location, the assumption of cantilevered adjacent components was used. Hence, each 

component would exhibit the same rotation angle as that of the clevis [14]. To enforce the kinematic 

constraints among the components in the present structural model, Lagrange multipliers were used as 

shown in Fig. 2. The energy equations for the clevis constraint were expressed as follows.

( ) ( ), , 0tt fbC u C uθ θ= = (3)

The constraint energy equations were modeled in accordance with the total energy equation, Eq. (1). 

Therefore, the revised total energy equation and its variational form were obtained as follows.

mb tt fb tt tt fb fbC Cλ λΠ = Π +Π +Π + + (4)

0mb tt fb i i i iC Cλ λ∂Π = ∂Π + ∂Π + ∂Π + ∂ + ∂ =∑ ∑ (5)

Equation (5) can be expressed as a simple form in Eq. (6).

( ) 0S LF X F− = (6)

where FS is the structural operator, and FL is the external loads operator. X is the total unknown 

structural state variable which is as follows.

{ }T

total mb tt fb mb tt mb fbX X X X X X− −= (7)

where Xmb-tt and Xmb-fb are the unknown variables in the constraint equation between the main blade-

torque tube and main blade-flexbeam. The Newton-Raphson method was employed to solve the 

nonlinear equation, Eq. (6). In this procedure, Jacobi matrices were required. The complete Jacobi 

matrix consists of elemental matrices. The structural operator in Eq. (6) is divided into elemental 

structural operator, as shown in Eq. (8).

( ) { }mb tt fb mb tt mb fbS S S S S SF X F F F F F
− −

= (8)

Thus, the complete Jacobi matrix is derived in Eq. (9).

6 

(4)
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The hatted terms in Eq. (2) correspond to the unknowns related to boundary conditions. In this paper, 

the main blade and torque tube were modeled as free-free beams. The flexbeam was modeled as a 

clamped-free beam. The unknown vectors related to boundary conditions are summarized in Table 1.

At the clevis location, the assumption of cantilevered adjacent components was used. Hence, each 

component would exhibit the same rotation angle as that of the clevis [14]. To enforce the kinematic 

constraints among the components in the present structural model, Lagrange multipliers were used as 

shown in Fig. 2. The energy equations for the clevis constraint were expressed as follows.
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The constraint energy equations were modeled in accordance with the total energy equation, Eq. (1). 
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where FS is the structural operator, and FL is the external loads operator. X is the total unknown 
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= (8)

Thus, the complete Jacobi matrix is derived in Eq. (9).
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(5)

Equation (5) can be expressed as a simple form in Eq. (6).
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Equation (9) is divided into three parts. The structural Jacobi matrices are derivatives of the structural 

operators with respect to its unknowns. Each structural Jacobi matrix satisfies the boundary condition 

for each beam element. Jacobi matrices of the constraint operators and the constraint variables enforce 
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variables are the partial derivatives of the structural operators with respect to the constraint variables at 

the clevis location. Thus, the structural constraints and boundary conditions were satisfied with the 

complete Jacobi matrix. In order to conduct time integration, the second-order Euler backward method 

with previous time steps was used and the Newton-Raphson iterative method was simultaneously used 

to solve the resulting nonlinear equation.
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These energy terms were added to the total energy equation, Eq. (4). Then the revised formulation 

for a bearingless rotor with an elastomeric snubber was obtained as follows.

mb tt fb snubber tt tt fb fbC Cλ λΠ = Π +Π +Π +Π + + (13)

However, the snubber representation attempted in Ref. 14 put it next to the most inboard beam 

element. This suggests that only linear or rotational variables for the most inboard beam element were 

considered in the snubber energy equation. Thus, such an approach is not capable of predicting accurate 

structural deflection at the inboard end. In order to predict the precise structural deflection at that 

location, an improved model for an arbitrary snubber location is required. To locate the snubber at an 

arbitrary location, an additional element was introduced to the torque tube and the flexbeam. The linear 

or rotational variables in the additional element were incorporated in the snubber energy equation. 

Given that the snubber is located between the torque tube and the flexbeam, only the inboard beam 

element was considered, as shown in Fig. 3. It represents the difference between the previous and 

present structural modeling approach, including the snubber.

