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Abstract

The structured singular value (μ) analysis based method has many advantages for the robust stability analysis of missiles with 

uncertain parameters. Nevertheless, the present linear fractional transformation (LFT) modeling process, which is the basis of 

μ analysis, is complex, and not suitable for automatic implementation; on the other hand, μ analysis requires a large amount 

of computation, which is a burden for large-scale application. A constructive procedure, which is computationally more 

efficient, and which may lead to a lower order realization than existing algorithms, is proposed for LFT modeling. To reduce 

the calculation burden, an analysis method is developed, based on skew μ. On this basis, calculation of the supremum of μ 

over a fixed frequency range converts into a single skew μ value calculation. Two algorithms are given, to calculate the upper 

and lower bounds of skew μ, respectively. The validity of the proposed method is verified through robust stability analysis of a 

missile with real uncertain parameters.
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1. Introduction

For many physical systems, the influence of parameter 

uncertainty on system stability and performance needs to 

be considered. The structured singular value, μ, provides a 

rigorous tool for analyzing the robustness of such systems 

[1-7]. Although μ theory is suitable for the robust stability 

analysis/control system design of systems with uncertain 

parameters, it does have problems. The basis of μ-theory is 

the linear fractional transformation (LFT) model. Several 

realization methods have been developed for LFT modeling. 

While Morton’s method [8] is able to get the lowest order 

realizations of uncertain systems, it limits the form of 

uncertain parameters, so it can only be used for specific 

kinds of systems. The LFT model obtained by the tree 

decomposition method [9] is not unique, and heuristics are 

usually necessary to get the best decomposition, especially 

for complicated cases. It is difficult for the Min-max method 

to find the real worst case [10]. On the other hand, the 

computation problem of μ has not been solved very well. 

Calculation of μ for systems with complex uncertainty is 

relatively easy, and the difference between the upper and 

lower bounds of μ is not too big. Nevertheless, it is hard to 

get good results for the robust stability analysis of systems 

with real uncertainty; the difference between the upper and 

lower bounds of μ is big, and sometimes it is difficult to get 
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the lower bound [11-13]. As μ needs to be calculated at every 

frequency point over the frequency range, the calculation 

burden is heavy.

A new LFT modeling method is proposed, based on 

state space realization of the Roesser model. The concept 

of skew μ is put forward, and then calculation of the 

supremum of μ over a fixed frequency range converts into a 

single skew μ value calculation. Two algorithms are given, 

to calculate the upper and lower bounds, respectively, 

of skew μ. The proposed methods are verified, through 

robust stability analysis of a missile with real uncertain 

parameters.

2. The LFT Modeling

The  order Roesser model can be described as [14]:
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where, , 1, ,kr
kx R k n    is the thk state vector, lu R  is the input vector, my R  is the output vector, 

and , , ,z z z zA B C D  are all real matrices of dimensions , , ,r r r l m r m l    , respectively, with 

1

n
kk

r r
� .  

The m l  transfer function matrix from input to output can be expressed as:  
1

1( , , ) ( )n z z z zG z z C Z I A Z B D                                                        (3) 

where, 1 1{ , , }r n rnZ diag z I z I  , and iz  denotes the uncertain parameter. Equation (3) is a state space 

realization of systems denoted by equation (1) and (2). The right matrix fraction of 1( , , )nG z z  can be 

written as 1
1 1( , , ) ( , , )R n R nN z z D z z   . If 1( , , )nG z z  is a polynomial transfer function matrix, one can 

choose 1 1( , , ) ( , , )R n nN z z G z z   and 1( , , ) l
R nD z z I .  

As (0, ,0)zD G   by equation (3), in the remainder of this paper it can be assumed, that 1( , , )nG z z  is 

strictly causal, without loss of generality. The state space realization of 1( , , )nG z z  now becomes the 

finding of real matrices , ,z z zA B C , such that: 

1
1( , , ) ( )n z z zG z z C Z I A Z B                                                                     (4) 

Let 1 1( , , ) ( , , )n R nN z z N z z  , 1 1( , , ) ( , , )n R nD z z I D z z   , and define 
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The idea is to construct a matrix r lR  , which only consists of power products 1 2
1 2

nhh h
nz z z , and real 

matrices , ,z z zA B C , such that the following relations hold true:  
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where, Z  is as defined above, and HTD  and HTN  are real matrices with suitable sizes. Then, a realization 
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The key point here is how to find a suitable matrix r lR  . It can be seen that the order of realization is 

determined by the dimension of  , and , ,z z zA B C is obtained by  . Thoroughly investigating the 

structural properties of the Roesser model, it can be found that, to meet the relations specified in (6) - (8), 

  has to satisfy the following conditions: 

