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Abstract

In general, forces acting on aerospace structures can be divided into two categories–a) conservative forces and b) nonconservative 

forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, 

causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet 

thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are 

subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is 

under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static 

instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two 

natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when 

the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied 

between the driving frequency and the transverse natural frequency, then dynamic instability called ‘parametric resonance’ 

occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic 

behaviour of aerospace structures under nonconservative forces.
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1. General introduction

Aerospace structures are subjected to wide variety of 

forces, which can be classified into two categories–a) 

conservative forces and b) nonconservative forces. 

Conservative systems can lose the stability of their 

equilibrium positions by divergence (static instability) only, 

whereas nonconservative systems can have two types of 

instability mechanisms–divergence (static instability) and 

flutter (dynamic instability). These are known as aeroelastic 

instability behaviour which is due to highly flexible nature 

of the structure. Before embarking on this discussion, it will 

be pertinent to discuss on the elastic stability behaviour of 

structures. 

1.1 Evolution of the problem of elastic stability

The theory of elastic stability, which originated in the 

works of Euler, is now a very well developed branch of 

applied mechanics employing many effective techniques 

and possessing a large number of problems already solved, 

as well as a very large body of literature. One of the major 

factors, which contributed to the rapid accumulation of 

material in the field of elastic stability, was undoubtedly the 

extremely successful concept of stability and critical force. In 

the theory of elastic stability it is assumed that for sufficiently 

small loads the equilibrium of an elastic system is stable, 

and that it remains so up to the first point of bifurcation of 

equilibrium forms; thereafter, the initial form of equilibrium 

becomes unstable. The critical force (or in general a parameter 
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of the force group) is then defined as the smallest value of the 

force at which, in addition to the initial form of equilibrium, 

there can exist others, which are very close to the initial form. 

This concept is to be found as far back as the works of Euler, 

who defined the critical force as “the force required to cause 

the smallest inclination of the column”. This approach, or, 

as we shall refer to it in the future, the Euler method, has 

enabled us to reduce the problem of the stability of a form of 

equilibrium to the simpler problem of finding the minimum 

characteristic value of certain boundary-value problems.

The usefulness of the Euler method in the theory of elastic 

stability cannot be disputed. It has also been extended to 

problems of non-elastic stability, expressed in the concept 

of a “reduced modulus.” However, the Euler method is not 

universal; its range of application can be clearly defined 

and a number of mistakes and misunderstandings have 

occurred in the past as results of attempts to apply the theory 

outside the range. These factors should be remembered in 

connection with the Euler method in the theory of stability. 

One of these is associated primarily with the development 

of the non-linear theory of thin elastic shells. As far back 

as the thirties it was established that in the case of shells a 

systematic and very significant divergence existed in the 

values of critical loads given by the classical theory and by 

experimental results. It was found that for thin shells initial 

inaccuracies and non-linear effects assume considerable 

importance, and that the critical forces corresponding to the 

points of bifurcation of equilibrium are in fact the “upper” 

critical forces, which are difficult to realize even under the 

most ideal experimental conditions. 

In many cases, stability behaviour is investigated by “the 

method of small oscillation” around the region of bifurcation. 

Further, the Euler method is applicable if the external forces 

have a potential (i.e. if they are conservative forces), and in 

general is not applicable if they do not. The latter problems 

are termed as nonconservative problems. 

The basic method of investigating nonconservative 

problems in the theory of elastic stability is the dynamic 

method, which is based on the investigation of the oscillations 

of the system close to its position of equilibrium. This draws 

the theory of elastic stability closer to the general theory 

of stability of motion and its applications in the theory of 

automatic control, in the hydromechanics of a viscous liquid 

and in other fields of mechanics and engineering. The Euler 

method, which reduces the problem to an analysis of the 

bifurcation of the forms of equilibrium of the system, can be 

looked upon as a particular case of dynamic method. 

The present review is devoted to the study of 

nonconservative problems of the theory of elastic stability. 

Aerodynamic and hydrodynamic loads, the forces acting on 

parts of turbines and electric machines, and loads induced in 

parts and linkages of automatic control systems are in most 

cases nonconservative forces. The classical theory of elastic 

stability developed primarily as a result of the requirements 

of industrial, transportation and civil engineering 

construction. The traditional loads of the classical theory of 

elastic stability are forces, which have a potential, usually 

caused by gravitational effects (i.e. “dead” loads). As regards 

the nonconservative problems of elastic stability, their main 

interest lies in the development of present-day mechanical, 

aeronautical and rocket engineering. The subject falls under 

the terminology aeroelastic instability. 

1.2 The follower force problems

The stability characteristic of a slender missile structure 

subjected to end thrust is a follower force in nature and is a 

classic example of nonconservative problem of the theory of 

elastic stability. When the structure is under follower force 

whose direction changes according to the deformation of 

the structure, it may undergo static instability (divergence) 

or dynamic instability (flutter) depending on system 

parameters, giving rise to unbounded deformation or growth 

of vibration without bound.

