
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: March 6, 2014 Revised : June 5, 2014 Accepted: June 9, 2014

183 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 15(2), 183–189 (2014)
DOI:10.5139/IJASS.2014.15.2.183

Generalized Computational Nodes for Pseudospectral Methods

Chang-Joo Kim*, Soo Hyung Park**, Sung-Nam Jung*** and Sangkyung Sung****
Konkuk University, Seoul, Korea, 143-701

Abstract

Pseudo-spectral method typically converges at an exponential rate. However, it requires a special set of fixed collocation

points (CPs) to get highly accurate formulas for partial integration and differentiation. In this study, computational nodes for

defining the discrete variables of states and controls are built independently of the CPs. The state and control variables at each

CP, which are required to transcribe an NOCP into the corresponding NLP, are interpolated, using those variables allocated at

each node. Additionally, Lagrange interpolation and spline interpolation are investigated, to provide a guideline for selecting a

favorable interpolation method. The proposed techniques are applied to the solution of an NOCP using equally spaced nodes,

and the computed results are compared to those using the standard PS approach, to validate the usefulness of the proposed

methods.

Key words: Pseudo-spectral method, computational node, Lagrange interpolation, spline

1. Introduction

The pseudo-spectral (PS) method has been widely used in

analyses of nonlinear optimal control problems (NOCPs). This

method converts the NOCP into a nonlinear programming

problem (NLP), using Lagrange interpolating polynomials and

a quadrature formula. It is superior to other direct methods,

in that it requires relatively few computational nodes (CNs),

compared to other strategies, and the resultant solution can

accurately approximate the optimality condition of Euler-

Lagrange equations for the NOCP [1-3]. The detail algorithms

used in this study are described in the authors’ earlier works

[4-5], with their applications to rotorcraft flight dynamic

analyses. For problems with a well-behaved solution, the PS

method typically converges at an exponential rate [1-2, 6-7].

However, it requires a special set of fixed collocation points

(CPs) to get highly accurate formulas for partial integration

and differentiation. This may cause inconvenience in many

applications. First of all, when the end point is not included

in the CPs, boundary controls cannot be predicted. Also,

relatively small values of the quadrature weights around

two end points can reduce the sensitivity of an NLP to

the parameterized control variables. As a result, control

predictions show poor convergence around these points.

Furthermore, when the optimum solution changes rapidly in

the middle of the time domain, an extremely large number of

CNs is required to provide a discernible improvement in local

accuracy. To mitigate these disadvantages, this paper studies

generalized CNs for the PS method.

In this study, CNs, on which the discrete variables of states

and controls are defined, are built independently of the CPs.

The state and control variables at each CP, which are required

to transcribe an NOCP into the corresponding NLP, are

interpolated, using those variables allocated at CNs. Since

the resultant NLP is parameterized using states and controls

defined in the CN, its sensitivity to the design variables can

be modified through the interpolation process. Therefore, the

success of this approach depends on a careful selection of an

interpolation method. In this regard, Lagrange interpolation

and spline interpolation are investigated, to provide a

guideline for selecting a favorable interpolation method.

The proposed techniques are applied to the solution of an

NOCP using equally spaced CNs, and the computed results

are compared to those using the standard PS approach, to

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	 	 *	Associate Professor
		 **	Associate Professor
		 ***	Professor
	 ****	Associate Professor, Corresponding Author : sksung@konkuk.ac.kr

DOI:10.5139/IJASS.2014.15.2.183 184

Int’l J. of Aeronautical & Space Sci. 15(2), 183–189 (2014)

validate the usefulness of the proposed methods.

2. Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN

that can be represented by the union of the (K+1) CP

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

and the end points {-1, 1} [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19.

The Legendre-Gauss (LG) CN corresponds exactly to the LG

CP, except for the two end points that are not included in the

LG CP. Three different examples of GCNs are illustrated, two

of which are locally clustered, to enhance local accuracy. The

third one is built with uniformly distributed nodes, which

are known to be the worst possible choice when polynomial

interpolation is used, as in the PS method [8, 9]. An NOCP

suitable for solution using the PS method can be represented

by Eqs. (1) – (3), after applying the affine transformation

defined in Eq. (4), over a time horizon of

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

 [10-11].