1) The entries of the thj  column of Z  contain all the power products occurring in the polynomial 

entries of the thj  column of 1( , , )nF z z ; 

2)  For each column of  , there is a unit entry; 

3) For every non-unit entry ( , )i j (  1, ,i r  ) in the thj column of  ( 1, ,j l  ), there exists 

another entry in the same column (for example ( , )kh j ，    1, , , 1, ,kh r k n   ), such that 

( , ) ( , )k ki j z h j   . 

The desired   among all the matrices satisfying the above conditions should have minimal dimension. 

That is to say, no entry can be removed, without violating these conditions. 

In the sequel, we order the thn   order power products 1 2
1 2

nhh h
nz z z  by the total degree lexicographic 

order. It is assumed, without loss of generality, that the order of jz  is higher than iz , with j i . 

Two algorithms are proposed to construct   and ( , , )z z zA B C , respectively. In Algorithm 1, the 

construction of   starts from the power products occurring in the polynomial entries of each column of 

1( , , )nF z z ; then, appropriate power products will be inserted into  , until conditions 1) – 3) are all 

satisfied. 

Algorithm 1  (Construction of  )
Step1.1  Let 0d  ; 

Step1.2  Let 1d d  . If d l , go to Step1.8; else go to Step1.3; 
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Step2.4  Let z HTC N .  

The constructed , ,z z zA B C  directly gives a realization of 1( , , )nG z z . 

A flow chart of Algorithm1 is provided in Figure 1 for convenience . 

(11)

Note that there is only one non-zero entry in each row of 

 

Step1.3  Collect all the power products 1
1

nhh
nz z  with non-zero coefficients occurring in the thd  column 

of 1( , , )nF z z , and construct column vectors 1, ,d dn    and 0d , by putting the collected power 

products kh
kz  into dk , according to the descending total degree lexicographic order, and 1 2

1 2
nhh h

nz z z , 

which has at least two non-zero indexes among 1{ , , }nh h , into 0d , according to the ascending total 

degree lexicographic order, respectively. Let 1
dk k dkz   , 1, ,k n   and 0,dk dr r  be the dimensions of 

dk  and 0d , respectively (for example dkr
dk R  , 0

0
dr

d R  , 1, ,k n  ). Denote the thj  entry of 

dk  by ( ), 1, ,dk dkj j r   . Note that (1) dkh
dk kz   have the highest order among the entries of dk , 

respectively. In the case that there is no collected power product to be put into dk , we denote it as an 

empty vector by [ ]dk   , and set the dimension of dk  to zero, namely =0dkr ; 

Step1.4  For 1, ,k n  , fill all absent power products h
kz , 0 dkh h   into dk , following the 

descending total degree lexicographic order. Thus the dimension of each dk  is 1dk dkr h  . However, in 

the case when  dk  is empty, do not carry out this filling operation; 

Step1.5  Let 0j  . If  0 [ ]d   , proceed to Step1.6; otherwise, go to Step1.2; 

Step1.6  Let 1j j  . If  0dj r , go to Step1.2; otherwise, for the thj entry of 0d , say  

1
0 1( ) nhh

d nj z z   , verify whether there exist 1, , kk k j  with 11 ,k k n   and 1 k dkj r  , such that:  

1

1
0 ( ) ( )k d k dk kz j z j                                                                                    (10) 

• If yes, then insert 11 1

1 1

1
0 1( ) k nh hh

k d k nz j z z z      into 
1dk , according to the descending total degree 

lexicographic order, and set 
1 1

1dk dkr r  . For the case that condition (10) is satisfied for more than one k , 

see for example, 1 2, , , sk k k  with 1 s n  , denote tk  as the minimal one among the index set   with 

   1
max , ,

sk kh h h   , insert 1
0 ( )

tk dz j   into 
tdk at an appropriate position, and set 1

t tdk dkr r  . 