In many practical applications, the applied load is 

considered as nonconservative if the work done by the 

forces is path dependent. Follower force, which follows the 

configuration of a dynamic system, belongs to the group of 

nonconservative system of forces. Some of the important 

practical illustrations of follower forces are: 

1. �the aerodynamic drag forces acting on the body of ro–

ckets;

2. �the missiles and wings of aircraft carrying jet engines 

subjected to concentrated follower forces (engine 

thrust); 

3. �a cantilever pipe conveying fluid; 

4. the forces acting on the rotor of a gas turbine; 

5. �the forces acting on the links and elements in automatic 

control system applications; and 

6. �automobile disk brakes, where the squeezing force 

acting on the rotating disk is a nonconservative follower 

force and, etc.

It was shown by Ziegler (1952) that the problem of stability 

of a nonconservative system can be treated meaningfully 

only by applying the kinetic stability criterion (that is 

considering the motion of the system). He also discovered 

that internal damping may have a destabilizing effect in a 

nonconservative system.
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2. Analytical Concepts

The dynamic instability behaviour under nonconservative 

forces can be studied by analyzing the nature of the roots 

of the eigenvalue problems developed in its formulation 

(Bolotin, 1963). 

Let, β : load parameter, Ω : frequency parameter.

The behaviour of the eigenvalues, Ω, of the boundary 

value problem as the loading parameter, β, varies will be 

investigated. The response behaviour of any vibration 

problem is expressed as 

(1)

where, Ω = Ω(β)

If β = 0 (no load case), all the eigenvalues of the boundary 

value problem are purely real. They are the natural 

frequencies of the unloaded system. 

If β ≠ 0, but for conservative problems, Ω(β) are again 

purely real. 

Again if β ≠ 0 but for nonconservative problems (e.g. 

follower force problems), the eigenvalues, Ω(β), are complex 

in nature and can be written as, 

Ω(β) = Re{Ω(β)}+Im{Ω(β)}

If all the eigenvalue, Ω(β), have positive imaginary part, 

i.e. Im{Ω(β)}>0, the response behaviour is stable. If only 

one of the eigenvalues has a negative imaginary part, i.e. 

Im{Ω(β)}<0, then from Eq. (1) the response increases with 

time, hence the response behaviour is unstable. 

Let us suppose the load parameter β increases from zero 

and remains positive (say). It is possible to find a value of 

β = β*, an increase in which no matter how small, causes 

one or more of the frequencies to enter the lower half-plane 

of the complex variable. This value of β = β* corresponds 

to transition from stability to instability of the equilibrium, 

and is therefore the critical value. This is shown in Fig. 1. 

The above explanation can also be presented in a different 

manner as follows: 

Let, in Eq. (1), s = iΩ, then,

(2)

Again, for nonconservative problems, s(β) is complex in 

nature, i.e. 

s(β) = Re{s(β)} + Im{s(β)}

Provided all the exponents remain in the left-hand half-

plane, the equilibrium under investigation is stable. For a 

value of the parameter β = β*, if even one exponent crossing 

into the right-hand half-plane, the equilibrium is unstable as 

shown in Fig. 2. 

There are two forms of transition from stability to instability. 

The first is when one exponent s enters the right-hand half 

plane after passing through the origin of co-ordinates, and 

remains purely real at least for values of β sufficiently close to 

the critical values β*, shown in Fig. 3. Corresponding graph of 

real part of the frequency Ω with β is shown in the Fig. 4.

 

Fig. 1. At *β β= , the system moves into unstable equilibrium as the value of β  is 
increased. 

 

 

Fig. 2. As the exponents move into the right half plane, the system becomes unstable. 

 

Fig. 1. �At β = β*, the system moves into unstable equilibrium as the 
value of β is increased.

 

Fig. 1. At *β β= , the system moves into unstable equilibrium as the value of β  is 
increased. 

 

 

Fig. 2. As the exponents move into the right half plane, the system becomes unstable. 

 

Fig. 2. �As the exponents move into the right half plane, the system 
becomes unstable.

 

Fig. 3. For static instability case, one exponent s , moves into the right half of the 
plane after passing through the origin. 

 

 

Fig. 4. For static instability case (corresponding to Fig. 3), the real part of one of the 
frequencies (here 1Ω ) becomes zero at *β β= . 

 

Fig. 3. �For static instability case, one exponent s, moves into the right 
half of the plane after passing through the origin.

 

Fig. 3. For static instability case, one exponent s , moves into the right half of the 
plane after passing through the origin. 

 

 

Fig. 4. For static instability case (corresponding to Fig. 3), the real part of one of the 
frequencies (here 1Ω ) becomes zero at *β β= . 

 

Fig. 4. �For static instability case (corresponding to Fig. 3), the real part 
of one of the frequencies (here Ω1) becomes zero at β = β*.
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Here the transition from stability to instability occurs 

through zero value of the frequency (Re(Ω) = 0). This form of 

instability is known as static instability or divergence. 

If the characteristic components enter the right hand 

half plane at a point other than the origin of co-ordinates, 

the form of instability, referred to as flutter, shown in Fig. 5. 

Corresponding plot of Re{Ω(β)} with β is shown in Fig. 6. 

The two forms of instability (static and dynamic) differ in 

behaviour of the disturbances close to the boundary of 

stability. For the case of static stability, disturbance increases 

monotonically with time. For dynamic stability, increase in 

the disturbance is of oscillatory nature. 

Summary:

If all the characteristic roots si, i = 1, 2, …, n, (V(x, t) = V(x)

est) of the eigenvalue problem are distinct, the necessary and 

sufficient conditions for stability are that all the real roots 

and all the real parts of the complex roots should be negative 

or zero.

