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Abstract

The structured singular value (μ) analysis based method has many advantages for the robust stability analysis of missiles with 

uncertain parameters. Nevertheless, the present linear fractional transformation (LFT) modeling process, which is the basis of 

μ analysis, is complex, and not suitable for automatic implementation; on the other hand, μ analysis requires a large amount 

of computation, which is a burden for large-scale application. A constructive procedure, which is computationally more 

efficient, and which may lead to a lower order realization than existing algorithms, is proposed for LFT modeling. To reduce 

the calculation burden, an analysis method is developed, based on skew μ. On this basis, calculation of the supremum of μ 

over a fixed frequency range converts into a single skew μ value calculation. Two algorithms are given, to calculate the upper 

and lower bounds of skew μ, respectively. The validity of the proposed method is verified through robust stability analysis of a 

missile with real uncertain parameters.
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1. Introduction

For many physical systems, the influence of parameter 

uncertainty on system stability and performance needs to 

be considered. The structured singular value, μ, provides a 

rigorous tool for analyzing the robustness of such systems 

[1-7]. Although μ theory is suitable for the robust stability 

analysis/control system design of systems with uncertain 

parameters, it does have problems. The basis of μ-theory is 

the linear fractional transformation (LFT) model. Several 

realization methods have been developed for LFT modeling. 

While Morton’s method [8] is able to get the lowest order 

realizations of uncertain systems, it limits the form of 

uncertain parameters, so it can only be used for specific 

kinds of systems. The LFT model obtained by the tree 

decomposition method [9] is not unique, and heuristics are 

usually necessary to get the best decomposition, especially 

for complicated cases. It is difficult for the Min-max method 

to find the real worst case [10]. On the other hand, the 

computation problem of μ has not been solved very well. 

Calculation of μ for systems with complex uncertainty is 

relatively easy, and the difference between the upper and 

lower bounds of μ is not too big. Nevertheless, it is hard to 

get good results for the robust stability analysis of systems 

with real uncertainty; the difference between the upper and 

lower bounds of μ is big, and sometimes it is difficult to get 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	 *	Ph.D.,  Corresponding Author :  houzhqnwpu@sina.com
		  **	Professor
		  ***	Professor
	 ****		M.E.



DOI:10.5139/IJASS.2014.15.2.173 174

Int’l J. of Aeronautical & Space Sci. 15(2), 173–182 (2014)

the lower bound [11-13]. As μ needs to be calculated at every 

frequency point over the frequency range, the calculation 

burden is heavy.

A new LFT modeling method is proposed, based on 

state space realization of the Roesser model. The concept 

of skew μ is put forward, and then calculation of the 

supremum of μ over a fixed frequency range converts into a 

single skew μ value calculation. Two algorithms are given, 

to calculate the upper and lower bounds, respectively, 

of skew μ. The proposed methods are verified, through 

robust stability analysis of a missile with real uncertain 

parameters.

2. The LFT Modeling

The  order Roesser model can be described as [14]:
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where, , 1, ,kr
kx R k n    is the thk state vector, lu R  is the input vector, my R  is the output vector, 

and , , ,z z z zA B C D  are all real matrices of dimensions , , ,r r r l m r m l    , respectively, with 

1

n
kk

r r
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The idea is to construct a matrix r lR  , which only consists of power products 1 2
1 2

nhh h
nz z z , and real 

matrices , ,z z zA B C , such that the following relations hold true:  

1( , , )n HTD z z D Z                                                                                (6) 

1( , , )n HT zN z z N Z C Z   �                                                                     (7) 
1 1

1( , , ) ( )R n z zD z z I A Z B                                                                      (8) 

where, Z  is as defined above, and HTD  and HTN  are real matrices with suitable sizes. Then, a realization 
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The key point here is how to find a suitable matrix r lR  . It can be seen that the order of realization is 

determined by the dimension of  , and , ,z z zA B C is obtained by  . Thoroughly investigating the 

structural properties of the Roesser model, it can be found that, to meet the relations specified in (6) - (8), 

  has to satisfy the following conditions: 

1) The entries of the thj  column of Z  contain all the power products occurring in the polynomial 

entries of the thj  column of 1( , , )nF z z ; 

2)  For each column of  , there is a unit entry; 

3) For every non-unit entry ( , )i j (  1, ,i r  ) in the thj column of  ( 1, ,j l  ), there exists 

another entry in the same column (for example ( , )kh j ，    1, , , 1, ,kh r k n   ), such that 

( , ) ( , )k ki j z h j   . 