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

(1)

subject to:

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

(2)

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

(3)

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

(4)

The PS method transcribes Eq. (1) using quadrature

weights

 - 2 -

sensitivity to the design variables can be modified through the interpolation process. Therefore,

the success of this approach depends on a careful selection of an interpolation method. In this

regard, Lagrange interpolation and spline interpolation are investigated, to provide a guideline

for selecting a favorable interpolation method. The proposed techniques are applied to the

solution of an NOCP using equally spaced CNs, and the computed results are compared to those

using the standard PS approach, to validate the usefulness of the proposed methods.

Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN that can be represented by the union

of the (K+1) CP Kk
kk

0}~{ and the end points }1,1{ [4, 6-7]. Fig. 1 shows examples of a

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN

corresponds exactly to the LG CP, except for the two end points that are not included in the LG

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9].

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after

applying the affine transformation defined in Eq. (4), over a time horizon of],[0 fttt [10-11].





1

1

0
0,,

),,(
2

))(),((),,(min  dF
tt

tttJ f
fftux f

uxxxux (1)

subject to:

),,(
2

0 


uxfx tt
d
d f  (2)

0))(),((
0),,(
0),,(

0 



ftt xxψ
uxg
uxh



 (3)

12
0

0 




tt
tt

f

 (4)

The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5),

and the system dynamics can be parameterized using either the differentiation method or the

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for Kj ,,0  .

, as represented by Eq. (5), and the

system dynamics can be parameterized using either the

differentiation method or the integration method, the

transcribed results of which are shown in Eq. (6) and Eq. (7),

respectively, for j=0, ..., K.

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

(5)

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

(6)

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

(7)

where,

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

 and

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

 represent the state and control variables

corresponding to the kth CP. The terms Djk and Ijk are the

elements of the differentiation and integration matrices.

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

reflects the effect of initial states when the initial time is not

included in the CPs, as in the LG, and the flipped Legendre-

Gauss-Radau (FLGR) points [12]. By satisfying the equality

and inequality constraints shown in Eq. (3) at each of the CPs

and the two end points, the NOCP is completely transformed

into a solvable NLP.

For convenience, we can differentiate the state and

control variables at each of the CPs,

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

, from those

corresponding to the CNs,

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

, where M is typically

one of {K, K+1, K+2}, depending on whether or not the end

points are incorporated in the CPs. For the application of

the GCN, the following interpolation formula is defined to

approximate the continuous states in the computational

domain, using states

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

 at each of the GCN.

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

(8)

Then, the states corresponding to the kth point of the CP

can be estimated, using:

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

(9)

The coefficient

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

 is an influence coefficient with respect

to

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

, and the same formula can be used to approximate the

control

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

, using

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

. Therefore, the solution of the NLP

represented with the variables at each of the CP and the two

end points can be carried out with the following procedures:

(i) ��Compute states and controls

 - 3 -

  





K

k
kkkk

N
f FwttttJ

0

0
0)~,~,~(

2
)(),( uxxx (5)

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0(~,~,~
2

)(~ uxfxx (6)

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx (7)

where, kx~ and ku~ represent the state and control variables corresponding to the kth CP. The terms

jkD and jkI are the elements of the differentiation and integration matrices.)0(
jD reflects the

effect of initial states when the initial time is not included in the CPs, as in the LG, and the

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely

transformed into a solvable NLP.

For convenience, we can differentiate the state and control variables at each of the CPs,
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For

the application of the GCN, the following interpolation formula is defined to approximate the

continuous states in the computational domain, using states Mm
mm

0}{x at each of the GCN.

l

M

l
l xx 




0

)()( with lmml  )((8)

Then, the states kx~ corresponding to the kth point k~ of the CP can be estimated, using:

 l

M

l
klk xx 




0

~~  with)~(~
klkl   (9)

The coefficient kl~ is an influence coefficient with respect to lx , and the same formula can be

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP

represented with the variables at each of the CP and the two end points can be carried out with

the following procedures:

(i) Compute states and controls Kk
kkk

0}~,~{ ux at each of the CPs, using Eq. (8).

