
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: March 6, 2014    Revised : May 11, 2014    Accepted: May 19, 2014

163 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 15(2), 163–172 (2014)
DOI:10.5139/IJASS.2014.15.2.163 

Guidance Law for Near Space Interceptor based on Block Backstepping 
Sliding Mode and Extended State Observer    

GUO Chao*
School of Automation, Northwestern Polytechnical University, Xi’an, China

LIANG Xiao-Geng**
Luoyang Optoelectro Technology Development Center, Luoyang, China

Abstract

This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer 

(ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact 

angle constraint of attacking the maneuvering target . Based on the backstepping control approach, the target maneuvers and 

the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, 

the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding 

model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the “explosion of 

complexity” problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. 

The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results 

demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target 

maneuvers, but also obtain a small miss distance.
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1. Introduction

The near space interceptor (NSI) with aerodynamic fins and 

reaction jets is an effective defense scheme to deal with the 

threat of near space air-breathing hypersonic vehicles (NSHV) 

[1], and the terminal guidance law is the key technology of the 

near space interception system. The proportional navigation 

guidance (PNG) law is the most popularly used guidance law 

for the task of intercepting a weakly maneuvering target, or 

a non-maneuvering target [2]. However, PNG may result in 

an unacceptable miss distance for intercepting a target with 

larger maneuvering capability. The augmented PNG (APNG) 

can obtain high guidance precision, by introducing target 

acceleration compensation, which is often difficult to obtain 

and estimate.

The autopilot lag of the NSI usually has significant influence 

on the guidance precision, especially in the presence of a 

larger maneuvering target [4, 5]. Therefore, it is necessary to 

take into account the autopilot lag in the guidance law design; 

and an effective method to do this is to use a low-order model 

(first-order or second-order) to approximate the autopilot 

dynamics. On the other hand, in order to maximize the 

lethality of the warheads, the proposed guidance law should 

not only ensure the interceptor has a small miss distance, 

but also hit the target at an appropriate attitude [6, 7]. The 

guidance system with the autopilot dynamics and the impact 

angle constraints satisfies the block lower-triangular structure 

, which includes the matched and unmatched disturbances 

[8]. Therefore, backstepping control is a natural choice to deal 

with unmatched disturbances, but the problem of “explosion 

of complexity” caused by repeated differentiations of the 

virtual control variables is inevitable. This problem can be 
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solved by introducing first-order low-pass filters [9].

To intercept a larger maneuvering target, some advanced 

control methods have also been applied to the guidance law, 

such as the nonlinear H∞ guidance law [10, 11], and sliding 

mode guidance (SMG) law [12, 13]. However, the above 

methods dealt with the influence of target maneuvers at the 

price of sacrificing normal guidance performance. In Ref. 

[10], the guidance law design is formulated as a nonlinear 

H∞ disturbance attenuation problem, in which the target 

accelerations are regarded as unpredictable disturbances. 

It is also well known that H∞ control [10, 11] is a passive 

feedback regulation method that efficiently attenuates the 

effect of system disturbances, and only rejects disturbances 

under a given attenuation level, rather than completely 

removing them from the guidance system. Moreover, the 

H∞ guidance law relies on the solution of the Hamilton-

Jacobi-Isaacs (HJI) partial differential equation, which is 

difficult to solve, except for simple or special cases. SMG is 

an efficient method to deal with the influence of the target 

maneuver and parameter uncertainties, but chattering is 

an unavoidable problem of engineering application [12]. 

The saturation function and boundary layer method are 

often used to alleviate chattering, at the price of disturbance 

rejection performance.

Extended state observer-based control (ESOBC) provides 

an active disturbance rejection method, and has been 

successfully applied in many fields, such as the MAGLEV 

system [14], permanent magnet synchronous motor (PMSM) 

[15], and so on [16]. In the framework of the ESOBC, a baseline 

controller is firstly designed, under the assumption that 

there are no system disturbances, such as dynamic inversion 

control, and sliding mode control; then, the extended 

state observer (ESO) is developed to estimate the system 

disturbances [17], and the feed-forward compensation term 

based on the estimated value is introduced, to remove the 

influence of the disturbances.