By the application of such an approach, the bending deflection of the flexbeam at the imaginary hinge 

location caused by the snubber can be obtained.
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suggests that only linear or rotational variables for the most 

inboard beam element were considered in the snubber 

energy equation. Thus, such an approach is not capable 

of predicting accurate structural deflection at the inboard 

end. In order to predict the precise structural deflection at 

that location, an improved model for an arbitrary snubber 

location is required. To locate the snubber at an arbitrary 

location, an additional element was introduced to the torque 

tube and the flexbeam. The linear or rotational variables in 

the additional element were incorporated in the snubber 

energy equation. Given that the snubber is located between 

the torque tube and the flexbeam, only the inboard beam 

element was considered, as shown in Fig. 3. It represents 

the difference between the previous and present structural 

modeling approach, including the snubber.

By the application of such an approach, the bending 

deflection of the flexbeam at the imaginary hinge location 

caused by the snubber can be obtained.

2.3 Rotor pitch control system flexibility

The schematic view of the rotor blade and its pitch control 

system is shown in Fig. 4. The pitch horn, pitch link, and the 

rotating swashplate were considered in this paper. The pitch 

horn and the rotating swashplate were modeled as rigid 

bodies with negligible mass. The pitch link was modeled as a 

combination of an elastic linear spring and a linear viscous 

damper. The additional terms in the virtual variation in the 

strain energy and virtual work expressions due to the elastic 

pitch link can be written as follows.

The schematic view of the rotor blade and its pitch control system is shown in Fig. 4. The pitch horn, 

pitch link, and the rotating swashplate were considered in this paper. The pitch horn and the rotating 

swashplate were modeled as rigid bodies with negligible mass. The pitch link was modeled as a 

combination of an elastic linear spring and a linear viscous damper. The additional terms in the virtual 

variation in the strain energy and virtual work expressions due to the elastic pitch link can be written as 

follows.

pl pl pl pl pl pl pl plU k E E W c E Eδ δ δ δ= = −  (14)

where Epl is the elongation of the pitch-link. It was assumed that the vertical motion of the swash-

plate was prescribed through the control inputs. The displacement of the pitch link was then obtained 

according to the mechanical behavior of the control system. Then Epl can be written as

_ _pl pl new pl oldE L L= − (15)

By following this procedure, the blade root pitching moment and the load upon the pitch-link were 

determined in each time step from the additional energy and work terms.

2.4 Finite-state unsteady aerodynamics

In Ref. 14, two types of inflow model were combined with the structural analysis of a bearingless 

rotor. First, Glauert`s uniform inflow model [18] was used for simple aerodynamic computation. The 

finite-state unsteady dynamic inflow aerodynamics [19], was also considered for aerodynamic-

structural coupled analysis. Equations (16) and (17) represent the dynamic inflow value and the uniform 

inflow value, respectively.
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Once the inflow values reached convergence, the airloads acting along each section would be 

estimated. However, in Ref. 14, to obtain aerodynamic forces using the dynamic inflow model, the 

inflow value, which was the summation of dynamic inflow and uniform inflow, was used. Consequently, 
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rotor. First, Glauert`s uniform inflow model [18] was used for simple aerodynamic computation. The 

finite-state unsteady dynamic inflow aerodynamics [19], was also considered for aerodynamic-

structural coupled analysis. Equations (16) and (17) represent the dynamic inflow value and the uniform 
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(a) Snubber model of Chun, et al [14]

(b) Present snubber model

Fig. 3. Inboard beam element with an arbitrary snubber location
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Fig. 3. Inboard beam element with an arbitrary snubber location

Fig. 4. Schematic view of the rotor pitch control system components
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Fig. 4.  Schematic view of the rotor pitch control system components
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By following this procedure, the blade root pitching 

moment and the load upon the pitch-link were determined 

in each time step from the additional energy and work 

terms.

2.4 Finite-state unsteady aerodynamics

In Ref. 14, two types of inflow model were combined with 

the structural analysis of a bearingless rotor. First, Glauert`s 

uniform inflow model [18] was used for simple aerodynamic 

computation. The finite-state unsteady dynamic inflow 

aerodynamics [19], was also considered for aerodynamic-

structural coupled analysis. Equations (16) and (17) 

represent the dynamic inflow value and the uniform inflow 

value, respectively.