(ii) Compute the cost and constraint functions that are parameterized, using the variables at

each of the CPs, and the two end points.

 at each of the

CPs, using Eq. (8).

(ii) ��Compute the cost and constraint functions that are

parameterized, using the variables at each of the CPs,

and the two end points.

(iii) ��Compute the Jacobian matrices for the cost and

constraint functions, with respect to

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

.

(iv) ��Solve the NLP using the robust SQP (rSQP) algorithm,

and update

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

.

(v) ��Terminate the routine, if the solution converges.

 - 10 -

-1 -0.5 0 0.5 1

LG CP

LG CN

GCN (1)

GCN (2)

GCN (3)

tau

uniform

locally clustered

locally clustered

Fig. 1. Examples of generalized computational nodes (M=21)
Fig. 1. ��Examples of generalized computational nodes (M=21)

185

Chang-Joo Kim Generalized Computational Nodes for Pseudospectral Methods

http://ijass.org

Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated,

using the influence coefficient matrix. As an example, the

gradient of the integral cost function, as shown in Eq. (5),

with respect to a control vector um, can be estimated using

Eq. (11).

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

(10)

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

(11)

The state and control variables

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

 defined at

the GCN become the design variables in the resultant NLP.

The modified weight

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

 in Eq. (11) reflects the sensitivity

of the NLP to {xm, um}, which depends on both the type of

the interpolation function

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by:

, and the distribution of the

GCN, as shown in Fig. 1. Therefore, a careful selection of

interpolation functions, as well as types of GCN, is crucial

for the successful implementation of the GCN, by preserving

sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation.

Because the PS method utilizes the Lagrange interpolating

polynomials to approximate states and controls in a

continuous time domain, they seem to be a natural

choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those

functions needs a matrix inversion, which may degrade

interpolation accuracy, as a result of the large condition

number of the related matrix, when the number of CPs is

increased. As an alternative, the local Lagrange interpolating

polynomial is tested as the first type of interpolation in this

study, and the spline interpolation is considered as the

second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline

interpolation polynomials. In case an Nth-order polynomial

is used, a continuous function f(t) can be approximated

using the discrete data set

 - 4 -

(iii)Compute the Jacobian matrices for the cost and constraint functions, with respect to
Mm

mmm

0},{ ux .

(iv)Solve the NLP using the robust SQP (rSQP) algorithm, and update Mm
mmm

0},{ ux .

(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a

control vector mu , can be estimated using Eq. (11).





K

k
kkkkI FwJ

0

)~,~,~(ux (10)
























K

k k

kkk
km

K

k m

k

k

kkk
k

m

I

Fw

FwJ

0

0

~
)~,~,~(~

~
~

)~,~,~(

u
ux

u
u

u
ux

u




 with kmkkm ww ~~  (11)

The state and control variables Mm
mmm

0},{ ux defined at the GCN become the design variables in

the resultant NLP. The modified weight kmw~ in Eq. (11) reflects the sensitivity of the NLP to

},{ mm ux , which depends on both the type of the interpolation function)(l , and the

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by

preserving sufficient sensitivity to all of the design variables.

This paper considers two different types of interpolation. Because the PS method utilizes the

Lagrange interpolating polynomials to approximate states and controls in a continuous time

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the

computation of the influence coefficient matrix using those functions needs a matrix inversion,

which may degrade interpolation accuracy, as a result of the large condition number of the

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange

interpolating polynomial is tested as the first type of interpolation in this study, and the spline

interpolation is considered as the second approach. For this purpose, some manipulations are

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an

Nth-order polynomial is used, a continuous function)(tf can be approximated using the discrete

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by: , and the related spline

interpolation can be represented by:

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

(12)

where, the non-dimensional time

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

 is defined as:

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

(13)

The unknown coefficient set

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

 can be

determined by imposing various conditions, as listed below.