If roots st is a positive real number for at least one value of 

the index i, divergence (static instability) will occur. If roots si 

is complex with Re(si) < 0 for all i, the system is stable(vibration 

with decreasing amplitude), but if Re(si) > 0, for at least one 

value of the index i, a state of flutter will exist.

3. Analysis of Follower Force Problems

3.1 �One dimensional structure: beams and col-
umns

A free-free beam subjected to a controlled follower force 

depicting the nonconservative problem of elastic stability 

has been the subject of many studies simulating the stability 

behaviour of flying flexible rockets and missiles. The stability 

of elastic systems subjected to nonconservative forces cannot 

be solved by conventional Euler’s approach (Bolotin, 1963) 

as such systems have both the static instability (divergence) 

and dynamic instability (flutter) unlike the conservative 

ones. Beck (1952) was the first to study the stability of 

cantilevered column under a follower force at the end. Many 

papers on the vibration stability of cantilevered columns 

subjected to follower force have been published since then 

(Chen and Ku, 1991; Pederson, 1977; Sankaran and Rao, 

1976). In most of the papers, the origin of the follower force 

was not mentioned and thus no tip mass was taken into 

account. Sugiyama et al. (1990) have worked on the stability 

of cantilevered columns subjected to a rocket thrust through 

both experimental and theory, taking into consideration the 

size and the mass of the rocket motor. Chen and Ku (1992) 

investigated eigenvalue sensitivity in the stability analysis 

with the concentrated mass at the free end. Ryu and Sugiyama 

(1994) have given an insight into a proper combination of the 

size, magnitude and rotary inertia of a solid rocket motor for 

cantilevered Timoshenko columns subjected to a follower 

force. Langthjem and Sugiyama (1999) investigated on the 

optimum design for dynamic stability of cantilevered column 

subjected to a follower force. 

In seeking for better understanding of the stability 

behaviour of flexible space vehicles (missiles, rockets, etc.) 

there has been some renewed interest in the dynamics of 

free-free beams. Owing to nonconservative nature of the 

forces involved, the inertia of the system and other structural 

and material variations, the solution formulation can often 

become quite complex. Beal (1965) introduced a direction 

control mechanism for the follower force to eliminate the 

tumbling instability of a free-free beam under a follower 

force. Wu (1975) studied the stability of a free-free beam 

under a controlled follower force by using finite element 

discretization with an adjoint formulation. Park and Mote 

(1985) studied the maximum controlled follower force on 

a free-free beam carrying a concentrated mass. Park (1987) 

studied the effects of rotary inertia and shear deformation 

parameters on the stability of a free-free Timoshenko beam 

under a controlled follower force. Dynamic stability of a free-

free Timoshenko beam subjected to a pulsating follower force 

has been studied (Kim and Choo, 1998) using the method of 

 

Fig. 5. For dynamic (oscillatory) instability case, one exponent s , moves into the 
right half of the plane by passing through a point other than the origin. 

 

 

Fig. 6. For dynamic instability case (corresponding to Fig. 5), the real part of two 
frequencies (here 1Ω  and 2Ω ) becomes equal at *β β= . 

 

Fig. 5. �For dynamic (oscillatory) instability case, one exponent s, 
moves into the right half of the plane by passing through a 
point other than the origin.

 

Fig. 5. For dynamic (oscillatory) instability case, one exponent s , moves into the 
right half of the plane by passing through a point other than the origin. 

 

 

Fig. 6. For dynamic instability case (corresponding to Fig. 5), the real part of two 
frequencies (here 1Ω  and 2Ω ) becomes equal at *β β= . 

 

Fig. 6. �For dynamic instability case (corresponding to Fig. 5), the real 
part of two frequencies (here Ω1 and Ω2) becomes equal at 	 
β = β*.
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multiple scales (MMS). A general free-free missile structure 

subjected to end rocket thrust is shown (Fig. 7). Sugiyama 

et al. (1999) gave a review on realistic follower forces. Later 

Langthjem and Sugiyama (2000) presented a detail survey 

on columns subjected to follower loads. Pradhan and Datta 

(2006) studied dynamic instability characteristics of a free-

free missile structure under a controlled follower force and 

gave the effect of rocket mass and an intermediate mass 

on the instability effect of a free-free missile like structure. 

For the above problem, Fig. 8 shows the plot of real and 

imaginary parts of the frequency versus the non-dimensional 

follower force for the beam for certain parameters. It can be 

observed that as the dynamic critical load is reached, the 

real parts of the first two non-zero eigenvalues coalesce and 

the imaginary parts become complex conjugate. This is the 

condition which corresponds to flutter.

3.2 �Two dimensional structures: plates and curved 
panels

So far the concept of follower forces was discussed with 

regard to one-dimensional structure, such as Beck’s column 

resembling missile structures. However, two-dimensional 

plate/curved panel types of structures subjected to follower 

forces are also found in the literature and are of practical 

interest. For example, the wing of an aircraft carrying jet 

engines is subjected to follower forces (engine thrust) or 

distributed partial load over a region. Because of flexible 

nature of these structures, they are prone to divergence 

and flutter type of instability. Few important studies on 

the stability of plates and shell type of structures that are 

reported in the literature are presented here. Culkowski and 

Reismann (1977) studied plate buckling due to follower edge 

forces using analytical method considering two boundaries. 

