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Abstract

The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the 

boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic 

flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses 

the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient 

and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the 

viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall 

at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer 

thickness can be obtained only if the size of the mesh is lower than a certain value. 

The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion 

to obtain the thrust necessary to the displacement of the vehicles.

Key words: �Supersonic flow, Viscous flow, Finite volume, Nozzle 

Nomenclature
M   	 = 	 atomic mass or Mach number

cv	 =	 specific heat at constant volume

cp	 =	 specific heat at constant pressure

R   	 = 	 universal gas constant

r   	 = 	 constant of a particular gas

T  	 = 	 temperature

u, v, w	 =	 velocity components

p    	 = 	 pressure

e    	 =	 energy per unit mass 

q	 = 	 heat flux vector

τij	 =	 viscous stress components

μ	 =	 dynamic viscosity

γ	 =	 specific heat ratio

λ	 =	 second viscosity coefficient

ρ	 =	 density
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1. Introduction

The calculation of viscous flow in an axisymmetric 

converging-diverging nozzle is presented. A numerical 

technique that simulates the viscous supersonic flow and 

the boundary layer thickness in the nozzle, especially at the 

exit, was employed. Such as working fluid was air in standard 

state composed of 21% O2 and 79% N2, which is regarded as 

a perfect gas. The stagnation parameters were 2,000 K and 

500 bars, thus the vibration and dissociation of molecules 

were neglected. These parameters were selected so that the 

flow at the exit of the nozzle was 300 K, 1 bar and yielded a 

Mach number of 5.

The non-linear partial derivative systems of equations, 

which governs viscous flow, were solved by Goudjo’s explicit 

unsteady numerical scheme Goudjo and Desideri (1989) 

and the finite volume method presented in previous works 

by Haoui (2001, 2009, 2010). Van Leer’s flux vector splitting 

method was also used (Van Leer, 1982). An adequate time 

stepping parameter and the mesh size level were selected 

to ensure numerical convergence (Haoui et al., 2003).The 

stationary solution obtained depended on the size of the 

mesh used in the numerical discretization (Haoui et al., 

2003). Inviscid flow convergence was tested using a refined 

grid, which enabled us to obtain an exact solution. Then, 

we refined the grid again near the wall to determine the 

boundary layer thickness and other parameters. 

2. Governing Equations

In a Newtonian fluid the viscous stresses are proportional 

to the rates of deformation. The three-dimensional form of 

Newton’s law of viscosity for compressible flows involves 

two constants of proportionality: dynamic viscosity μ, which 

relates stress to linear deformation, and viscosity λ, which 

relates stress to volumetric deformation.

For gases, a good working approximation for viscosity is 

λ = − 2
3
μ (Schlichting, 1979). 

The Navier-stokes equations in a flux-vector formulation 

in the Cartesian coordinate system is given by

(1)

Where the vectors and are given by

(2)

(3)

(4)

(5)

The heat flux vector q has three components, qx qy and qz, 

given by Fourier’s law of heat conduction, which relates the 

heat flux to the local temperature gradient. 

(6)

Where k denotes the coefficient of thermal conductivity 

and is a function of the Prandtl number Pr, viscosity μ and 

specific heat at constant pressure cp

(7)

The energy per unit of mass e is defined as the sum of 

internal energy and kinetic energy: 

(8)

T is the temperature and cv is the specific heat at constant 

volume.

3. Axisymmetric Formulation

The Institute National de Recherche en Informatique et 

en Automatique (INRIA) Sinus project developed a method 

that translates 3d axisymmetric flow to 2D axisymmetric flow 

using a technique involving domain disturbance. 

The system of Eq. (1) can be written as: 
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(9)

where mes(Ci, j) is the measurement (in m3) of an infinitely 

small volume at a center (i, j). aire(Ci, j) is the surface of the 

symmetry plane passing through the center of the elementary 

volume. ηa is the integrated normal. Goudjo presented a 

detailed calculation of, ηa, aire(Ci, j) and mes(Ci, j) (Goudjo 

and Desideri, 1989). The third term of the equation expresses 

the axisymmetric flow condition. Flows, W, E, F and H are 

given by: 

(10)

(11)

(12)

(13)

4. Discretization in Time

The present numerical method is based on an explicit 

approach in time and space. The time step ∆t is:

(14)

Courant, Friedrich, Lewis (CFL) is a stability factor 

(Hoffmann, 1995). V is the velocity of the flow and a is the 

speed of sound. ∆x is an incremental length of the mesh at 

the point (i, j). At each time step and for each point (i, j), the 

system of Eq. (15) can be written as: 

(15)

Grid choice plays an important role in determining in the 

convergence of calculations. Therefore, sufficiently refined 

meshes are necessary at the places where the gradients of 

the flow parameters are significantly large.