Motivated by the aforementioned considerations, this 

paper dealt with the guidance law design problem for the NSI 

based on block backstepping sliding mode control and ESO. 

The target maneuvers and the parameter uncertainties of the 

autopilot are regarded as disturbances of the outer loop and 

inner loop, respectively. Then, a novel block backstepping 

sliding mode guidance law is developed, based on the 

estimated disturbance value. Finally, simulation results 

show the effectiveness of the proposed guidance scheme.

Briefly, the rest of this paper is organized as follows. 

Section 2 introduces the guidance model description for 

the NSI. Section 3 presents the guidance law, based on the 

block backstepping sliding mode and ESO. Section 4 gives 

the simulation results for the NSI guidance system. Finally, a 

brief conclusion is drawn in Section 5.

2. Guidance model description of the NSI

Assuming that the interceptor and target are point masses, 

the relative motion geometry between the NSI and the target 

is shown in Fig. 1, where M and T represent the mass center 

of the interceptor and target, respectively. Oxyz and Ox4y4z4 

denote the inertial and line-of-sight (LOS) coordinate 

system, respectively. 
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As shown in Fig. 1, the dynamics of the missile-target motion in the three-dimensional space can be 

described as follows: 

2 2 2cos tr mrr rq rq q a a                                                          (1) 
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where [ , , ]T
mr m ma a a   and [ , , ]T

tr t ta a a   are the interceptor and target accelerations in the LOS 

coordinate system. 

In addition, the autopilot dynamics of the NSI can be approximately described by the following 

second-order model: 
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where c
ma   and c

ma   denote the acceleration command of the NSI in the vertical and lateral plane, 

respectively;   and n  denote the damping ratio and natural frequency of the NSI autopilot, 

respectively; 4d  and 4d  are the disturbances and parameter uncertainties in the autopilot loop. 

Attack angle denotes the angle between the interceptor velocity vector and the target velocity vector 
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The attack angle denotes the angle between the interceptor 

velocity vector and the target velocity vector in the guidance 

terminal time. Based on [6], the attack angle constraint can 

be transformed into the constraint problem of the terminal 

LOS angle:

5 

in the guidance terminal time. Based on [6], the attack angle constraint can be transformed into the 

constraint problem of the terminal LOS angle: 

( )f dq t q  , ( )f dq t q                                                        (6) 

where ft  is the guidance terminal time, dq  and dq  are the desired terminal LOS angle in the 

vertical and lateral plane, respectively. 

In practical applications, the acceleration along the interceptor’s velocity cannot be controlled in the 

terminal guidance processes. Therefore, we only need to discuss the relative motion normal to the 

LOS, and design the acceleration command to send the LOS angular rate to zero or a small 

neighborhood of zero. 
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Assumption 1. It is assumed that the elements of 21 1( )g x  and 1
21 1( )g x  are all bounded, which 

will be used in the stability analysis of the closed-loop guidance system. 

Remark 1. The guidance and control system will stop working when the relative distance 
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Therefore, the design objective in this paper is to design 

a guidance law such that the guidance law can not only 

obtain a small miss distance, but also guarantee the NSI has 

an appropriate attitude to intercept the maneuvering target, 

i.e., design an appropriate controller for the time-varying 

system (7), to make the absolute value of the output as small 

as possible, in spite of the disturbances.

3. Guidance law design and stability analysis

In this section, a novel guidance law is developed for the 

time-varying system (7), based on the block backstepping 

sliding mode control and ESO; and the stability analysis of 

the closed-loop system is also given.
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performance, and the high frequency chattering also limits 

the engineering application of the SMG. Therefore, the target 

maneuver is regarded as the outer loop disturbance of the 

guidance system in this paper, and the estimated disturbance 

value derived by the ESO is employed as the feed-forward 

compensation term, to remove the influence of the target 

maneuver on the guidance system.
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Remark 2. If the filter time constant matrices satisfy the constraints 3 4 0   , we have * *
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and * *
4 4x x , and should compute the differentiation of the virtual control in the backstepping 
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where maxiu , i , is the maximum acceleration of the interceptor. 