Repeat Step1.6; 

• If no, go to Step1.7; 

Step1.7 Insert 1
0 ( )

tk dz j   into 
tdk , according to the descending total degree lexicographic order, and set 

1
t tdk dkr r  , where tk  is the minimal one among the index set   , with    1

max , ,
sk kh h h   . 

Meanwhile, also insert 1
0 ( )

tk dz j   into 0d  as the ( 1)thj  entry 0 ( 1)d j  , and set 0 0 1d dr r  , 

without considering its total degree lexicographic order here. Return to Step1.6;  

Step1.8  Denote 

.

Once 

 

Step1.3  Collect all the power products 1
1

nhh
nz z  with non-zero coefficients occurring in the thd  column 

of 1( , , )nF z z , and construct column vectors 1, ,d dn    and 0d , by putting the collected power 

products kh
kz  into dk , according to the descending total degree lexicographic order, and 1 2

1 2
nhh h

nz z z , 

which has at least two non-zero indexes among 1{ , , }nh h , into 0d , according to the ascending total 

degree lexicographic order, respectively. Let 1
dk k dkz   , 1, ,k n   and 0,dk dr r  be the dimensions of 

dk  and 0d , respectively (for example dkr
dk R  , 0

0
dr

d R  , 1, ,k n  ). Denote the thj  entry of 

dk  by ( ), 1, ,dk dkj j r   . Note that (1) dkh
dk kz   have the highest order among the entries of dk , 

respectively. In the case that there is no collected power product to be put into dk , we denote it as an 

empty vector by [ ]dk   , and set the dimension of dk  to zero, namely =0dkr ; 

Step1.4  For 1, ,k n  , fill all absent power products h
kz , 0 dkh h   into dk , following the 

descending total degree lexicographic order. Thus the dimension of each dk  is 1dk dkr h  . However, in 

the case when  dk  is empty, do not carry out this filling operation; 

Step1.5  Let 0j  . If  0 [ ]d   , proceed to Step1.6; otherwise, go to Step1.2; 

Step1.6  Let 1j j  . If  0dj r , go to Step1.2; otherwise, for the thj entry of 0d , say  

1
0 1( ) nhh

d nj z z   , verify whether there exist 1, , kk k j  with 11 ,k k n   and 1 k dkj r  , such that:  

1

1
0 ( ) ( )k d k dk kz j z j                                                                                    (10) 

• If yes, then insert 11 1

1 1

1
0 1( ) k nh hh

k d k nz j z z z      into 
1dk , according to the descending total degree 

lexicographic order, and set 
1 1

1dk dkr r  . For the case that condition (10) is satisfied for more than one k , 

see for example, 1 2, , , sk k k  with 1 s n  , denote tk  as the minimal one among the index set   with 

   1
max , ,

sk kh h h   , insert 1
0 ( )

tk dz j   into 
tdk at an appropriate position, and set 1

t tdk dkr r  . 

Repeat Step1.6; 

• If no, go to Step1.7; 

Step1.7 Insert 1
0 ( )

tk dz j   into 
tdk , according to the descending total degree lexicographic order, and set 

1
t tdk dkr r  , where tk  is the minimal one among the index set   , with    1

max , ,
sk kh h h   . 

Meanwhile, also insert 1
0 ( )

tk dz j   into 0d  as the ( 1)thj  entry 0 ( 1)d j  , and set 0 0 1d dr r  , 

without considering its total degree lexicographic order here. Return to Step1.6;  

Step1.8  Denote 

 has been constructed by Algorithm 1, D(z1, ..., zn) 

and N(z1, ..., zn) can be easily expressed, as follows: 

 

11

1

1

0

0

0

0

l

n

ln

 
 
 
 
    
 
 
 
  















                                                                                (11) 

Note that there is only one non-zero entry in each row of  . 

Once   has been constructed by Algorithm 1, 1( , , )nD z z  and 1( , , )nN z z  can be easily expressed, 

as follows:  

1( , , )n HTD z z D Z                                                                                  (12) 

1( , , )n HTN z z N Z                                                                                  (13) 

where, l r
HTD R   and m r

HTN R   are the corresponding coefficients of the entries of 1( , , )nD z z  and 

1( , , )nN z z , respectively. 

The system matrices , ,z z zA B C  can be constructed as follows. 

Algorithm 2 (Construction of , ,z z zA B C  ) 

Step2.1  Construct a matrix 0
r rA R   by the following method. Initially, set all the entries of 0A  to zero. 