Farshad (1978) investigated the stability of cantilever plates 

subjected to biaxial sub tangential load using Galerkin’s 

method. Leipholz (1978) studied stability of a rectangular 

simply supported plate subjected to non-increasing 

tangential follower forces. Leipholz and Pfendt (1983) 

used Galerkin’s theory to analyse the plate with distributed 

follower forces acting on the surface of the plate. Adali (1982) 

investigated stability behaviour of the plate subjected to 

tangential follower force and an in-plane force for a clamped 

free plate with two opposite simply supported edges. Higuchi 

and Dowell (1990, 1992) investigated the dynamic stability 

of completely free-edged rectangular flat plate by neglecting 

rotary inertia and shear deformation using modal analysis. It 

was observed that small damping has a predominant effect 

on the stability behaviour of a nonconservative system. Kim 

and Park (1998) investigated the dynamic stability behaviour 

of rectangular plates subjected to intermediate follower 

force. Choo and Kim (2000) studied the dynamic stability of 

isotropic and non-symmetric laminated rectangular plate 

with four free edges subjected to pulsating follower force. 

Kim and Kim (2000) studied dynamic stability of an isotropic, 

orthotropic and symmetrically laminated composite plate 

under pure follower force considering Mindlin assumption 

and investigated the effects of shear deformation and 

rotary inertia under follower force. Zuo and Schreyer (1996) 

analyzed flutter and divergence instability of nonconservative 

beams and plates. Bismarck-Nasr (1995) studied the stability 

behaviour of a cantilever cylindrically curved panel subjected 

to nonconservative tangential follower forces distributed 

over the surface and on the free end of the panel. Park and 

Kim (2000a, b, 2002) investigated extensively the dynamic 

stability characteristics of a completely free cylindrical and 

stiff-edged cylindrical shell subjected to follower forces using 

finite element method (FEM). Extensive review work have 

been reported by Liew et al. (1997), Qatu (1992) on shallow 

shell vibration and by Bazant (2000), Bismarck-Nasr (1992), 

Herrmann (1967), Komarakul-Na-Nakoran and Arora (1990), 

Langthjem and Sugiyama (2000) on the systems subjected to 

 

Fig. 7. A general free-free missile structure subjected to end rocket thrust. 

 

 

Fig. 8. Non-dimensional natural frequency Re( )Ω , Im( )Ω  Vs non-dimensional force. 

Fig. 7. �A general free-free missile structure subjected to end rocket 
thrust.

 

Fig. 7. A general free-free missile structure subjected to end rocket thrust. 

 

 

Fig. 8. Non-dimensional natural frequency Re( )Ω , Im( )Ω  Vs non-dimensional force. Fig. 8. �Non-dimensional natural frequency Re(Ω), Im(Ω) Vs non-
dimensional force.
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nonconservative forces. 

Most of the researchers have given importance to study the 

stability characteristics of plate/shell subjected to uniform 

edge follower forces. However, it is worth mentioning here that 

such loads are not very common in practice. Many practical 

situations demand the behavioural aspects of such structural 

elements under the action of discontinuous/partial edge 

follower forces with different nonconservative parameters. 

For example, the skin (panel) of the wing structure of an 

aircraft carries non-uniform partial in-plane load, making 

the panel susceptible to buckling. The resulting in-plane 

stress distribution in the panel, in general, is a combination 

of tensile and compression stress zones. In a certain domain, 

when the tensile zone dominates, it gives rise to a stiffening 

effect. On the other, hand, domination of compressive zone 

leads to a destiffening behaviour. The results of such studies 

are important, which can be used in design practice. Further, 

due to ever increasing use of composite panels subjected 

to follower forces is of importance, hence a subject matter 

of this review paper. Effect of damping on elastic stability 

behaviour for nonconservative systems is also important. 

Herrmann and Jong (1965) showed the destabilizing effect 

of damping in nonconservative elastic systems.

Before going to the review it will be pertinent to provide 

the mathematic formulation for two-dimensional structures 

for such studies, which will be of help to the researchers. A 

composite doubly curved panel subjected to partial edge 

loading is considered and is shown in Fig. 9.

3.2.1 Mathematical formulation

Strain displacement relations

The strain displacement relation consists of two parts: 

1. �linear strain terms used in the derivation of elastic 

stiffness matrix; and 

2. non-linear strain for geometrical stiffness matrix,

(3)

The linear strain displacement relations are:

(4)

where, the bending strains, kx, ky and kxy are expressed as

(5)

In the above equations, u, v and w are the middle plane 

displacements along x, y and z directions, respectively. θ 

represents the slope of the middle plane of the differential 

shell element; 1/R represents the radius of curvature; and 

C1 and C2 are tracers by which the analysis can be reduced 

to that of shear deformable Love’s first approximation and 

Donnell’s theories and C0 = (1/2)C2((1/Rx)-(1/Ry)) is a result 

of Sanders’ theory which accounts for the condition of zero 

strain for rigid body motion.

The non-linear strain displacement relations are as per 

Sanders’ non-linear theory of shells (Sanders, 1963),

(6)

3.2.2 Finite element formulation

An eight-node doubly curved isoparametric element 

is being used in the present analysis with five degrees of 

freedom u, v, w, θx and θy per node having radii of curvatures 

Rx, Ry and Rxy.