The structure diagram of the guidance system can be seen in Fig. 2. 
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4. Simulation results

In this section, some numerical simulations for the 

NSI guidance system will be given, to demonstrate the 

effectiveness of the proposed guidance scheme. The initial 

conditions of the NSI and target in the inertial coordinate 

system are shown in Table 1.

The NSI with aerodynamic fins and reaction jets is used 

to deal with the threat of the NSHV, so the response time of 
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4. Simulation results

In this section, some numerical simulations for the NSI guidance system will be given to 

demonstrate the effectiveness of the proposed guidance scheme. The initial conditions of the NSI and 

target in inertial coordinate system are shown in Tab. 1. 

Tab. 1 Initial conditions of the NSI and target 

Parameter Value Parameter Value 

0mx 0m 0tx 15204.6m

0my 0 m 0ty 6840.4m

0mz 0 m 0tz 11046.8m

0mV 1500m/s 0tV 1700m/s

0m 30 
0t 10 

0vm 30 
0vt 140 

The NSI with the aerodynamic fins and reaction jets is used to deal with the threat of the NSHV, 

then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 

and natural frequency of the NSI autopilot are selected as 0.8   and 20n  .

The parameters of the ESO (9) and (13) are given as follows: 

21 50  , 22 150  , 21 22 0.2   , 21 22 0.001   ,

41 5  , 42 200  , 41 42 0.2   , 41 42 0.01   .

The parameters of the proposed guidance law are selected as follows: 

1 diag{2, 2}k , 2 3 diag{10,10} k k , 4 diag{40, 40}k , 5 diag{20, 20}k ,
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then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 

and natural frequency of the NSI autopilot are selected as 0.8   and 20n  .

The parameters of the ESO (9) and (13) are given as follows: 

21 50  , 22 150  , 21 22 0.2   , 21 22 0.001   ,

41 5  , 42 200  , 41 42 0.2   , 41 42 0.01   .

The parameters of the proposed guidance law are selected as follows: 
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4. Simulation results

In this section, some numerical simulations for the NSI guidance system will be given to 

demonstrate the effectiveness of the proposed guidance scheme. The initial conditions of the NSI and 

target in inertial coordinate system are shown in Tab. 1. 
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The NSI with the aerodynamic fins and reaction jets is used to deal with the threat of the NSHV, 

then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 
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The parameters of the ESO (9) and (13) are given as follows: 
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The parameters of the proposed guidance law are selected as follows: 
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target in inertial coordinate system are shown in Tab. 1. 
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The NSI with the aerodynamic fins and reaction jets is used to deal with the threat of the NSHV, 

then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 

and natural frequency of the NSI autopilot are selected as 0.8   and 20n  .

The parameters of the ESO (9) and (13) are given as follows: 

21 50  , 22 150  , 21 22 0.2   , 21 22 0.001   ,

41 5  , 42 200  , 41 42 0.2   , 41 42 0.01   .

The parameters of the proposed guidance law are selected as follows: 

1 diag{2, 2}k , 2 3 diag{10,10} k k , 4 diag{40, 40}k , 5 diag{20, 20}k ,

The parameters of the proposed guidance law are selected 

as follows:

k1=diag{2, 2}, k1=k3=diag{10, 10}, k4=diag{40, 40}, 

k5=diag{20, 20}, 
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diag{0.6, 0.6} , 3 diag{0.01, 0.01} , 4 diag{0.025, 0.025} .

The maximize acceleration of the NHSV (X-43 and X-51A) is about 2~4 g, then the interception 

condition in this paper are selected that the acceleration of the target is 240sin( ) m / st ta a t  

and the disturbances of the autopilot loop are 4 200sin( )d t   and 4 200cos( )d t  . The flight 

path angle and heading angle of the target at the guidance terminal time are ( ) 190t ft    and 

( ) 140vt ft   , and the desired attack angles in the vertical and lateral plane are 156.5   and 

173  ; then by some calculation, we can obtain that the desired LOS angles are 21.1q 
  and 

37.1q  
 .