For 1, ,i r  , let 0 ( , ) 1A i j  , if the only non-zero entry in the thi row of  , say ( , ), {1, , }i d d l   , 

equals the ( , )thj d  entry of Z ;  

Step2.2  Construct the matrix zB , by the following method. Initially, set all the entries of zB  to zero. For 

each 1, ,i r  , 1, ,j r  , reset ( , ) 1zB i j  , if ( , ) 1i j  ;  

Step2.3   Let 0z z HTA A B D  . It can be seen that: 

0( ) zI A Z B                                                                                       (14) 

or, 
1

0( ) zI A Z B                                               (15) 
1 1

1
1 1 1

0 0

1 1 1
0 0

1
0

( , , ) ( )

( ) ( ( ) )

( ) ( ( ) )

( )

R n HT

z HT z

z HT z

z HT z

D z z I D Z
I A Z B I D Z I A Z B
I A Z I B D Z I A Z B
I A Z B D Z B

 

  

  



    

   

   

  



                            (16) 

Step2.4  Let z HTC N .  
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The order obtained using Algorithm 1 is 8, and no further reduction can be achieved by existing order 
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Step2.4  Let z HTC N .  

The constructed , ,z z zA B C  directly gives a realization of 1( , , )nG z z . 

A flow chart of Algorithm1 is provided in Figure 1 for convenience . 
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The order obtained using Algorithm 1 is 8, and no further reduction can be achieved by existing order 

reduction algorithms. The order obtained by the tree decomposition method is 16 before reduction, and 

becomes 10 after reduction. It can be verified that the minimal order of system (17) is 8. The result shows 

that Algorithm 1 is effective. 

III. THE STRUCTURED SINGULAR VALUE 

Structured singular value is based on the linear fractional transformation (LFT) model. Basically, any 

linear time invariant (LTI) system with uncertain parameters or unmodelled structure can be expressed as 

the form in Figure 1.  
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with 1 1 2 2
11 22 1 2, ,n n n nM C M C n n n     , then an upper LFT will be described as: 

1
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Assuming the nominal part of the system in Figure 1, M , is asymptotically stable, according to the 
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Because the structure of the uncertain part in Figure 1 is not considered, the results obtained by the 

small-gain theorem are conservative. To get more accurate results, Doyle puts forward the concept of 

structured singular value.  

Definition 1 The structured singular value, 11( )M , of a matrix 1 1
11

n nM C  , with respect to a block 

structure 1 1n nC  , is defined as: 
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with 11( ) 0M  , if no   solves 11det( ) 0I M  .  

The skew structured singular value is the smallest structured singular value of a subset of perturbations 
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Note that 1 1
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Robust stability analysis of uncertain systems based on μ analysis requires the calculation of ( ( ))T s , 

where ( )T s  is as shown in Figure 3. Calculation is implemented at every point over the frequency range, 

so the size of the frequency range and the interval between frequencies has a direct impact on the 

calculation burden and calculation accuracy [16]. Some important frequency points may be lost. In order 

to solve this problem, consider frequency as an uncertain parameter. ( )T s  can be represented in state 

space form:  
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with 11( ) 0s M  , if  no   solves 11det( ) 0I M  .  

Note that 1 1
ˆ,

n n
K KX C   contains the fixed part f  and variable part v , and that this block structure 

allows for repeated real scalars, repeated complex scalars, and full complex blocks. 

IV. ROBUST STABILITY ANALYSIS OF UNCERTAIN SYSTEMS 

Convert the uncertain systems shown in Figure 1 into the state space form of Figure 2 (a), which can be 

expressed as: 
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To construct equation (25), convert the uncertain systems shown in Figure 2 (a) into the state space 

form of Figure 2 (b), where: 
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Let 
( ) ( )

( )
( ) ( )

A B
P

C D
  

     
. According to Algorithm 1 and Algorithm 2, we can get equation (26), as 

follows:  
1

22 21 11 12( ) ( )P P P I P P                                                                     (26) 

where, 11 12 21 22, , ,P P P P  are equivalent to , , ,z z z zA B C D  in equation (3). Reconstructing 11 12 21 22, , ,P P P P  

properly, we can obtain equation (24). 
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When μ theory is used to evaluate whether controller K satisfies stability and performance 

requirements, it is necessary to introduce the controller K into the uncertain system in Figure 2 (a). The 

feedback control system is shown in Figure 3.  