The desired   among all the matrices satisfying the above conditions should have minimal dimension. 

That is to say, no entry can be removed, without violating these conditions. 

In the sequel, we order the thn   order power products 1 2
1 2

nhh h
nz z z  by the total degree lexicographic 

order. It is assumed, without loss of generality, that the order of jz  is higher than iz , with j i . 

Two algorithms are proposed to construct   and ( , , )z z zA B C , respectively. In Algorithm 1, the 

construction of   starts from the power products occurring in the polynomial entries of each column of 

1( , , )nF z z ; then, appropriate power products will be inserted into  , until conditions 1) – 3) are all 

satisfied. 

Algorithm 1  (Construction of  )
Step1.1  Let 0d  ; 

Step1.2  Let 1d d  . If d l , go to Step1.8; else go to Step1.3; 
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Note that there is only one non-zero entry in each row of  . 

Once   has been constructed by Algorithm 1, 1( , , )nD z z  and 1( , , )nN z z  can be easily expressed, 

as follows:  

1( , , )n HTD z z D Z                                                                                  (12) 

1( , , )n HTN z z N Z                                                                                  (13) 

where, l r
HTD R   and m r

HTN R   are the corresponding coefficients of the entries of 1( , , )nD z z  and 

1( , , )nN z z , respectively. 

The system matrices , ,z z zA B C  can be constructed as follows. 

Algorithm 2 (Construction of , ,z z zA B C  ) 
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Step2.2  Construct the matrix zB , by the following method. Initially, set all the entries of zB  to zero. For 

each 1, ,i r  , 1, ,j r  , reset ( , ) 1zB i j  , if ( , ) 1i j  ;  

Step2.3   Let 0z z HTA A B D  . It can be seen that: 
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Step2.4  Let z HTC N .  

The constructed , ,z z zA B C  directly gives a realization of 1( , , )nG z z . 

A flow chart of Algorithm1 is provided in Figure 1 for convenience . 
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Note that there is only one non-zero entry in each row of  . 

Once   has been constructed by Algorithm 1, 1( , , )nD z z  and 1( , , )nN z z  can be easily expressed, 

as follows:  

1( , , )n HTD z z D Z                                                                                  (12) 
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where, l r
HTD R   and m r

HTN R   are the corresponding coefficients of the entries of 1( , , )nD z z  and 

1( , , )nN z z , respectively. 

The system matrices , ,z z zA B C  can be constructed as follows. 

Algorithm 2 (Construction of , ,z z zA B C  ) 

Step2.1  Construct a matrix 0
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each 1, ,i r  , 1, ,j r  , reset ( , ) 1zB i j  , if ( , ) 1i j  ;  

Step2.3   Let 0z z HTA A B D  . It can be seen that: 
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Step2.4  Let z HTC N .  

The constructed , ,z z zA B C  directly gives a realization of 1( , , )nG z z . 

A flow chart of Algorithm1 is provided in Figure 1 for convenience . 
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Note that there is only one non-zero entry in each row of  . 
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Note that there is only one non-zero entry in each row of  . 
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The order obtained using Algorithm 1 is 8, and no further reduction can be achieved by existing order 

reduction algorithms. The order obtained by the tree decomposition method is 16 before reduction, and 

becomes 10 after reduction. It can be verified that the minimal order of system (17) is 8. The result shows 

that Algorithm 1 is effective. 

III. THE STRUCTURED SINGULAR VALUE 

Structured singular value is based on the linear fractional transformation (LFT) model. Basically, any 

linear time invariant (LTI) system with uncertain parameters or unmodelled structure can be expressed as 

the form in Figure 1.  