The proposed guidance law based on the block backstepping sliding mode control and ESO 

(denoted by BBSMG+ESO, Case 4) is firstly applied to the NSI guidance system, and the PNG (Case 

1), SMG (Case 2) and APNG (Case 3) are also studied for the simulation comparisons. 

The PNG is given as follows: 

u Nrq     , u Nrq                                                          (27) 

where the proportional coefficient is 3.2N  .

The SMG is given as follows: 

sgn( )u Nrq q      , sgn( )u Nrq q                                        (28) 

where 4.5N   and 200  .

The APNG is also given as follows: 

tu Nrq a      , tu Nrq a                                                  (29) 

The response curves of the LOS angle and angle rate based on the four guidance schemes are 

shown in Fig. 3 and Fig. 4. Under the same simulation condition, we can obtain that the proposed 

guidance scheme for Case 4 can make the LOS angle and angle rate converge to the steady state value 

more quickly, and the transient value of the system response is also small. The actual and estimated 

value response curves of the target acceleration and the autopilot loop disturbance are shown in Fig. 5 

, 
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4. Simulation results

In this section, some numerical simulations for the NSI guidance system will be given to 

demonstrate the effectiveness of the proposed guidance scheme. The initial conditions of the NSI and 

target in inertial coordinate system are shown in Tab. 1. 

Tab. 1 Initial conditions of the NSI and target 

Parameter Value Parameter Value 

0mx 0m 0tx 15204.6m

0my 0 m 0ty 6840.4m

0mz 0 m 0tz 11046.8m

0mV 1500m/s 0tV 1700m/s

0m 30 
0t 10 

0vm 30 
0vt 140 

The NSI with the aerodynamic fins and reaction jets is used to deal with the threat of the NSHV, 

then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 

and natural frequency of the NSI autopilot are selected as 0.8   and 20n  .

The parameters of the ESO (9) and (13) are given as follows: 

21 50  , 22 150  , 21 22 0.2   , 21 22 0.001   ,

41 5  , 42 200  , 41 42 0.2   , 41 42 0.01   .

The parameters of the proposed guidance law are selected as follows: 

1 diag{2, 2}k , 2 3 diag{10,10} k k , 4 diag{40, 40}k , 5 diag{20, 20}k ,

Fig. 2. Structural diagram of the guidance system

Table 1. Initial conditions of the NSI and target
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4. Simulation results

In this section, some numerical simulations for the NSI guidance system will be given to 

demonstrate the effectiveness of the proposed guidance scheme. The initial conditions of the NSI and 

target in inertial coordinate system are shown in Tab. 1. 
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The NSI with the aerodynamic fins and reaction jets is used to deal with the threat of the NSHV, 

then the response time of the acceleration command is about 0.15~0.2 s. Therefore, the damping ratio 

and natural frequency of the NSI autopilot are selected as 0.8   and 20n  .

The parameters of the ESO (9) and (13) are given as follows: 

21 50  , 22 150  , 21 22 0.2   , 21 22 0.001   ,

41 5  , 42 200  , 41 42 0.2   , 41 42 0.01   .

The parameters of the proposed guidance law are selected as follows: 

1 diag{2, 2}k , 2 3 diag{10,10} k k , 4 diag{40, 40}k , 5 diag{20, 20}k ,
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diag{0.6, 0.6} , 3 diag{0.01, 0.01} , 4 diag{0.025, 0.025} .

The maximize acceleration of the NHSV (X-43 and X-51A) is about 2~4 g, then the interception 

condition in this paper are selected that the acceleration of the target is 240sin( ) m / st ta a t  

and the disturbances of the autopilot loop are 4 200sin( )d t   and 4 200cos( )d t  . The flight 

path angle and heading angle of the target at the guidance terminal time are ( ) 190t ft    and 

( ) 140vt ft   , and the desired attack angles in the vertical and lateral plane are 156.5   and 

173  ; then by some calculation, we can obtain that the desired LOS angles are 21.1q 
  and 

37.1q  
 .