(i) Function values given at each point

(ii) ��Continuity of the function and its derivatives up to the

(N-1)th-order, at each of the inter-connecting points

(iii) (N-1) end conditions

There are many different ways of imposing the end

conditions, but this paper limits its consideration to the

natural spline and the not-a-knot spline [13-15]. The

conditions above produce a system of linear algebraic

equations for the unknown coefficients, as represented in

Eq. (14):

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

(14)

where, a and f are defined by:

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

The coefficient matrix c has the dimensions M(N+1)-by-

(M+1), and is defined to show that each unknown coefficient

can be represented as a linear combination of function

values

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

, as shown below:

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

(15)

The coefficient set

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

, which is related to the kth

function data fk, can be obtained by solving Eq. (14), after

setting

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16)

. Therefore, an approximation

of the function can be rewritten using these coefficients, as:

 - 5 -





N

n

n
mnmmm aftf

0
,)(~)( ,],[1 mm ttt (12)

where, the non-dimensional time m is defined as:

]1,0[,
1








m

mm

m
m tt

tt  (13)

The unknown coefficient set   NnMm
nmnma 



,
0,0, can be determined by imposing various conditions, as

listed below.

(i) Function values given at each point

(ii) Continuity of the function and its derivatives up to the)1(N
th-order, at each of the inter-

connecting points

(iii))1(N end conditions

There are many different ways of imposing the end conditions, but this paper limits its

consideration to the natural spline and the not-a-knot spline [13-15]. The conditions above

produce a system of linear algebraic equations for the unknown coefficients, as represented in Eq.

(14):
CfXa  (14)

where, a and f are defined by:

T
M

T
Nmmmm

TT
M

TT

fff

Mmaaa

),,,(

1,,1,0,),,,(
),,,(

10

,1,0,

110











 

f

a
aaaa

The coefficient matrix C has the dimensions)1(NM -by-)1(M , and is defined to show that

each unknown coefficient can be represented as a linear combination of function values M
kkf 0}{  ,

as shown below:

k

M

k
knmnm fa 




0

,,,  (15)

The coefficient set   NnMm
nmknm





,
0,0,, , which is related to the kth function data kf , can be obtained

by solving Eq. (14), after setting jkjf ),,0(Mj  . Therefore, an approximation of the

function can be rewritten using these coefficients, as:

 



M

k
kmkmmm fftf

0
,

~)(~)( (16) (16)

where, the interpolation polynomial is expressed by:

 - 6 -

where, the interpolation polynomial is expressed by:

  n
m

N

n
knmmkm  




0

,,,
~

 (17)

Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can

be easily computed.

Applications and Discussions

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the

modified weights can vary with 11 nodes, depending on the types of interpolation. The

quadrature weight 2w corresponding to the second CP is distributed over many of the CNs; and

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the

tested interpolation methods, in that it generates a much more even distribution of the modified

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic

natural spline.

For applications of the proposed GCN approach to the solution of an NOCP, the following

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].

Min 
1

0

2dtuJ

subject to:


















u
x

x
x 2

2

1




,

1)1(,1)0(
0)1(,0)0(

22

11




xx
xx

12/1)(1 tx

(17)

Since Eq. (16) has the same form as Eq. (8), the corresponding

influence coefficient matrix can be easily computed.

3. Applications and Discussions

As previously mentioned, a GCN can be built adaptively

for the analysis purposes, to obtain a highly flexible node

strategy. However, a GCN generated with an equal step size

is utilized in this paper, to validate simply the usefulness

of the proposed method. Fig. 2 shows how the modified

weights can vary with 11 nodes, depending on the types of

DOI:10.5139/IJASS.2014.15.2.183 186

Int’l J. of Aeronautical & Space Sci. 15(2), 183–189 (2014)

interpolation. The quadrature weight w2 corresponding to

the second CP is distributed over many of the CNs; and the

sensitivity of the NLP to the initial state and control variables

is restored with

 - 6 -

where, the interpolation polynomial is expressed by:

  n
m

N

n
knmmkm  




0

,,,
~

 (17)

Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can

be easily computed.

Applications and Discussions

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the

modified weights can vary with 11 nodes, depending on the types of interpolation. The

quadrature weight 2w corresponding to the second CP is distributed over many of the CNs; and

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the

tested interpolation methods, in that it generates a much more even distribution of the modified

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic

natural spline.

For applications of the proposed GCN approach to the solution of an NOCP, the following

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].