The schematic view of the rotor blade and its pitch control system is shown in Fig. 4. The pitch horn, 

pitch link, and the rotating swashplate were considered in this paper. The pitch horn and the rotating 

swashplate were modeled as rigid bodies with negligible mass. The pitch link was modeled as a 

combination of an elastic linear spring and a linear viscous damper. The additional terms in the virtual 

variation in the strain energy and virtual work expressions due to the elastic pitch link can be written as 

follows.
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Once the inflow values reached convergence, the 

airloads acting along each section would be estimated. 

However, in Ref. 14, to obtain aerodynamic forces using 

the dynamic inflow model, the inflow value, which was the 

summation of dynamic inflow and uniform inflow, was used. 

Consequently, an excessive inflow value was induced, and 

inaccurate airloads were obtained in Ref. 14.

In this paper, the aerodynamic inflow model was refined 

to consider the precise inflow value. Accurate inflow 

values were obtained for both the uniform inflow model 

and dynamic inflow model. For uniform inflow Eq. (17) 

was used, and Eq. (16) was used for dynamic inflow. Any 

superfluous terms were not added. Thus, the converged 

inflow values, without any unnecessary values, were used 

to obtain accurate airloads for each inflow model. Fig. 5 

illustrates the improvement in this procedure. To find the 

sectional forces and moments, blade element theory and the 

two-dimensional aerodynamic table of the airfoil (C81 table) 

were employed.

3. Numerical Results

3.1 Full scale bearingless rotor configuration

In this paper, a full-scale bearingless rotor developed by 

the Korea Aerospace Research Institute (KARI) was used 

(a) Aerodynamic module of Ref. 14

(b) Present aerodynamic module

Fig. 5. Improvement in the inflow computation
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Fig. 5. Improvement in the inflow computation

Table 2. Characteristics of KARI bearingless rotor
Table 2. Characteristics of KARI bearingless rotor

Characteristic Symbol Value
Radius R 5.82 m

Number of blades Nb 4
Mean Chord c 0.27 m

Solidity σ 0.0591
Rotational speed Ω 36.55 rad/s
Clevis position Rclevis 1.16 m

Snubber position Rsnubber 0.26 m
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to validate a presently extended aerodynamic-structural 

coupled model. This bearingelss rotor was designed and 

whirl-tested by KARI. The specific configurations of this 

bearingelss rotor are presented in Table 2 and Fig. 6.

To validate the improvements of the present analysis, four 

different trim analyses and a collective sweep analysis were 

performed. For the hover analysis, both uniform inflow and 

dynamic inflow were combined in the present structural 

model. Also, to predict the behavior of the bearingless 

rotor under forward flight conditions, trim analyses were 

conducted regarding two different advance ratios. The 

results were compared with those predicted by the existing 

comprehensive helicopter analysis program, CAMRAD 

II. Finally, no trim load analysis with a constant collective 

sweep angle was performed and compared with the whirl 

tower experimental results. These analyses are summarized 

in Table 3.

3.2 Frequency prediction

Frequency prediction was conducted to investigate the 

dynamic characteristics of the bearingless rotor blade. 

Comparison result of natural frequencies, which were 

predicted by both the present analysis and CAMRAD II at the 

nominal rotational speed, is shown in Table 4. The average 

difference of natural frequency between the present analysis 

and the CAMRAD II was less than 4%. Thus, the validity of 

the present analysis was ascertained.

3.3 Trim analysis results

The trim analysis was performed for Cases 1 to 5. Case 6 was 

a no-trim analysis in order to compare the measurements. 

This measurement provided only the flap moment result. 

Thus, the trim angle and aerodynamic results in Case 6 were 

not obtained. The results of trim angle for the various cases 

are presented in Fig. 7. They show good agreement with the 

values predicted by CAMRAD II. Also, aerodynamic results 

are shown in Fig. 8.