The proposed guidance law based on the block backstepping sliding mode control and ESO 

(denoted by BBSMG+ESO, Case 4) is firstly applied to the NSI guidance system, and the PNG (Case 

1), SMG (Case 2) and APNG (Case 3) are also studied for the simulation comparisons. 

The PNG is given as follows: 

u Nrq     , u Nrq                                                          (27) 

where the proportional coefficient is 3.2N  .

The SMG is given as follows: 

sgn( )u Nrq q      , sgn( )u Nrq q                                        (28) 

where 4.5N   and 200  .

The APNG is also given as follows: 

tu Nrq a      , tu Nrq a                                                  (29) 

The response curves of the LOS angle and angle rate based on the four guidance schemes are 

shown in Fig. 3 and Fig. 4. Under the same simulation condition, we can obtain that the proposed 

guidance scheme for Case 4 can make the LOS angle and angle rate converge to the steady state value 

more quickly, and the transient value of the system response is also small. The actual and estimated 

value response curves of the target acceleration and the autopilot loop disturbance are shown in Fig. 5 

, and the disturbances of the 

autopilot loop are 
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The response curves of the LOS angle and angle rate 

based on the four guidance schemes are shown in Fig. 

3 and Fig. 4. Under the same simulation condition, 

the proposed guidance scheme for Case 4 can make 

the LOS angle and angle rate converge to the steady 

state value more quickly, and the transient value of the 

system response is also small. The actual and estimated 

value response curves of the target acceleration and the 

autopilot loop disturbance are shown in Fig. 5 and Fig. 

6, and we observe that the proposed ESO can efficiently 

estimate the target acceleration and the autopilot loop 

disturbance. Fig. 7 shows the response curves of the 

NSI acceleration command, based on the four guidance 

schemes. Fig. 8 shows the movement paths of the NSI and 

the target in the inertial coordinate system.

To illustrate the robustness to target maneuver and external 

disturbance, a Monte Carlo simulation study consisting of 100 

sample runs is carried out. The simulation result comparisons 

of the four guidance schemes are shown in Table 2, in terms 

of miss distance and interception time. We can see from Table 

2 that the miss distance for Case 4 is minimal.
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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                                                         (a) LOS angular in the vertical plane                                              (b) LOS angular in the lateral plane

Fig. 3. Curves of the LOS angular
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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                                                    (a) LOS angular rate in the vertical plane                                       (b) LOS angular rate in the lateral plane

Fig. 4. Curves of the LOS angular rate
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Table 2. Guidance performance comparison of the four schemes

13 

the transient value of the system response is also small. The actual and estimated value response 

curves of the target acceleration and the autopilot loop disturbance are shown in Fig. 5 and Fig. 6, and 

we observe that the proposed ESO can efficiently estimate the target acceleration and the autopilot 

loop disturbance. Fig. 7 shows the response curves of the NSI acceleration command, based on the 

four guidance schemes. Fig. 8 shows the movement paths of the NSI and the target in the inertial 

coordinate system. 

To illustrate the robustness to target maneuver and external disturbance, a Monte Carlo simulation 

study consisting of 100 sample runs is carried out. The simulation result comparisons of the four 

guidance schemes are shown in Table 2, in terms of miss distance and interception time. We can see 

from Table 2 that the miss distance for Case 4 is minimal. 

Table 2. Guidance performance comparison of the four schemes

Guidance method Miss Distance (m) Interception Time (s) 
PNG 0.8439 m 6.369 
SMG 0.6961 m 6.368 

APNG 0.3965 m 6.368 
BBSMG+ESO 0.0348 m 6.368 

5. Conclusion

In this paper, a novel guidance law is proposed for the NSI, based on block backstepping sliding 

mode control and ESO. Firstly, the guidance system with the autopilot dynamic can be divided into 

the outer loop, middle loop and inner loop. Then, the ESO is developed to estimate the target 

acceleration of the outer loop and the disturbance of the inner loop, and the estimated values are 

employed as feed-forward compensations, to remove the influence of total system disturbances. 