5. Decomposition of Van-Leer

In this study, the Van-Leer decomposition (Van Leer, 1982) 

was selected, namely a decomposition of flows into two parts 

FV
−

L and FV
+

L. The flow at the interface between two cells must 

be calculated in order to utilize Van Leer’s decomposition 

method in 2d axisymmetric viscous flow through a nozzle. 

Moreover, we must know the normal direction of the 

interface; thus, the normal direction of the interface is 

indicated by a reference mark and an intermediary rotation 

R (Haoui, 2010) .

The vector WE (Euler variable) is written WE
R at the new 

reference mark: 

(16)

where V
→

n is obtained from V
→

, via the rotation R, through:

(17)

where:

(18)

(19)

The overall transformation R is written as 

(20)

(21)

Moreover, at each interface (i + 1/2), two neighbor states 

(i) and (i + 1) are known. Thus, one can calculate the one-

dimensional flow F through the interface, total flow f(W, η̄ ) 
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being deduced from F by applying the opposite rotation, as: 

(22)

Thus, one component of flow f (F for example) can be used 

to define the decomposition of flow in two dimensions. The 

expressions of FV
+

L(W R) and FV
−

L(W R), where W R is defined like 

the transform of W by rotation R, are: 

(23)

(24)

where Mn = un
a

 , un and vn are the velocity at the reference

mark of the interface.

6. Boundary Conditions

CFD problems are defined by initial conditions and 

boundary conditions. In transient problems, the initial 

values of the flow variables must be specified at all solution 

points in the flow domain. The present work describes the 

implementation of the following most common boundary 

conditions in the discretised equations of the finite volume 

method: inlet, outlet, wall and symmetry, Fig. 1.

6.1 Inlet boundary conditions

The pressure and temperature were fixed at the inlet; 

however, the velocity module was extrapolated from the 

interior of the solution domain. Thus, the flow rate can be 

adjusted.	

6.2 Body surface

The no-slip condition was applied to the body surface. The 

temperature gradient at the wall was zero, in accordance with 

the Fourier equation of heat conduction in the y-direction 

together with the assumption of zero heat flux at the wall. In 

this study, we assumed that the temperature at the wall was 

equal the stagnation temperature of the free stream. The wall 

shear stress was calculated by:

(25)

Here, we assumed that the coordinate of the unit vector t 

was in the direction of the shear force at the wall and the unit 

vector n was normal at t(Ferziger and Peric, 2002).

6. 3 Axis of symmetry 

The conditions at the symmetry boundary are: (i) no 

flow across the boundary and (ii) no scalar flux across the 

boundary. 

6. 4 Outlet boundary conditions

At the exit of the computational domain, the flow was 

supersonic and the values of the flow parameters were 

extrapolated from the interior values, including in the 

boundary layer.

7. Results and Interpretations

The nozzle comprised a convergent conicity of αconv = 45° 

followed by an arc of radius r=2r* and a divergent conicity 

of αdiv = 10° (Figs. 2 and 3). The stagnation pressure and 

temperature were 100 bars and 2,000 K, respectively. The 

Mach number desired at the exit of the nozzle was 5. The 

simple laws of a one-dimensional isentropic flow provided 

us a radius at the exit of the nozzle rdiv = 0.05m for a throat 

radius r* = 0.01m. The diverging length was thus ldiv = 0.228m. 

In our calculations we used several grid sizes beginning with 
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a

u
M n
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116 × 10 (Fig. 2), in which 116 units were measured along the 

axis and 10 units along the radius. The mesh was then refined 

to sizes 223 × 20, 350 × 30, 466 × 40, 583 × 50 and 700 × 60 in 

order to observe how the refinement affected the results.