Constitutive relation of a lamina

The constitutive relation of the lamina with reference to 

any arbitrary axes is given by

 

 

Fig. 9. Geometry of composite laminated composite doubly curved panel with cutout 
under periodic load. 

 

 

Fig. 10. A panel under follower loading. 

 

Fig. 9. �Geometry of composite laminated composite doubly curved 
panel with cutout under periodic load.



DOI:10.5139/IJASS.2011.12.2.134 140

Int’l J. of Aeronautical & Space Sci. 12(2), 134–148 (2011)

(7)

where,

The elastic stiffness matrix corresponding to transverse 

shear deformation is derived as per Kim (1996).

where, m = cos θ and n = sin θ, Q11 = E11

(1-v12v21)
, 

Q12 = E11v21

(1-v12v21)
, Q21 = E22v12

(1-v12v21)
, Q22 = E22

(1-v12v21)
, Q66 = G12,

Q44 = αG13, Q55 = αG23.

Stiffness matrix of a laminate

(8)

In abbreviated form the above equation is written as,

{N} = [D]{ε1} (9)

in which [D] is the stiffness matrix for the composite 

laminate.

Strain energy due to linear strains

The strain energy U1 due to linear strains in the entire 

plate/shell panel can be expressed in terms of the stresses 

and linear strains as given below.

(10)

or

(11)

Here [Ke] is called the system elastic stiffness matrix of the 

entire plate/shell panel.

Strain energy due to non-linear strains

The strain energy U2 due to non-linear strains in the entire 

plate/shell panel can be expressed in terms of the initial in-

plane stresses and non-linear strains as given below.

(12)

Substituting Eq. (6) in the above, we get 

or

(14)

in which

where

(13)
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(15)

or

(16)

in which [KG] is called the geometric or stress stiffness 

matrix.

Kinetic energy 

The expression for kinetic energy is written in abbreviated 

form as:

(17)

in which,

Work done by the follower force 

A typical cantilever panel subjected to follower loading 

is shown in Fig. 10. The panel is subjected to partially 

distributed compressive follower loading at the free edge 

such that the load always maintains a direction φθy, where θy 

is the rotation and φ is a direction control parameter. For the 

purpose of formulation, let us consider a single follower load 

Pj acting at a particular node j in the structure. This follower 

load has two components, viz., in-plane component (Pj), 

and transverse component (φθy Pj) which is displacement 

dependent. The effect of in-plane load has been taken into 

account by the stress stiffness matrix described earlier. The 

non conservative character of the problem is essentially due 

to the transverse component of the follower loading. 

In general, variational work done by the nonconservative 

forces δWNC consists of two parts: due to follower forces, δWF, 

and due to damping forces, δWD. Considering the follower 

forces acting at all the nodes, the variational work can be 

written as:

(18)

where n is the number of nodes and Pj is the resultant in-

plane follower force at jth node. The variation of the work done 

by the normal component of the follower force (−Pjφθy, j), 

which is normal to the undeformed plane of the panel and 

acting opposite to the direction of wj for 0.0 < φ < 1.0, at the 

jth node is expressed as δWF, j = δwj(−Pjφθy, j). This can be 

written in matrix form as:

(19)

or in abbreviated form 

(20)

in which 

(21)

 

 

Fig. 9. Geometry of composite laminated composite doubly curved panel with cutout 
under periodic load. 

 

 

Fig. 10. A panel under follower loading. 

 

Fig. 10. �A panel under follower loading.

 

Fig. 11. Geometry of a panel with a circular cutout under follower loading. Fig. 11. �Geometry of a panel with a circular cutout under follower 
loading.
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Considering the components of the follower forces at all 

the nodes, the variation of work can be written in matrix 

form as:

(22)

in which 

{d} is the system displacement vector and 

(23)

called nonconservative stiffness matrix.

Work done by the damping force 

Damping matrix

Damping is usually introduced into the structural systems 

by means of dissipation function. The energy dissipation 

function in matrix form, consistent with the form of energy 

expressions for T, U1 and U2 as mentioned in the earlier 

sections, can be expressed as

(24)

 Another form of damping representation is the structural 

damping expressed as a complex stiffness matrix of the form 

(1+iη)[Ke], where η is the loss factor. Here, imaginary part of 

the stiffness matrix, η[Ke] (also called as structural damping 

matrix) corresponds to the energy dissipation in the system. 

In the present investigations, results have been obtained 

using the concept of structural damping.

For sinusoidal motion of the panel, structural damping 

can be expressed in terms of an equivalent viscous damping 

matrix as follows

(25)

The variation of the work done by the damping forces can 

be written in matrix form as

(26)

3.2.3 Governing differential equation–Hamilton’s principle 

The various energies and the work done due to 

nonconservative forces have been formulated earlier and are 

summarised here

The strain energy due to linear strains is U1 = 1
2

{d}T[Ke]{d}

The strain energy due to non-linear strains is 

U2 = 1
2

{d}T[KG]{d}

The kinetic energy is T = 1
2

{d}T[M]{d}

The variational work done by the follower force is	

δWF = −{δd}T[KNG]{d}

The variational work done by the damping force is	

δWD = −{δd}T[C]{d}

The total variational work done by the nonconservative 

forces is expressed as δWNC = δWF + δWD

It may be noted here that the initial in-plane stresses used 

in the generation of [KG] matrix is due to some standard in-

plane components of external static or dynamic follower load 

and is generally taken equal to unity. Similarly, the sum of the 

normal components of the Pj in the nonconservative matrix 

[KNC] will also be unity. Therefore, if the actual load is P(t) 

then the strain energy, U2 and the variational work, δWF is to 

be multiplied by P(t). Hamilton’s principle (Barsoum, 1971), 

which takes into account the work done by nonconservative 

forces can be applied to include the effects of follower forces 

into the governing equation. 