Min 
1

0

2dtuJ

subject to:


















u
x

x
x 2

2

1




,

1)1(,1)0(
0)1(,0)0(

22

11




xx
xx

12/1)(1 tx

. Therefore, the boundary controls

can be predicted, even using the LG CP, without resorting

to applying either an inaccurate extrapolation, or a rigorous

approach using Pontryagin’s minimum principle, as used

in Ref. [7]. As the order of the interpolation functions is

increased, each quadrature weight spreads its influence

more strongly to many of the GCNs. However, the highly

oscillatory behavior with higher-order polynomials may

degrade solution accuracy, and cause numerical divergence.

As shown in Fig. 2, the natural spline seems to be the best

among the tested interpolation methods, in that it generates

a much more even distribution of the modified weights,

than other approaches. Therefore, follow-on applications of

the GCN are limited to the use of the natural spline. Fig. 3

represents the modified quadrature weights with the septic

natural spline.

For applications of the proposed GCN approach to

the solution of an NOCP, the following minimum energy

problem with a path constraint, which has an analytic

solution, is selected [10].

 - 6 -

where, the interpolation polynomial is expressed by:

  n
m

N

n
knmmkm  




0

,,,
~

 (17)

Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can

be easily computed.

Applications and Discussions

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the

modified weights can vary with 11 nodes, depending on the types of interpolation. The

quadrature weight 2w corresponding to the second CP is distributed over many of the CNs; and

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the

tested interpolation methods, in that it generates a much more even distribution of the modified

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic

natural spline.

For applications of the proposed GCN approach to the solution of an NOCP, the following

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].

Min 
1

0

2dtuJ

subject to:


















u
x

x
x 2

2

1




,

1)1(,1)0(
0)1(,0)0(

22

11




xx
xx

12/1)(1 tx

 - 11 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(a) Local Lagrange interpolation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(b) Natural spline

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(c) Not-a-knot spline

Fig. 2. Modified weights depending on interpolation functions
with equally spaced computational nodes (k = 2, M = 11)

k=2

k=3

k=5
k=4

k=6 k=7
k=8

k=9

k=10

 - 11 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(a) Local Lagrange interpolation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(b) Natural spline

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(c) Not-a-knot spline

Fig. 2. Modified weights depending on interpolation functions
with equally spaced computational nodes (k = 2, M = 11)

k=2

k=3

k=5
k=4

k=6 k=7
k=8

k=9

k=10

 - 11 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(a) Local Lagrange interpolation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(b) Natural spline

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 order = 3
 order = 5
 order = 7
 order = 9

(c) Not-a-knot spline

Fig. 2. Modified weights depending on interpolation functions
with equally spaced computational nodes (k = 2, M = 11)

k=2

k=3

k=5
k=4

k=6 k=7
k=8

k=9

k=10

 (a) Local Lagrange interpolation (b) Natural spline (c) Not-a-knot spline

Fig. 2. Modified weights depending on interpolation functions with equally spaced computational nodes (k=2, M=11)

 - 12 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 k = 2
 k = 3
 k = 4
 k = 5
 k = 6

Fig. 3. Modified weight distribution with the septic natural spline (7th order)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 4. Analysis results at the collocation points
(natural spline, 41 computational nodes)

Fig. 3. ��Modified weight distribution with the septic natural spline (7th
order)

 - 12 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 k = 2
 k = 3
 k = 4
 k = 5
 k = 6

Fig. 3. Modified weight distribution with the septic natural spline (7th order)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 4. Analysis results at the collocation points
(natural spline, 41 computational nodes)

 - 12 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 k = 2
 k = 3
 k = 4
 k = 5
 k = 6

Fig. 3. Modified weight distribution with the septic natural spline (7th order)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 4. Analysis results at the collocation points
(natural spline, 41 computational nodes)

 - 12 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tau

w
ei

gh
t

quadrature weight
 k = 2
 k = 3
 k = 4
 k = 5
 k = 6

Fig. 3. Modified weight distribution with the septic natural spline (7th order)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 4. Analysis results at the collocation points
(natural spline, 41 computational nodes) Fig. 4. Analysis results at the collocation points(natural spline, 41 computational nodes)

 - 13 -

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 5. Analysis results at the generalized computational nodes
(natural spline, 41 computational nodes)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, order=5
: spline, order=7
: spline, order=9
: spline, order=11
: pseudospectral