Furthermore, first-order low-pass filters are also introduced, to compute the differentiations of the 

virtual control variables at each step of the block backstepping sliding mode guidance law. Finally, 

simulation results demonstrate that the proposed guidance law can obtain a small miss distance, 

compared with the other guidance schemes. 

Appendix A: Proof of Theorem 1
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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                                               (a) Target acceleration in the vertical plane                                     (b) Target acceleration in the lateral plane

Fig. 5. Curves of the target acceleration
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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(a) LOS angular in vertical plane 

(b) LOS angular in lateral plane 

Fig. 3 Curves of the LOS angular 

(a) LOS angular rate in vertical plane 

(b) LOS angular rate in lateral plane 

Fig. 4 Curves of the LOS angular rate 

(a) Target acceleration in the vertical plane 

(b) Target acceleration in the lateral plane 

Fig. 5 Curves of target acceleration 

(a) Inner loop disturbance in the vertical plane 

(b) Inner loop disturbance in the lateral plane 

Fig. 6 Curves of inner loop disturbance 
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                                                (a) Inner loop disturbance in the vertical plane                             (b) Inner loop disturbance in the lateral plane

Fig. 6. Curves of the inner loop disturbance
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(a) Guidance command in the vertical plane 

(b) Guidance command in the lateral plane 

Fig. 7  Guidance command based on the three 

guidance schemes 

Fig. 8 Trajectories of the interceptor and target 
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5. Conclusion

In this paper, a novel guidance law is proposed for the NSI, 

based on block backstepping sliding mode control and ESO. 

Firstly, the guidance system with the autopilot dynamic can 

be divided into the outer loop, middle loop and inner loop. 

Then, the ESO is developed to estimate the target acceleration 

of the outer loop and the disturbance of the inner loop, 

and the estimated values are employed as feed-forward 

compensations, to remove the influence of total system 

disturbances. Furthermore, first-order low-pass filters are 

also introduced, to compute the differentiations of the virtual 

control variables at each step of the block backstepping sliding 

mode guidance law. Finally, simulation results demonstrate 

that the proposed guidance law can obtain a small miss 

distance, compared with the other guidance schemes.

Appendix A: Proof of Theorem 1

Define the following filter errors:

13 

and Fig. 6, and we can observe that the proposed ESO can efficiently estimate the target acceleration 

and the autopilot loop disturbance. Fig. 7 shows the response curves of the NSI acceleration command 

based on the four guidance schemes. Fig. 8 shows the movement paths of the NSI and the target in the 

inertial coordinate system. 

To illustrate the robustness to the target maneuver and external disturbance, a Monte Carlo 

simulation study consisting of 100 sample runs is carried out. The simulation result comparisons of 

the four guidance schemes are shown in Tab. 2 in terms of miss distance and interception time. We 

can see from Tab. 2 that the miss distance for Case 4 is minimal. 

Tab. 2 Guidance performance comparison of the three schemes

Guidance method Miss Distance (m) Interception Time (s) 
PNG 0.8439 m 6.369 
SMG 0.6961 m 6.368 

APNG 0.3965 m 6.368 
BBSMG+ESO 0.0348 m 6.368 

5. Conclusion

In this paper, a novel guidance law is proposed for the NSI based on the block backstepping sliding 

mode control and ESO. Firstly, the guidance system with the autopilot dynamic can be divided into 

the outer loop, middle loop and inner loop. Then, the ESO is developed to estimate the target 

acceleration of the outer loop and the disturbance of the inner loop, and the estimated values are 

employed as the feed-forward compensations to remove the influence of the total system disturbances. 

Furthermore, the first-order low-pass filters are also introduced to compute the differentiations of the 

virtual control variables at each step of the block backstepping sliding mode guidance law. Finally, 

simulation results demonstrate that the proposed guidance law can obtain a small miss distance 

compared with the other guidance schemes. 