Fig. 1.  Flow chart of Algorithm 1
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Note that there is only one non-zero entry in each row of  . 
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Fig. 1.  Flow chart of Algorithm 1 
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The order obtained using Algorithm 1 is 8, and no further reduction can be achieved by existing order 

reduction algorithms. The order obtained by the tree decomposition method is 16 before reduction, and 

becomes 10 after reduction. It can be verified that the minimal order of system (17) is 8. The result shows 

that Algorithm 1 is effective. 

III. THE STRUCTURED SINGULAR VALUE 

Structured singular value is based on the linear fractional transformation (LFT) model. Basically, any 

linear time invariant (LTI) system with uncertain parameters or unmodelled structure can be expressed as 

the form in Figure 1.  
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with 1 1 2 2
11 22 1 2, ,n n n nM C M C n n n     , then an upper LFT will be described as: 

1
22 21 11 12( , ) ( ( ) )uy F M r M M I M M r                                                           (19) 

Assuming the nominal part of the system in Figure 1, M , is asymptotically stable, according to the 

small-gain theorem, the system in Figure 1 is stable if and only if equation (20) is satisfied: 
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Because the structure of the uncertain part in Figure 1 is not considered, the results obtained by the 

small-gain theorem are conservative. To get more accurate results, Doyle puts forward the concept of 

structured singular value.  

Definition 1 The structured singular value, 11( )M , of a matrix 1 1
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with 11( ) 0M  , if no   solves 11det( ) 0I M  .  

The skew structured singular value is the smallest structured singular value of a subset of perturbations 

that destabilizes the system M, with the remainder of the perturbations contained within a fixed range. 

Given the uncertain matrix set f fn n
KX C  , ˆ 1,v vn n

f vKX C n n n   , and define the following extended 

matrix: 

ˆ, { }f vK KX block diag    （ , ）                                                             (22) 

where, ˆ,f K v KBX X    { : ( ) 1}K f K fBX X      . 
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Robust stability analysis of uncertain systems based on μ analysis requires the calculation of ( ( ))T s , 
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with 11( ) 0s M  , if  no   solves 11det( ) 0I M  .  

Note that 1 1
ˆ,

n n
K KX C   contains the fixed part f  and variable part v , and that this block structure 

allows for repeated real scalars, repeated complex scalars, and full complex blocks. 

IV. ROBUST STABILITY ANALYSIS OF UNCERTAIN SYSTEMS 

Convert the uncertain systems shown in Figure 1 into the state space form of Figure 2 (a), which can be 

expressed as: 
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To construct equation (25), convert the uncertain systems shown in Figure 2 (a) into the state space 

form of Figure 2 (b), where: 
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. According to Algorithm 1 and Algorithm 2, we can get equation (26), as 

follows:  
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where, 11 12 21 22, , ,P P P P  are equivalent to , , ,z z z zA B C D  in equation (3). Reconstructing 11 12 21 22, , ,P P P P  

properly, we can obtain equation (24). 
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When μ theory is used to evaluate whether controller K satisfies stability and performance 
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feedback control system is shown in Figure 3.  
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system with frequency as an uncertain parameter is shown 

in Figure 4. ‘
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Fig. 5.  uncertain systems with frequency as uncertain parameter 

According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 

bounded frequency range, can be regarded as skew μ calculation with frequency variation in fixed range. 

As [ 1,1]   , ˆ
ˆ( * )s

K N T  can be used to analyze the robust stability of uncertain systems. 

V. CALCULATION OF SKEW μ 

In this section, two algorithms are proposed for calculation of the upper and lower bounds, respectively, 

of skew μ. 

A. Upper Bound of Skew μ 
First, define a matrix, as follows:  
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                                                                                     (30) 

Here, S is a matrix partitioned such that the blocks fI  and vI  are sized to correspond to the fixed range 

and varying uncertainties f  and v , respectively. Then, let the matrix sM  be defined as follows: 

1 1
sM S M S                                                                               (31) 

According to the definition of structured singular value, there always exists a   that makes the upper 

bound of ( )sM  equal 1, otherwise ( ) 0sM  . Ref.[15] proved that the upper bound of ( )s M  is  .  