Fig. 6. Convergence history of the cost function error
(natural spline interpolation, nodes = 41)

 - 13 -

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 5. Analysis results at the generalized computational nodes
(natural spline, 41 computational nodes)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, order=5
: spline, order=7
: spline, order=9
: spline, order=11
: pseudospectral

Fig. 6. Convergence history of the cost function error
(natural spline interpolation, nodes = 41)

 - 13 -

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 5. Analysis results at the generalized computational nodes
(natural spline, 41 computational nodes)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, order=5
: spline, order=7
: spline, order=9
: spline, order=11
: pseudospectral

Fig. 6. Convergence history of the cost function error
(natural spline interpolation, nodes = 41)

Fig. 5. Analysis results at the generalized computational nodes(natural spline, 41 computational nodes)

187

Chang-Joo Kim Generalized Computational Nodes for Pseudospectral Methods

http://ijass.org

subject to:

 - 6 -

where, the interpolation polynomial is expressed by:

  n
m

N

n
knmmkm  




0

,,,
~

 (17)

Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can

be easily computed.

Applications and Discussions

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the

modified weights can vary with 11 nodes, depending on the types of interpolation. The

quadrature weight 2w corresponding to the second CP is distributed over many of the CNs; and

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the

tested interpolation methods, in that it generates a much more even distribution of the modified

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic

natural spline.

For applications of the proposed GCN approach to the solution of an NOCP, the following

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].

Min 
1

0

2dtuJ

subject to:


















u
x

x
x 2

2

1




,

1)1(,1)0(
0)1(,0)0(

22

11




xx
xx

12/1)(1 tx

The NOCP analysis is initialized with x1(t)=x2(t)=0 and

u(t)=-4 for all CNs. The analysis results with varying orders

of the interpolation polynomials are compared in Figs.

4-6. The solution with the septic spline (N=7) tends to be

divergent, and the quantic spline (N=5) presents a relatively

large difference between two solutions, corresponding to the

CP and GCN, respectively. This difference can be used as a

measure of inaccuracy of the applied interpolation formula.

Fig. 6 shows the convergence of the cost function prediction.

The PS method using the GCN and the 9th- or 11th-order

natural spline interpolations outperforms the standard

method, in that it presents faster initial convergence. Fig.

7 supports this claim, by showing that the solution based

on the GCN provides better initial convergence in control

prediction around two end points, with enhanced sensitivity

to the corresponding controls.

One major drawback in using the GCN is related to the

structure of the corresponding NLP. The reformulated

NLP with the GCN generates a denser structure in the

Karush-Kuhn-Tucker system, than that with the standard

PS approach. Further, the computation of the influence

coefficients may become inaccurate, as the number of nodes

is increased. These problems can be mitigated through the

use of knotting techniques [16]. Figs. 8-10 show the results

of applying a knotting technique to the GCN. The converged

solution with the standard PS method using LG CP cannot

predict the controls at two end points, and at the knot located

at t=0.6. On the other hand, the solution with the GCN

provides better convergence in control prediction around

these points, than that using the standard PS method. Fig.

11 shows the application of the GCN with the differentiation

and integration methods, the results of which prove that

there are no limits to the application of the proposed GCN

method to the PS method.

4. Conclusions

This paper proposed the application of generalized

computational nodes, to reduce inconveniences in solving

a nonlinear optimal control problem with the standard

pseudospectral method. For the interpolation of the state

and control variables at each of the collocation points,

Lagrange interpolating polynomials and spline functions

were tested, to select the most favorable interpolation

 - 14 -

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b) Pseudospectral CN

Fig. 7. Convergence history of the control prediction
(ninth-order natural spline, nodes = 41)

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

Fig. 8. Comparison of control predictions, after 5000 iterations with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

 - 14 -

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b) Pseudospectral CN

Fig. 7. Convergence history of the control prediction
(ninth-order natural spline, nodes = 41)

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

Fig. 8. Comparison of control predictions, after 5000 iterations with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

 (a) Generalized CN (b) Pseudospectral CN

Fig. 7. Convergence history of the control prediction(ninth-order natural spline, nodes = 41)