Appendix A: Proof of Theorem 1

Define the following filter errors: 

* *
3 3 3 y x x , * *

4 4 4 y x x                                                      (A1) (A1)

then, the dynamics of the filter error can be written as 

follows:
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then, the dynamics of the filter error can be written as follows: 

1 *
3 3 3 3

   y y x , 1 *
4 4 4 4

   y y x                                              (A2) 

From (14), (18), (22) and (A1), we have 
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3 3 3 3 3 3    x s x s y x                                                      (A4) 

* *
4 4 4 4 4 4    x s x s y x                                                      (A5) 

From (7) and (14)~(24), we can obtain that 
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and, 
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4 4 4   s x x

*
4 3 4 4 4 4( , )    f x x g u d x

4
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ˆsig( )    k s k s d d

4
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For the system (7), consider the following Lyapunov function 

(A2)

From (14), (18), (22) and (A1), we have:
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For the system (7), consider the following Lyapunov function 

(A3)
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then, the dynamics of the filter error can be written as follows: 

1 *
3 3 3 3

   y y x , 1 *
4 4 4 4

   y y x                                              (A2) 

From (14), (18), (22) and (A1), we have 

2 2 1 1
mV
r

 x s k x                                                              (A3) 
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For the system (7), consider the following Lyapunov function 

(A4)
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then, the dynamics of the filter error can be written as follows: 
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3 3 3 3
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From (7) and (14)~(24), we can obtain that 

2 2 1 1 1 12
m mV V r
r r

  
  s x k x k x

2 1 2 1 12
m mV V r
r r

  
x k x k x

*
2 1 2 21 1 3 3 3 22 1 1 2 1 12( , ) ( )( ) ( ) m m

t
V V r
r r

      


f x x g x s y x g x a k x k x

21 1 3 3 2 2 22 1 22 1 ˆ( )( ) ( ) ( )t t    g x s y k s g x a g x a

21 1 3 3 2 2 22 1 22( )( ) ( )   g x s y k s g x e                                          (A6) 

*
3 3 3   s x x *

4 3  x x

* *
4 4 4 3    s y x x

4 4 3 3  s y k s                                                             (A7) 

and, 

*
4 4 4   s x x

*
4 3 4 4 4 4( , )    f x x g u d x

4
4 4 5 4 4 4

ˆsig( )    k s k s d d

4
4 4 5 4 42sig( )   k s k s e                                                     (A8) 

For the system (7), consider the following Lyapunov function 

(A5)

From (7) and (14)~(24), we can obtain that:
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then, the dynamics of the filter error can be written as follows: 
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For the system (7), consider the following Lyapunov function 

(A6)
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then, the dynamics of the filter error can be written as follows: 

1 *
3 3 3 3
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For the system (7), consider the following Lyapunov function 

(A7)

and,
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then, the dynamics of the filter error can be written as follows: 
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For the system (7), consider the following Lyapunov function 

(A8)

For the system (7), consider the following Lyapunov 

function:
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2 2 3 3 4 4 3 3 4 40.5( )T T T T TV     s s s s s s y y y y                                         (A9) 

The coefficients and variables for the system (7) and their derivatives are all bounded, and then by 

some simple calculations, we have 
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where 3  and 4  are both nonnegative continuous functions. For some given positive constant *R

, the following set 

*
2 3 4 3 4 22{[ , , , , , ] , }T T T T T T T

rB V R s s s y y e                                          (A12) 

is compact. Therefore, 3  and 4  have maximum values on rB , which satisfy the following 

constraints:

*
3 3|| || Mx , *

4 4|| || Mx                                                        (A13) 

where 3M  and 4M  are some positive constants. 

Then, by some simple computations, we have 
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The coefficients and variables for the system (7) and 

their derivatives are all bounded. Then by some simple 
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where   is a positive real number, then we have 
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where   is a positive real number, then we have 
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By taking the time derivative of V(t) along the solutions of 

the system (7), we have:
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where   is a positive real number, then we have 

(A19)
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where   is a positive real number, then we have  is a positive real number, then we have:
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By the comparison principle, it is easy to obtain that 
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The parameter /C   can be made arbitrarily small by choosing   big enough. Therefore, 2s ,

3s , 4s , 3y  and 4y  are all uniformly ultimately bounded, and we can not only obtain the short 

miss distance, but also guarantee the desired LOS angle. 
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