Now consider the calculation of   using linear matrix inequality (LMI). From above, we know 

( ) 1sM  , so: 

1 1( ) 1S M S                                                                               (32) 
From μ theory, it can be stated that: 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 
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According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 
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It can be seen that the calculation of the upper bound of μ is converted into a generalized eigenvalue 
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where, 1, ,v vkd d  are the variable uncertain parameters, and    is a large coefficient of penalty function 

det( )I M . Then, the lower bound of Skew μ can be obtained. 

VI. EXAMPLE 

An example of robust stability analysis is considered in this section. This shows how to use the methods 

mentioned above, to analyze the robust stability of a missile with only real parametric uncertainty. 

Compared with the analysis results with mu-tool in MATLAB software, the validity of the described 

methods is verified. 

The state space model of the linear uncertain missile can be expressed as follows: 
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where, 1, ,v vkd d  are the variable uncertain parameters, and    is a large coefficient of penalty function 

det( )I M . Then, the lower bound of Skew μ can be obtained. 

VI. EXAMPLE 

An example of robust stability analysis is considered in this section. This shows how to use the methods 

mentioned above, to analyze the robust stability of a missile with only real parametric uncertainty. 

Compared with the analysis results with mu-tool in MATLAB software, the validity of the described 

methods is verified. 

The state space model of the linear uncertain missile can be expressed as follows: 
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Fig. 5.  uncertain systems with frequency as uncertain parameter 

According to the definition of skew μ, μ analysis of uncertain systems, as shown in Figure 4 with 

bounded frequency range, can be regarded as skew μ calculation with frequency variation in fixed range. 

As [ 1,1]   , ˆ
ˆ( * )s

K N T  can be used to analyze the robust stability of uncertain systems. 

V. CALCULATION OF SKEW μ 

In this section, two algorithms are proposed for calculation of the upper and lower bounds, respectively, 
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Here, S is a matrix partitioned such that the blocks fI  and vI  are sized to correspond to the fixed range 
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6. Example

An example of robust stability analysis is considered in 

this section. This shows how to use the methods mentioned 

above, to analyze the robust stability of a missile with only 

real parametric uncertainty. Compared with the analysis 

results with mu-tool in MATLAB software, the validity of the 

described methods is verified.

The state space model of the linear uncertain missile can 

be expressed as follows: 
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where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 
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where, 
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angle of sideslip, yaw rate, and roll rate respectively; 
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the output vector. 

  The control system of the pitch channel is shown in Figure 5. zn  and zcn  are the normal overload and 

normal overload command, respectively. 

1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 
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 is the output vector.

The control system of the pitch channel is shown in Fig. 

5. nz and nzc are the normal overload and normal overload 
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K1, K2, K3 are control variables. The yaw channel is similar 

to the pitch channel.

The control system of the roll channel is shown in Fig. 

6. 
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where, 
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where, 
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1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 
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 are the roll angle and roll angle command, 

respectively. Kr1, Kr2 are the control variables.

The pitching moment derivative due to elevator deflection 
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Fig. 7. The Control System of the Roll Channel 

The pitching moment derivative due to elevator deflection z
mC , yawing moment derivative due to 

rudder deflection y
nC , and rolling moment derivative due to aileron deflection x

lC  are uncertain 

parameters, and their nominal value and variation range are shown in Table 1. The state matrix A  and 

control matrix B  at flight height 4000 m, flight speed 2 Ma, are as follows: 
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Table I.  The Nominal Value and Variation Range of Uncertain Parameters 

Uncertain 
parameters 

nominal 
value 

(1/rad) 

variation 
range (%)

worst-case 
parameters 

combination
(1/rad) 

z
mC  -0.0064 [-10,10] -0.00704 

y
nC  -0.0085 [-10,10] -0.00935 

x
lC  -0.0027 [-10,10] -0.00297 

 
According to functions (6) ~ (9), and taking system frequency as an uncertain parameter, an LFT model 

of the parameter uncertain missile is constructed. The upper and lower bounds of skew μ of the uncertain 

missile system are calculated according to the methods introduced above.  