The extended Hamilton’s principle can be written as 

(27)

Substituting the above expressions of the energies and 

expressions of work done in Eq. (27) gives 

or

(28)

The above equation is the most general governing 

differential equation of motion.

In the above equation, {d} is the nodal displacement vector 

and P is the magnitude of the applied follower load. The matrix 

[KG] takes into account of all the in-plane (conservative) 

component of the applied load, while the matrix [KNC] 

takes into account of the nonconservative component of 

the follower load that is in a direction perpendicular to the 

undeformed mid-plane of the panel. However in the present 

investigation only edge follower load with certain width as 

shown in Fig. 10 is considered. Here the load width (c/b) is 

defined as the physical region over which the load is applied. 

It is obvious from the formulation of [KNC] that the matrix is 

non-symmetric. Hence the equilibrium equation, Eq. (28) 

leads to a non-self-adjoint eigenvalue problem for non-zero 

P.

Modal transformation 

The orders of the finite element matrices in Eq. (28) are 

very large and the solution of this equation in its original 

form may be prohibitive, particularly for determination of 
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the flutter load. Hence a modal transformation is applied 

to Eq. (28) to reduce its s ize and to retain only the most 

dominant modes of vibration. The equilibrium equation 

for free vibration of an undamped unloaded panel can be 

written as:

(29)

where ω is the angular natural frequency of vibration and 

{q0} corresponds to the mode shape of free vibration. Eq. (29) 

is solved for the first few modes of vibration by means of a 

subspace iteration method. Let [ ] be a modal matrix, which 

contains the first few normal modes of the free vibration 

problem Eq. (29), and let 

(30)

where {ξ} are normal co-ordinates. Substituting Eq. (30) 

in Eq. (29) and premultiplying by [ ]T, the following modal 

equilibrium equation is obtained.

(31)

where [Ĉ ] = [ ]T[C][ ] and [K̂F] = [ ]T [[KG] + [KNC]][ ]; [Λ] is 

a diagonal matrix containing the eigenvalues of Eq. (29), that 

is squares of the natural frequencies of free vibration of the 

unloaded panel.

From Eq. (25), 

(32)

Now considering the motion of the panel in the form {ξ} = 

{ξ0}eiwt, Eq. (31) reduces to

or 

(33)

Eq. (33) is an eigenvalue problem with eigenvalues ω2, 

which are the squares of the natural frequencies of free 

vibration under follower load P. Eq. (33) can be solved by 

using standard eigenvalue routine for a complex general 

matrix. The imaginary part of ω corresponds to the 

exponential increment or decrement of the amplitude of 

vibration.

Shell (curved panel) classification

The generalized formulation considers all the radii of 

curvatures viz. Rxx, Ryy, Rxy. The shell surfaces considered 

for the present study have the following features and can be 

handled by the formulation proposed herein as special cases 

as furnished below.

Spherical shell: doubly curved and synclastic surface 

having 1/Rxx = 1/Ryy, both positive and 1/Rxy = 0.

Cylindrical shell: singly curved surface having 1/Ryy only, 

and 1/Rxx = 1/Ryy = 0.

Hyperbolic paraboloidal shell: doubly curved and 

anticlastic surface having −1/Rxx = 1/Ryy and 1/Rxy = 0

Using the mathematical and finite element formulations 

described so far, extensive research investigations were done 

for isotropic, composite plates/curved panels subjected to 

the non-uniform follower forces and considering the effects 

of damping. These papers are reviewed here. 

Datta and Deolasi (1996) studied some aspects of 

dynamic instability characteristics of isotropic plates 

subjected to partially distributed follower edge loading 

with damping. It was shown that, under follower loading, 

the system is susceptible to instability due to flutter alone 

or due to both flutter and divergence, depending upon the 

system parameters. The damping in the system is observed 

to have a destabilizing effect on the flutter behaviour. Ravi 

Kumar et al. (2003) investigated parametric instability 

behaviour of laminated composite plates subjected to 

partial follower edge load with damping. The effects of 

load width, boundary condition, ply orientation, direction 

control of load and damping parameters were considered 

on instability behaviour. In most cases the damping effect 

gives destabilizing behaviour, making the plate prone to 

flutter. The effect of direction control parameter significantly 

affects the critical load depending on the type of ply and the 

ply orientation. Dynamic instability characteristics of doubly 

curved isotropic panels under partial follower edge loading 

with damping were studied by Ravi Kumar et al. (2004a). The 

damping in the system was observed to have a stabilizing 

effect on a flat panel. Further, flutter was found to be more 

complex than divergence for the curved panels. Ravi Kumar 

et al. (2004c) investigated on the effects of aspect ratio and 

boundary conditions on the instability of doubly connected 

panels. The results showed that the effects of shallowness 

ratio, boundary conditions and aspect ratio are significant 

on dynamic effects instability characteristics of the panel. 