 - 14 -

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.02 0.04 0.06 0.08 0.1
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b) Pseudospectral CN

Fig. 7. Convergence history of the control prediction
(ninth-order natural spline, nodes = 41)

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

Fig. 8. Comparison of control predictions, after 5000 iterations with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41) Fig. 8. ��Comparison of control predictions, after 5000 iterations with

the knotting technique (ninth-order natural spline interpola-
tion, nodes = 41)

 - 13 -

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

t

x 1

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t

x 2

: order=5
: order=7
: order=9
: order=11
: exact solution

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: order=5
: order=7
: order=9
: order=11
: exact solution

Fig. 5. Analysis results at the generalized computational nodes
(natural spline, 41 computational nodes)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, order=5
: spline, order=7
: spline, order=9
: spline, order=11
: pseudospectral

Fig. 6. Convergence history of the cost function error
(natural spline interpolation, nodes = 41)

Fig. 6. ��Convergence history of the cost function error(natural spline
interpolation, nodes = 41)

DOI:10.5139/IJASS.2014.15.2.183 188

Int’l J. of Aeronautical & Space Sci. 15(2), 183–189 (2014)

method. The natural spline functions outperformed the

other interpolation functions tested, with considerably fewer

oscillatory behaviors in the modified quadrature weights.

The state and control variables predicted at the generalized

computational nodes can show large differences from those

at the collocation points. Since this difference can be a

measure of inaccurate interpolation, it should be minimized,

by using a suitably chosen leading order of the natural spline

functions. The application of generalized computational

nodes showed faster initial convergence in control

prediction, than the standard pseudospectral approach.

In addition, the knotting technique could be applied to

enhance sparsity in the Karush-Kuhn-Tucker system, when

generalized computational nodes are used.

Acknowledgments

This paper was written as part of Konkuk University’s

research support program for its faculty on sabbatical leave,

in 2013.

References

[1] Williams, P., “A Gauss-Lobatto Quadrature Method

for Solving Optimal Control Problems,” Australian and New

Zealand Industrial and Applied Mathematics Journal, Vol.

47, 2005, pp. 101-115.

[2] Fahroo, F. and Ross, I. M., “Costate Estimation by

a Legendre Pseudo-spectral Method,” AIAA Journal of

Guidance, Control and Dynamics, Vol. 24, No. 2, 2001, pp.

270-277.

DOI: 10.2514/2.4709

[3] Gong, Q., Ross, I. M., Kang, W., and Fahroo, F.,

“Connections between the Covector Mapping Theorem

and Convergence of Pseudo-spectral Methods for Optimal

Control,” Computational Optimization and Applications,

Vol. 41, No. 3, 2008, pp. 307-335.

[4] Kim, C.-J., Sung, S., and Shin, K., “Pseudo-spectral

Application to Nonlinear Optimal Trajectory Generation of a

Rotorcraft,” The First International Conference on Engineering

and Technology Innovation, Kenting, Taiwan, November 11-

15, 2011.

[5] Kim, C.-J., Sung, S., Park, S. H., and Jung, S. N., “ Time-

Scale Separation for Rotorcraft Nonlinear Optimal Control

Analyses, “Journal of Guidance, Control and Dynamics, Vol.

37, No. 2, March–April 2014, pp. 655–673.

[6] D. Benson, “A Gauss Pseudo-spectral Transcription

for Optimal Control,” MIT, Ph.D. Thesis, Department of

Aeronautics and Astronautics, November 2004.

[7] G. T. Huntington, “Advancement and Analysis of a

Gauss Pseudo-spectral Transcription for Optimal Control

Problems,” Ph. D. Thesis, MIT, June 2007.