3.4 Blade deflection

The snubber included in the bearingless rotor was 

expected to exhibit distinctive movements. The role of the 

(a) Sectional Mass [kg/m] (b) Sectional Stiffness [N-m2]

Fig. 6. Sectional properties of KARI bearingless rotor
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Fig. 6. Sectional properties of KARI bearingless rotor

Table 3. Computational cases for KARI bearingless rotor
Table 3. Computational cases for KARI bearingless rotor
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Trim/Non-trim Trim Trim Trim Trim Trim Non-Trim
Trim target CT/σ = 0.08, CMx/σ = 0.00, CMy/σ = 0.00 N/A

Inflow type Uniform
inflow

Dynamic
inflow

Dynamic
inflow

Dynamic
inflow

Dynamic
inflow

Dynamic
inflow

Advance ratio 0.0 0.0 0.1 0.2 0.3 0.0
Collective input N/A 1°, 3°, 5°

20 

Table 4. Natural frequencies at the nominal speed for KARI bearingless rotor
Table 4. Natural frequencies at the nominal speed for KARI bearingless rotor

ω/Ωref
Flap Lag Torsion

1st 2nd 1st 2nd 1st
CAMRAD II 1.035 2.619 0.680 4.919 4.007

Present 1.109 2.718 0.679 4.925 4.245
Difference 6.7% 3.6% 0.1% 0.3% 5.6%

21 
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snubber is to separate the point of the flap bending and the lag 

bending. The snubber was designed so that the flap bending 

may occur between the hub and snubber. Significant lag 

bending occurs outboard of the snubber location, as shown 

in Fig. 9. Fig. 10 shows magnified plots focused on the hub. 

It reveals that our predictions were accurate and show good 

agreement with CAMRAD II, within a discrepancy 5%. Thus, 

the structural deflection considering an arbitrary snubber 

location was validated.

3.5 Internal loads analysis

Figures 11-15 illustrate the comparison for the internal 

loads distribution in a trimmed situation, predicted at 

the azimuthal location of 270° against those predicted 

by CAMRAD II. In all the cases considered the trend was 

similar to those predicted by CAMRAD II. However, the 

discrepancies between the present prediction and CAMRAD 

II were observed to be different for the cases considered. 

(a) Case 1 [°] (b) Case 2 [°]

(c) Case 3 [°] (d) Case 4 [°]

(e) Case 5 [°]

Fig. 7. Trim control angle prediction results
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Fig. 7. Trim control angle prediction results

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Fig. 8. Distribution of the sectional lift
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Fig. 8. Distribution of the sectional lift
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Fig. 8. Distribution of the sectional lift
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(a) Case 1 
 

(b) Case 2 
 

(c) Case 3 
 

(d) Case 4 
 

(e) Case 5 
 

Fig. 8. Distribution of the sectional lift 
  

Fig. 8. Distribution of the sectional lift

(a) Flap motion (b) Lag motion

Fig. 9. Schematic of the bending motions caused by the snubber
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Fig. 9. Schematic of the bending motions caused by the snubber
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First, in the hover condition with the uniform inflow model, 

a difference of approximately 12% was found. Significant 

discrepancies in the axial force and torsional moment 

at the inboard section can also be seen in Fig. 11. Thus, 

a sophisticated aerodynamic representation is required 

instead of the uniform inflow model. For the hover condition 

predicted by the dynamic inflow model, a 7% difference 

was found. In the forward flight trim condition, the advance 

ratios, 0.1, 0.2 and 0.3, show approximately 8%, 10% and 

7% discrepancies, respectively. This implies that forward 

flight trim analysis at a high advance ratio requires a more 

sophisticated analysis.

However, notable discrepancies still exist for the inboard 

section despite the combined dynamic inflow model. The 

present discrepancies were caused by differences in the 

aerodynamic analysis. In CAMRAD II, aerodynamic forces 

were obtained with exact structural deflections but the 

present approach considered only second order structural 

deformation. Also, only airloads acting on the main blade 

section were considered. Therefore, in order to predict 

the behaviors of the inboard blade section, airloads on 

the torque tube have to be included in the aerodynamic 

analysis. The aerodynamic forces obtained by the exact 

structural deflection, and airloads on the inboard section 

will require a more accurate prediction at the inboard 

section.