It was also observed that structural damping significantly 

affected the flutter loads of the panels.

Datta (2004) gave a perspective view on the stability 

characteristics of aerospace structures subjected to 

nonconservative force systems. Ravi Kumar et al. (2005a) 

studied vibration and dynamic instability characteristics of 

laminated composite doubly curved panels, subjected to 

non-uniform follower load. The in-plane stress distribution 

in the panel, in general, is a combination of tensile and 



DOI:10.5139/IJASS.2011.12.2.134 144

Int’l J. of Aeronautical & Space Sci. 12(2), 134–148 (2011)

compression stress zones, leading to stiffening–de-stiffening 

effect. This behaviour and its effect on instability behaviour 

was discussed depending on system parameters. Flutter 

behaviour of laminated composite cylindrical panel 

subjected to non- uniform follower force was studied by 

Ravi Kumar et al. (2005c). It was observed that the load 

bandwidth got significant influence on free vibration, flutter 

and divergence characteristics of panels having different 

edge conditions. The type of ply orientation, number of lay-

ups and angle of laminate affect significantly the stability 

behaviour under partially distributed follower edge load. 

Ravi Kumar et al. (2005d) studied the effects of boundary 

condition, load direction control parameter and damping for 

the stability behaviour of cantilever plate under follower load. 

The effects of non-uniform follower forces and damping on 

the dynamic instability behaviour of laminated composite 

plates were studied by Datta et al. (2007). The results showed 

that under non- uniform follower forces, combination 

resonance of difference type are as important as simple 

resonance zones. The effects of damping showed that there 

is critical value of dynamic load factor for each instability 

region below which the laminated composite panel cannot 

become unstable. Deolasi and Datta (1994), investigated on 

the dynamic instability characteristics of plates subjected 

to periodically excited partially distributed follower load. 

The MMS was used for the solution of non-linear oscillation 

and parametric instability problem. It was observed that 

combination resonance zones of difference type were 

significant under pulsating follower load. The significant 

effects of damping on instability zones were observed.

3.2.2 Plates and curved panels with central cut-out

This section reviews the plates and curved panels with 

an internal opening subjected to partial follower load. 

The presence of hole develops a non-uniform stress field 

comprising of tension-compression zone. In certain domain, 

when the tensile zone dominates, it gives rise to stiffening 

effect. On the other hand, domination of compression zone 

leads to destiffening behaviour. The instability behaviour of 

such problems is of interest. Fig. 11 describes a panel with 

internal opening subjected to follower load. Ravi Kumar et 

al. (2004d) studied on the dynamic instability characteristics 

of laminated composite plate with circular cut-out subjected 

to non-uniform follower force. The effect of cut-out size, 

load bandwidth and load control parameters was found 

to be significant on the flutter behaviour of the plate. The 

damping effect showed destabilizing nature on the stability 

behaviour with cut-outs. Vibration and parametric instability 

characteristics of isotropic plate with circular hole under 

partially distributed follower force were investigated by Ravi 

Kumar et al. (2004e). The effect of boundary condition, load 

direction control parameter and damping were considered 

on dynamic instability characteristics. Ravi Kumar et al. 

(2004b) studied the vibration and dynamic instability 

behaviour of square isotropic/laminate composite plates 

with circular hole subjected to partially distributed follower 

edge forces. The first order shear deformation theory was 

used to model the plate in FEM formulation, considering the 

effects of shear deformation and rotary inertia. The effects of 

cut-out size, load width, boundary condition, ply orientation, 

direction of load and damping parameters were considered 

for the stability behaviour of plate. 

The instability behaviour of doubly curved panels with 

circular cut-out subjected to partially distributed follower 

edge loading was studied by Ravi Kumar et al. (2005b). The 

effects of cut-out and curvature of the panels influence the 

dynamic stability behaviour. The magnitude of the flutter 

load was found to be gradually decreasing with the increasing 

cut-out size. The curvature of the panels improved the 

flutter behaviour. In most cases, the damping effect showed 

destabilizing behaviour making the panel prone to flutter. 

3.2.3 Plates and curved panels with internal damage 

The papers reviewed so far discussed about 

nonconservative problems on isotropic/composite plates/

panels without any inhomogeneities or damage. However, 

studies on behaviour of damaged structures are important 

in aerospace structural analysis. Unlike isotropic materials 

that are mostly damaged by cracks or undergo a reduction 

of stiffness due to surface wear are tear, composite materials 

experience damage in the form of blunt body impact, fibre 

breakage and delamination. The inhomogeneities may 

also be improper or erroneous manufacturing techniques. 

Analysis of such ‘improper’ structures can be carried out by 

incorporating a suitable damage model in the formulation. 

These damages or inhomogeneities in the structure are 

reflected in the spectrum as shift in natural frequencies and 

instability behaviour of the structure.   

Proper representation of damage model is essential in 

continuum mechanics to formulate the instability problem. 

Stiffness reduction due to damage can be achieved through 

various means. While specific problems can be solved by 

‘hard-wiring’ the damage into the model, a parametric model 

is more versatile. Valliappan et al. (1990) developed a finite 

element model of anisotropic damage based on structural 

stiffness reduction factor.