The residue values from which the results remain 

unchanged must be fixed. For this purpose, we used the 116 

× 10 grid since it was the least refined. The main parameter 

is the velocity profile which contained the boundary layer 

thickness, as shown in Fig. 4. We observed that the velocity 

profile was almost the same when the order of the residue 

was 10-5 to 10-6. Calculations were stopped when the residue 

was equal to 10-5. 

The size of the grid of the calculation field from which 

the results remain unchanged must also be fixed, without 

refinement in the boundary layer. Thus, six grid sizes were 

tested for the same residue (Fig. 5). The velocity profile 

became flat near the wall, r = 0.05m, when the grid became 

more refined. The 350 × 30 grid was selected since it yielded 

good results and required less time computing.

The grid near the wall must also be refined in order to 

adequately simulate the flow parameters in the boundary 

layer, especially the velocity profile. Forty percent of the 

mesh near the wall must be multiplied by the constants 1, 

2, 3, 4, and 5 until the results show no changes. This process 

must be completed for the 12 meshes. The refinement 

thickness must be larger than the boundary layer thickness. 

We observed that the velocity profile became flat while 

approaching the wall, and the velocity on the axis almost 

remained unchanged. We selected the 350 × 78 grid, ni = 350 

according to x and nj = 78according to y, for the final results. 

The boundary layer thickness at the exit of the nozzle can be 

deduced when the velocity reached 95% of the velocity on 

the axis. The boundary layer thickness was 10.7 mm, i.e. 21% 

of the radius. If the boundary layer was 99% of velocity on 

the axis, its thickness would become 18.3 mm and would 

consume 36% of the radius. 

Another significant parameter in viscous flow must be 

presented, it is the stress τxy. Figure 7 shows the variations of 

shear stress along the radius according to the refinement of 

the grids in the boundary layer. This profile itself converged 

to the exact solution for the 350 × 78 grid. The intensity of 

the stress increased quickly while approaching the wall. 

The viscous stress at the wall can be calculated from all the 

stresses at the same point. Figure 8 shows the variation of 

the stress τwall along the wall of the nozzle with and without 

2,000 K, respectively. The Mach number desired at the exit 

of the nozzle was 5. The simple laws of a one-dimensional 

isentropic flow provided us a radius at the exit of the nozzle 

mrdiv 05.0=  for a throat radius mr 01.0* = . The diverging 

length was thus mldiv 228.0= . In our calculations we used 

several grid sizes beginning with 116 × 10 (Fig. 2), in which 

116 units were measured along the axis and 10 units along 

the radius. The mesh was then refined to sizes 223 × 20, 

350 × 30, 466 × 40, 583 × 50 and 700 × 60 in order to 

observe how the refinement affected the results. 
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refinement in the boundary layer.

In regards to temperature profile, the solution also 

converged to the exact solution using the 350 × 78 grid (Fig. 

9), the wall of the nozzle was adiabatic and the profile of the 

temperature was thus perpendicular to the wall. 

The flow in the nozzle was then compared to inviscid flow. 

Figure 10 shows the temperature distribution in the nozzle. 

The thermal boundary layer thickness was visible near the 

wall. 

A comparison with the inviscid flow is represented in 

Fig. 11. The upper region of the chart represents the Mach 

contours of the viscous flow and the lower region represents 

the Mach contours of the inviscid flow. The boundary layer 

clearly influenced the flow parameters in the nozzle. For 

example, the Mach number at the exit was lower for the flow 

in the nozzle in comparison to that of the inviscid flow. 

8. Conclusions

In conclusion, the results obtained in viscous flow 

strongly depended on the mesh size during the numerical 

calculations. The program converged due to the size of 

the meshes used; but, an exact solution was obtained only 

if the grid, especially near the wall, was very refined. The 

approximation by the infinite volumes method with the 

non-stationary scheme yielded good results. Our code was 

stable, consistent and the solution converged to the exact 

solution when the grid was very small. The exactitude of our 

code was carried out by using a 350 × 78 mesh with a residue 

of 10-5. We saw that the mesh size significantly influenced 

the flow parameters in the nozzle, and even on the wall 

stress. The computer codes which do not take into account 

the refinement of the grid near the wall, their results are not 

precise. The refinement of the grid in viscous flow has an 

effect on the results obtained.
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