(a) Case 1. Flap deflection [m] (b) Case 1. Lead-lag deflection [m]

(c) Case 2. Flap deflection [m] (d) Case 2. Lead-lag deflection [m]

(e) Case 3. Flap deflection [m] (f) Case 3. Lead-lag deflection [m]

(g) Case 4. Flap deflection [m] (h) Case 4. Lead-lag deflection [m]
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       (i) Case 5. Flap deflection [m] (j) Case 5. Lead-lag deflection [m]

Fig. 10. Blade deflection in the trim analysis at the azimuthal location 270°
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Fig. 10. Blade deflection in the trim analysis at the azimuthal location 270°
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Figure 16 shows the flap moment distributions from 

the present prediction and CAMRAD II as well as the 

measurement for Case 6. In Case 6 with a 5° collective pitch 

angle, it shows a similar trend to the measurements while the 

averaged discrepancy was smaller than 8%. However, there 

were discrepancies in the 1° collective pitch angle case. For 

the inboard section, predictions from the present analysis 

and CAMRAD II were quite different. The average difference 

in the main blade flap moment between the present and 

the measured value was less than 4%. Thus, for the inboard 

section, especially for a low collective pitch angle, we need a 

further sophisticated aerodynamic-structural analysis.

The improved aerodynamic-structural analysis was 

also validated. The present structural model including 

(a) Axial force [N] (b) Torsional moment [N-m]

(c) Chordwise force [N] (d) Flap moment [N-m]

(e) Normal force [N] (f) Lag moment [N-m]

Fig. 11. Internal loads distribution predicted (Case 1, μ=0.0)
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Fig. 11. Internal loads distribution predicted (Case 1, μ=0.0).
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Fig. 12. Internal loads distribution predicted (Case 2, μ=0.0).
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the kinematic constraints, boundary conditions, arbitrary 

snubber location, and the pitch control system. The coupled 

analysis using the refined aerodynamic model, exhibited 

similar trends for the internal loads and structural deflection 

compared with those made by CAMRAD II and the 

measurements. Also, distributions of the internal loads were 

examined at the clevis location for both the present analysis 

and CAMRAD II. At the clevis location, the sum of internal 

loads between the flexbeam and torque tube was the same 

as that of the main blade. The continuity of the internal loads 

was confirmed by the present analysis.

Although the aerodynamic-structural analytic procedure 

was improved by considering the arbitrary snubber 

location and pitch control system, a few aspects were not 
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Fig. 13. Internal loads distribution predicted (Case 3, μ=0.1)
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Fig. 14. Internal loads distribution predicted (Case 4, μ=0.2).
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implemented. Lead-lag dampers were not included in the 

present structural model. Lead–lag dampers are present in 

most rotor systems to provide the desired level of damping 

for all flight conditions. For a more precise prediction, 

lead-lag dampers will be added to the present structural 

model. 

Furthermore, in the non-trim analysis, only the flap 

moment was compared with the present analysis. Other 

important quantities, such as internal forces, torsional 

moment, lag moment, and structural deflection have to be 

compared to validate the present, improved aerodynamic-

structural analysis. Also, more accurate aerodynamic loads 

from the computational fluid dynamics and experiment 

were required to perform accurate, aerodynamic-

structural coupled analysis. In this paper, relatively simple 

aerodynamics computations according to blade element 

theory were used.

4. Conclusions

An improved aerodynamic-structural analysis for a 

bearingless rotor was developed in this paper. A precise 

structural model considering kinematic constraints and 

boundary conditions was implemented. In our model the 

snubber can be located at an arbitrary position and the 

pitch control system are included. Our improved structural 

model was combined with the various inflow aerodynamic 

models. Numerical results for the various flight conditions 

and inflow models showed that the present analysis 

predicted the behavior of a bearingless rotor more accurately 

than in previous work. Numerical results were verified by 

comparison against the predictions made by CAMRAD II 

and experimental measurement.

Trim analysis was performed for the KARI bearingless 

rotor. The results showed that the trimmed angles were over 
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Fig. 16. Flap moment distribution predicted (Case 6).
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90% in term of similarity and the aerodynamic quantity 

distributions were similar to those predicted by CAMRAD 

II. The present model’s predictions for blade deformation 

caused by the snubber under the same trim condition 

showed excellent agreement with a less than 5% discrepancy 

with those made by CAMRAD II. The results for internal load 

distribution had a 10% difference compared to those made 

by CAMRAD II. Finally, in order to compare with the whirl 

tower experimental values, aerodynamic-structural coupled 

analysis was performed under no trim collective sweep 

conditions. The flap moment had a less than 10% difference 

compared to measurement. However, the values predicted 

for the inboard section of the 1° collective pitch case show 

significant differences.
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