Fig. 3.  Uncertain systems in state space form

 



I
s

w z
r y

1 2

1 11 12

2 21 22

A B B
C D D
C D D

x x

( )K s

( )T s

 
Fig. 4.  Feedback control system with uncertain parameters 

Robust stability analysis of uncertain systems based on μ analysis requires the calculation of ( ( ))T s , 

where ( )T s  is as shown in Figure 3. Calculation is implemented at every point over the frequency range, 

so the size of the frequency range and the interval between frequencies has a direct impact on the 

calculation burden and calculation accuracy [16]. Some important frequency points may be lost. In order 

to solve this problem, consider frequency as an uncertain parameter. ( )T s  can be represented in state 

space form:  

1 1ˆ( ) ( ) ( , )s p s s s u pT s C sI A B D F T I
s

                                                               (27) 

where, T̂ is a constant matrix, as follows: 

ˆ s s

s s

A B
T

C D
 

  
 

                                                                                        (28) 

Here, s  will be regarded as an uncertain parameter. A frequency interval is selected to calculate μ of 

uncertain systems, where [ , ]   . [ 1,1]   , 0 ( ) 2    , and ( ) 2     are introduced 

for calculating convenience; then, 0( )s j      . Use the following transformation: 

0 0

0 0

1

1

p p

p p

I I
j

N
I I

j






 

 

   
 
 
 
 

                                                                           (29) 

We get a linear fractional representation of 1
pI

s
, namely 1 ( , )p u pI F N I

s  . The state space parameter 

uncertain system with frequency as an uncertain parameter is shown in Figure 4. ‘*’ in Figure 3 denotes 

the star product.  

Fig. 4.  Feedback control system with uncertain parameters



DOI:10.5139/IJASS.2014.15.2.173 178

Int’l J. of Aeronautical & Space Sci. 15(2), 173–182 (2014)

system with frequency as an uncertain parameter is shown 

in Figure 4. ‘
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Here, S is a matrix partitioned such that the blocks fI  and vI  are sized to correspond to the fixed range 

and varying uncertainties f  and v , respectively. Then, let the matrix sM  be defined as follows: 
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It can be seen that the calculation of the upper bound of μ is converted into a generalized eigenvalue 

minimization problem.  This can be solved via MATLAB LMI Toolbox. The upper bound of Skew μ is 
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B. Lower Bound of Skew μ 
An optimization-based approach may be used to determine a lower bound (lb) on skew μ, where the 

parametric uncertainty may be real or complex valued.  

Theorem [17] 1: Given a small enough value , 0R   , for n nM C   and the compatible uncertain 
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where, 1, ,v vkd d  are the variable uncertain parameters, and    is a large coefficient of penalty function 

det( )I M . Then, the lower bound of Skew μ can be obtained. 
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An example of robust stability analysis is considered in this section. This shows how to use the methods 

mentioned above, to analyze the robust stability of a missile with only real parametric uncertainty. 

Compared with the analysis results with mu-tool in MATLAB software, the validity of the described 

methods is verified. 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 

bounded frequency range, can be regarded as skew μ calculation with frequency variation in fixed range. 

As [ 1,1]   , ˆ
ˆ( * )s

K N T  can be used to analyze the robust stability of uncertain systems. 

V. CALCULATION OF SKEW μ 

In this section, two algorithms are proposed for calculation of the upper and lower bounds, respectively, 

of skew μ. 

A. Upper Bound of Skew μ 
First, define a matrix, as follows:  
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Here, S is a matrix partitioned such that the blocks fI  and vI  are sized to correspond to the fixed range 

and varying uncertainties f  and v , respectively. Then, let the matrix sM  be defined as follows: 

1 1
sM S M S                                                                               (31) 

According to the definition of structured singular value, there always exists a   that makes the upper 

bound of ( )sM  equal 1, otherwise ( ) 0sM  . Ref.[15] proved that the upper bound of ( )s M  is  .  

Now consider the calculation of   using linear matrix inequality (LMI). From above, we know 

( ) 1sM  , so: 
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From μ theory, it can be stated that: 
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According to the definition of S , equation (34) can be written as: 
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then 
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6. Example

An example of robust stability analysis is considered in 

this section. This shows how to use the methods mentioned 

above, to analyze the robust stability of a missile with only 

real parametric uncertainty. Compared with the analysis 

results with mu-tool in MATLAB software, the validity of the 

described methods is verified.