Mathematical formulation–anisotropic damage 

Anisotropic damage can be parametrically incorporated 

into the formulation by considering the parameter,
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Γi = Ai−A*
i

Ai
, a representation of reduction in effective area, A*

i

(Valliappan et al., 1990). Using this, the relationship between 

a damaged stress tensor and an undamaged stress tensor 

can be obtained as

(34)

The above equation can be abbreviated as {σ*} = [ψ]{σ}, 

where {ψ} is a transformation matrix and can be used to 

relate a damaged stress-strain matrix with an undamaged 

one, [D*]−1 = [ψ]T[D]−1[ψ]. The damaged stress-strain matrix 

for a two-dimensional laminate can be written as 

(35)

where the factors, f1 = 
(1−Γ1)2

1−v12v21
, f2 = 

(1−Γ2)2

1−v12v21
 and f12 = 

(1−Γ1)(1−Γ2)
1−v12v21

 are defined as stiffness reduction factors.

For a damaged region, the stress-strain relation can be 

written as {σ*} = [D*]{ε}. This relation can then be transformed 

into the general coordinate system as used in general 

undamaged cases.

Method of multiple scales

When a pulsating, harmonic load, P(t) = αPcr + βPcr cos(Ωt), 

expressed in terms of the buckling load, Pcr, is applied to an 

undamped system and a modal transformation is performed 

on the system, the transformed differential equation can be 

written as 

(36)

where [Λ] = [ ]T([K] − αPCR[KG][ ] and [K̄G] = − PCR[ ]T 

([KG] [ ]. 

[KG] is the geometric stiffness matrix, [ ] is the modal 

matrix containing the first M normal modes of vibration 

under static component of load, Ps = αPCR. {ξ} is the vector 

containing the orthogonal modal coordinates. [Λ] is the 

diagonal matrix containing the squares of first M frequencies 

of vibration under the static component of loading as the 

diagonal elements.

Eq. (36) is a form of the Mathew Hill equation, whose 

component form can be written as 

(37)

where m, n = 1, 2, 3, …, M

The terms containing ε and Ω and couples the dynamic 

load to the normal modes of the system, due to which a 

perturbation method called MMS (Nayfeh and Mook, 1979) 

is used to solve the system of equations. The ‘nearness’ 

of Ω to the sum of ωm and ωn for sum type of combination 

resonance can be represented by introducing a small 

detuning parameter, σ, such that Ω = ωm + ωn + εσ. For a 

second order expansion, the values of σ are obtained from 

the roots of a second order polynomial (Deolasi and Datta, 

1997; Udar and Datta, 2006) and are given by 

(38)

where
 

and
 

When m = n, the Eq. (38) predicts simple resonance zones, 

while for m ≠ n, combination resonance zones are obtained.

Datta et al. (2009a) studied dynamic behaviour of 

laminated composite plate with flaws under non-uniform 

follower forces. The results showed that the introduction of 

damage influence the flutter characteristics of the plate more 

profoundly than free vibration or buckling characteristics. 

Dynamic instability characteristics of composite curved 

panels with internal damage subjected to follower forces 

were investigated by Datta et al. (2009b). The results indicated 

that, compared to undamaged panels, heavily damaged 

panels show steeper deviations in stability characteristics 

than mildly damaged ones. Datta et al. (2010) studied the 

vibration and flutter behaviour of laminated composite 

panels with flaws under follower force. Static and dynamic 

instability characteristics of curved laminates with internal 

damage subjected to follower loading were studied by Biswas 

et al. (2011).

It was observed that the introduction of curvatures in 

the panel have increased fundamental natural frequency, 

critical buckling load and dynamic instability characteristics 

(flutter load and flutter frequency) in comparison to the 

corresponding flat plates. In general, flutter load decreased 

with the increase in damage ratio. An increase in damage 

ratio reduced the flutter load.

( χ̂n+ χ̂n)
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4. Concluding Remarks  

This paper has reviewed the aeroelastic behaviour of 

aerospace structural elements such as column, plate and 

curved panel subjected to nonconservative follower type 

of forces. One dimensional structure such as beams and 

columns idealize missile structure subjected to end rocket 

thrust. On the other hand, two dimensional plate/curved 

panel types of structures resemble wing of an aircraft 

subjected to follower forces (engine thrust) or distributed 

partial load over a region. Because of flexible nature of 

these structures, the follower forces change the directions 

(known as tangency parameter) and the structures undergo 

static instability (divergence) or dynamic instability (flutter), 

giving rise to unbounded deformation or growth of vibration 

without bound.

The instability phenomena discussed above depend on 

system parameters. These effects as discussed in the literature 

have been reviewed here. The damping in the system is 

an important parameter. The damping in most cases was 

observed to have a destabilizing effect on flutter behaviour. 

The static and dynamic instability phenomena of laminated 

composite panel are of special interest. The effect of load 

direction control parameter significantly influenced critical 

load depending on the type of ply and the ply orientation.

Plates and curved panels having discontinuities such 

as damage and openings cannot be avoided in aerospace 

structure. The present review paper has discussed the 

instability problems due to the presence of discontinuities 

in a highly non-uniform stress field comprising of tension–

compression zone. It was observed that the stiffening-

destiffening behaviour of the panels influence the instability 

behaviour.
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