Figure 7 shows the upper and lower bounds of skew μ (solid line), and the upper bound of μ of the 

uncertain missile system (dashed line). The upper bound of μ is obtained by MATLAB toolbox. As we 

can see, the lower bound of μ is not shown in Figure 7. This is because it is difficult to calculate an 

accurate lower bound of μ with current algorithms. 
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nC , and rolling moment derivative due to aileron deflection x
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parameters, and their nominal value and variation range are shown in Table 1. The state matrix A  and 

control matrix B  at flight height 4000 m, flight speed 2 Ma, are as follows: 
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According to functions (6) ~ (9), and taking system frequency as an uncertain parameter, an LFT model 

of the parameter uncertain missile is constructed. The upper and lower bounds of skew μ of the uncertain 

missile system are calculated according to the methods introduced above.  

Figure 7 shows the upper and lower bounds of skew μ (solid line), and the upper bound of μ of the 
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where, 
T

z y xx          is the state vector, , , , ,z y x      are the angle of attack, pitch rate, 

angle of sideslip, yaw rate, and roll rate respectively; 
T

x y zu        is the input vector, , ,x y z    are 

the elevator deflection, rudder deflection, and aileron deflection, respectively; and 
T

x y zy        is 

the output vector. 
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1 2 3, ,K K K  are control variables. The yaw channel is similar to the pitch channel. 

The control system of the roll channel is shown in Figure 6.   and c  are the roll angle and roll angle 

command, respectively. 1 2,r rK K  are the control variables. 
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Table 2 shows peak values of the upper and lower bounds (UB/LB) of skew μ and the upper bound of μ, 

and the corresponding frequencies. As we can see, the upper bound of skew μ is similar to the upper 

bound of μ, and the lower bound of skew μ is obtained, according to the calculation method introduced 

above. The results show that the perturbation range of the uncertain parameters can be enlarged by 

1 0.64 1.56  times the current value, while the system remains stable. When the perturbation ranges of 

uncertain parameters are enlarged by 1 0.59 1.69  times the current value, the system becomes unstable. 

The uncertain parameters combination of the worst case (at the current perturbation range) is shown in 

Table 1.  
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Fig. 9. Step response of missile to rudder deflection: nominal case 
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Fig. 10. Step response of missile to rudder deflection: ±15.6% uncertainty 
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Fig. 11. Sep response of missile to rudder deflection: ±16.9% uncertainty 
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uncertain system remain stable. When the perturbation 

range of the uncertain parameters is 1.69 times the current 

value, pick 4 random samples of the uncertain parameters. 

The step responses of roll angle and sideslip angle to rudder 

deflection are shown in Fig. 10. It can be seen that when 

the perturbation range of the uncertain parameters is 1.69 

times the current value, the uncertain system may become 

unstable. When the perturbation range of the uncertain 

parameters takes the current value (10%), pick 4 random 

samples of the uncertain parameters. The step responses of 

roll angle and sideslip angle to rudder deflection are shown 

in Fig. 11 (full line). The worst step response is also shown 

in Fig. 11 (dotted line). It can be seen that the uncertain 

system remain stable, when the parameters combination is 

the worst case.

7. Conclusion

The proposed LFT modeling algorithm is computationally 

more efficient, and leads to a lower order realization, than 

existing algorithms. It can be seen from calculating results 

that the proposed method for robust stability analysis 

can get the upper and lower bounds of skew μ; thus, the 

largest allowable perturbation range of the uncertain 

parameters that hold the missile stable, and worst case 

uncertain parameters combination, can be obtained. The 

proposed method can greatly reduce the calculation time, 

without affecting the access to important information . The 

proposed method is an efficient and accurate method for 

robust stability analysis, and it is suitable for engineering 

application.
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Fig. 12. Step response of missile to rudder deflection: ±10% uncertainty and worst case 

VII. CONCLUSION 

The proposed LFT modeling algorithm is computationally more efficient, and leads to a lower order 

realization, than existing algorithms. It can be seen from calculating results that the proposed method for 

robust stability analysis can get the upper and lower bounds of skew μ; thus, the largest allowable 

perturbation range of the uncertain parameters that hold the missile stable, and worst case uncertain 

parameters combination, can be obtained. The proposed method can greatly reduce the calculation time, 

without affecting the access to important information . The proposed method is an efficient and accurate 

method for robust stability analysis, and it is suitable for engineering application. 
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