The state space model of the linear uncertain missile can 

be expressed as follows: 
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where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

(41)

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

(42)

where, 

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

 is the state vector, 

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

 are the angle of attack, pitch rate, angle of 

sideslip, yaw rate, and roll rate respectively; u=

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

 

is the input vector, 

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

 are the elevator deflection, 

rudder deflection, and aileron deflection, respectively; and 

y=

 

y yx xz zY Y Y Y Y Y Y Y

y yx xz zM M M M M M M Mz z
y yx xz zZ Z Z Z Z Z Z Z

y y
y yx xz zN N N N N N N N

x x
y yx xz zL L L L L L L L

   
     

    
 

    
   

  
  
    
    
    
    

     
    
    
    

    
 
   











x
Ax Buy

z










 
                      
 
 
 

     (41) 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0

zx
Cxy

y
z

x









 
  
   
        
           
 

                                                          (42) 

where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 

 

ycn
1K

s  
 


2K 3K actuator z

z




z

z

n


yn

filter rate gyro

accelerometer
  

Fig. 6. The Control System of the Pitch Channel 
 
 

 is the output vector.

The control system of the pitch channel is shown in Fig. 

5. nz and nzc are the normal overload and normal overload 

command, respectively.

K1, K2, K3 are control variables. The yaw channel is similar 

to the pitch channel.

The control system of the roll channel is shown in Fig. 

6. 
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Table I.  The Nominal Value and Variation Range of Uncertain Parameters 
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According to functions (6) ~ (9), and taking system frequency as an uncertain parameter, an LFT model 

of the parameter uncertain missile is constructed. The upper and lower bounds of skew μ of the uncertain 

missile system are calculated according to the methods introduced above.  

Figure 7 shows the upper and lower bounds of skew μ (solid line), and the upper bound of μ of the 

uncertain missile system (dashed line). The upper bound of μ is obtained by MATLAB toolbox. As we 

can see, the lower bound of μ is not shown in Figure 7. This is because it is difficult to calculate an 

accurate lower bound of μ with current algorithms. 
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where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 
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the lower bound of skew μ is obtained, according to the 

calculation method introduced above. The results show that 

the perturbation range of the uncertain parameters can be 

enlarged by 
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Fig. 8. The robust stability of the missile with skew μ and μ 

Table 2 shows peak values of the upper and lower bounds (UB/LB) of skew μ and the upper bound of μ, 

and the corresponding frequencies. As we can see, the upper bound of skew μ is similar to the upper 

bound of μ, and the lower bound of skew μ is obtained, according to the calculation method introduced 

above. The results show that the perturbation range of the uncertain parameters can be enlarged by 

1 0.64 1.56  times the current value, while the system remains stable. When the perturbation ranges of 

uncertain parameters are enlarged by 1 0.59 1.69  times the current value, the system becomes unstable. 

The uncertain parameters combination of the worst case (at the current perturbation range) is shown in 

Table 1.  
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Fig. 9. Step response of missile to rudder deflection: nominal case 

 
When the perturbation range of the uncertain parameters is 1.56  times the current value, pick 4 random 

samples of the uncertain parameters. The step responses of roll angle and sideslip angle to rudder 
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response is also shown in Figure 11 (dotted line). It can be seen that the uncertain system remain stable, 
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Fig. 10. Step response of missile to rudder deflection: ±15.6% uncertainty 
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Fig. 11. Sep response of missile to rudder deflection: ±16.9% uncertainty 
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uncertain system remain stable. When the perturbation 

range of the uncertain parameters is 1.69 times the current 

value, pick 4 random samples of the uncertain parameters. 

The step responses of roll angle and sideslip angle to rudder 

deflection are shown in Fig. 10. It can be seen that when 

the perturbation range of the uncertain parameters is 1.69 

times the current value, the uncertain system may become 

unstable. When the perturbation range of the uncertain 

parameters takes the current value (10%), pick 4 random 

samples of the uncertain parameters. The step responses of 

roll angle and sideslip angle to rudder deflection are shown 

in Fig. 11 (full line). The worst step response is also shown 

in Fig. 11 (dotted line). It can be seen that the uncertain 

system remain stable, when the parameters combination is 

the worst case.