 - 15 -

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b)Pseudospectral CN
Fig. 9. Convergence characteristics of control predictions with the knotting technique

 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, knotting
: pseudospectral, knotting

Fig. 10. Convergence of the cost functions with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, integration
: spline, differentiation
: pseudospectral, integration
: pseudospectral, differentiation

Fig. 11. Comparison of the transcription method
(ninth-order natural spline interpolation, nodes = 41)

Fig. 10. ��Convergence of the cost functions with the knotting
technique(ninth-order natural spline interpolation, nodes =
41)

 - 15 -

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b)Pseudospectral CN
Fig. 9. Convergence characteristics of control predictions with the knotting technique

 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, knotting
: pseudospectral, knotting

Fig. 10. Convergence of the cost functions with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, integration
: spline, differentiation
: pseudospectral, integration
: pseudospectral, differentiation

Fig. 11. Comparison of the transcription method
(ninth-order natural spline interpolation, nodes = 41)

Fig. 11. ��Comparison of the transcription method(ninth-order natural
spline interpolation, nodes = 41)

 - 15 -

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b)Pseudospectral CN
Fig. 9. Convergence characteristics of control predictions with the knotting technique

 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, knotting
: pseudospectral, knotting

Fig. 10. Convergence of the cost functions with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, integration
: spline, differentiation
: pseudospectral, integration
: pseudospectral, differentiation

Fig. 11. Comparison of the transcription method
(ninth-order natural spline interpolation, nodes = 41)

 - 15 -

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(a) Generalized CN

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

t

u

: iter = 100
: iter = 200
: iter = 300
: iter = 400
: exact solution

(b)Pseudospectral CN
Fig. 9. Convergence characteristics of control predictions with the knotting technique

 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations
| 

 J
 |

: spline, knotting
: pseudospectral, knotting

Fig. 10. Convergence of the cost functions with the knotting technique
 (ninth-order natural spline interpolation, nodes = 41)

0 500 1000 1500 2000 2500 3000

10-4

10-2

100

number of iterations

| 
 J

 |

: spline, integration
: spline, differentiation
: pseudospectral, integration
: pseudospectral, differentiation

Fig. 11. Comparison of the transcription method
(ninth-order natural spline interpolation, nodes = 41)

 (a) Generalized CN (b) Pseudospectral CN

Fig. 9. Convergence characteristics of control predictions with the knotting technique(ninth-order natural spline interpolation, nodes = 41)

189

Chang-Joo Kim Generalized Computational Nodes for Pseudospectral Methods

http://ijass.org

[8] I. M. Ross and M. Karpenko, “A Review of Pseudospectral

Optimal Control: From theory to flight,” Annual Reviews in

Control, Vol. 36, No. 2, December 2012, pp. 182–197.

[9] Q. Gong, I. M. Ross, and F. Fahroo, “Pseudospectral

Optimal Control on Arbitrary Grids,” AAS/AIAA

Astrodynamics Specialist Conference, Pittsburgh, PA, August

9-13, 2009.

[10] Bryson, A. E., Jr., and Ho, Y. C., Applied Optimal

Control, Hemisphere Publishing, Washington D.C., 1975.

[11] Kirk, D. E., Optimal Control Theory; An Introduction,

Dover, New York, 1970.

[12] Garg, D., Patterson, M., Hager, W. W., Rao, A. V.,

Benson, D. A. and Huntington, G. T., “A Unified Framework

for the Numerical Solution of Optimal Control Problems

Using Pseudospectral methods,” Automatica, Vol. 46, No. 11,

November 2010, pp. 1843–1851.

DOI:10.1016/j.automatica.2010.06.048

[13] Vijaya Bhaskar, N. R. Babu, and K. Varghese, “Spline

Based Trajectory Planning for Cooperative Crane Lifts,”

Proceedings of the 23rd ISARC, Tokyo, 2006, pp. 418-423

[14] Ogundare, B. S. and Okecha, G. E., “A Pseudo Spline

Methods for Solving an Initial Value Problem of Ordinary

Differential Equation,” Journal of Mathematics and Statistics,

Vol. 4, No. 2, 2008, pp. 117-121

[15] Akram, G. and Siddiqi, S. S., “End conditions for

interpolatory septic splines,” International Journal of

Computer Mathematics, Vol. 82, No. 12, December 2005, pp.

1525–1540.

[16] Ross, I. M. and Fahroo, F., “Pseudo-spectral Knotting

Methods for Solving Optimal Control Problems,” Journal of

Guidance, Control and Dynamics, Vol. 27, No. 3, May–June

2004, pp. 397–405.

DOI: 10.1109/TAC.2005.860248