7. Conclusion

The proposed LFT modeling algorithm is computationally 

more efficient, and leads to a lower order realization, than 

existing algorithms. It can be seen from calculating results 

that the proposed method for robust stability analysis 

can get the upper and lower bounds of skew μ; thus, the 

largest allowable perturbation range of the uncertain 

parameters that hold the missile stable, and worst case 

uncertain parameters combination, can be obtained. The 

proposed method can greatly reduce the calculation time, 

without affecting the access to important information . The 

proposed method is an efficient and accurate method for 

robust stability analysis, and it is suitable for engineering 

application.

References

[1] J.C. Doyle, “Analysis of feedback systems with 

structured uncertainties[J]”, IEE Proc., 1982, pp. 242-250. 

[2] G. Bates, Ridwan Kureemun and Thomas Mannchen, 

“Improved Clearance of a Flight Control Law Using μ-Analysis 

Techniques[J] ”, JOURNAL OF GUIDANCE, CONTROL, AND 

DYNAMICS, Vol. 26, No. 6, 2003, pp. 869-884.

[3] Dimitry Gorinevsky and Gunter Stein, “Structured 

Uncertainty Analysis of Robust Stability for Multidimensional 

Array Systems[J]”, IEEE TRANSACTIONS ON AUTOMATIC 

CONTROL, 2003, pp. 1557-1568. 

[4] P.I. Iordanov, Robust analysis and synthesis of systems 

subject to parameter uncertainty using the structured 

singular value, PhD Thesis, University of Limerick, 2003.

[5] P.M. Young, “Structured singular value approach 

for systems with parametric uncertainty[J]”, Int. J. Robust 

Nonlinear Control, Vol. 11, No. 7, 2001, pp. 653-680.

[6] Harald Pfifer, and Simon Hecker, “Generation 

of Optimal Linear Parametric Models for LFT-Based 

Robust Stability Analysis and Control Design[J] ”, IEEE 

TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 

2011, pp.118-131.

[7] M.K. Halton, New structured singular value based 

robustness analysis tools with automotive applications, PhD 

Thesis, University of Limerick, 2004.

[8] B. Morton, “New applications of mu to real-parameter 

variation problems[C]”, In Proc. of 24th IEEE Conference on 

Decision and Control, 1985, pp. 233–238.

[9] J. C. Cockburn and B. G. Morton, “Linear fractional 

representations of uncertain systems[J]”, Automatica, Vol. 33, 

No. 7, 1997, pp. 1263–1271.

[10] Christopher Fielding,Andras Varga and SamirBennani 

et al.Advanced Techniques for Clearance of Flight Control 

Laws[M]. Springer, 2002. 

[11] LIU Jiabin, Zhou Kemin and MA Lei, “On the 

Robust Stability Analysis with Real Block Structured 

Uncertainties[C]”, IEEE International Conference on Control 

and Automation, 2013, pp.16-20.

[12] Tadasuke Matsuda, Michihiro Kawanishi and Tatsuo 

Narikiyo, “Computation of Real Structured Singular Value 

by Stability Feeler[C]”, Asian Control Conference, 2009, pp. 

672-677.

[13] Jorge E. Tierno and Peter M. Young, “An Improved μ 

Lower Bound via Adaptive Power Iteration[C]”, Conference 

on decision and control,1992, pp. 3181-3186.

[14] D. Givone and R. Roesser. “Minimization of 

 

0 2 4 6 8 10
-5

0

5

10

15
x 10-4            The response of roll angle to rudder deflection

Time (sec)

A
m

pl
itu

de

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2
The response of sideslip angle to rudder deflection

Time (sec)

A
m

pl
itu

de

 
Fig. 12. Step response of missile to rudder deflection: ±10% uncertainty and worst case 

VII. CONCLUSION 

The proposed LFT modeling algorithm is computationally more efficient, and leads to a lower order 

realization, than existing algorithms. It can be seen from calculating results that the proposed method for 

robust stability analysis can get the upper and lower bounds of skew μ; thus, the largest allowable 

perturbation range of the uncertain parameters that hold the missile stable, and worst case uncertain 

parameters combination, can be obtained. The proposed method can greatly reduce the calculation time, 

without affecting the access to important information . The proposed method is an efficient and accurate 

method for robust stability analysis, and it is suitable for engineering application. 
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