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Abstract

Pseudo-spectral method typically converges at an exponential rate. However, it requires a special set of fixed collocation 

points (CPs) to get highly accurate formulas for partial integration and differentiation. In this study, computational nodes for 

defining the discrete variables of states and controls are built independently of the CPs. The state and control variables at each 

CP, which are required to transcribe an NOCP into the corresponding NLP, are interpolated, using those variables allocated at 

each node. Additionally, Lagrange interpolation and spline interpolation are investigated, to provide a guideline for selecting a 

favorable interpolation method. The proposed techniques are applied to the solution of an NOCP using equally spaced nodes, 

and the computed results are compared to those using the standard PS approach, to validate the usefulness of the proposed 

methods.
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1. Introduction

The pseudo-spectral (PS) method has been widely used in 

analyses of nonlinear optimal control problems (NOCPs). This 

method converts the NOCP into a nonlinear programming 

problem (NLP), using Lagrange interpolating polynomials and 

a quadrature formula. It is superior to other direct methods, 

in that it requires relatively few computational nodes (CNs), 

compared to other strategies, and the resultant solution can 

accurately approximate the optimality condition of Euler-

Lagrange equations for the NOCP [1-3]. The detail algorithms 

used in this study are described in the authors’ earlier works 

[4-5], with their applications to rotorcraft flight dynamic 

analyses. For problems with a well-behaved solution, the PS 

method typically converges at an exponential rate [1-2, 6-7].  

However, it requires a special set of fixed collocation points 

(CPs) to get highly accurate formulas for partial integration 

and differentiation. This may cause inconvenience in many 

applications. First of all, when the end point is not included 

in the CPs, boundary controls cannot be predicted. Also, 

relatively small values of the quadrature weights around 

two end points can reduce the sensitivity of an NLP to 

the parameterized control variables. As a result, control 

predictions show poor convergence around these points.  

Furthermore, when the optimum solution changes rapidly in 

the middle of the time domain, an extremely large number of 

CNs is required to provide a discernible improvement in local 

accuracy. To mitigate these disadvantages, this paper studies 

generalized CNs for the PS method. 

In this study, CNs, on which the discrete variables of states 

and controls are defined, are built independently of the CPs. 

The state and control variables at each CP, which are required 

to transcribe an NOCP into the corresponding NLP, are 

interpolated, using those variables allocated at CNs. Since 

the resultant NLP is parameterized using states and controls 

defined in the CN, its sensitivity to the design variables can 

be modified through the interpolation process. Therefore, the 

success of this approach depends on a careful selection of an 

interpolation method. In this regard, Lagrange interpolation 

and spline interpolation are investigated, to provide a 

guideline for selecting a favorable interpolation method. 

The proposed techniques are applied to the solution of an 

NOCP using equally spaced CNs, and the computed results 

are compared to those using the standard PS approach, to 
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validate the usefulness of the proposed methods.   

2. Generalization of Computational Nodes

The PS method typically utilizes a specially designed CN 

that can be represented by the union of the (K+1) CP 
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0}~{  and the end points }1,1{  [4, 6-7]. Fig. 1 shows examples of a 

generalized CN (GCN), when twenty CPs are used, with K=19. The Legendre-Gauss (LG) CN 

corresponds exactly to the LG CP, except for the two end points that are not included in the LG 

CP. Three different examples of GCNs are illustrated, two of which are locally clustered, to 

enhance local accuracy. The third one is built with uniformly distributed nodes, which are known 

to be the worst possible choice when polynomial interpolation is used, as in the PS method [8, 9]. 

An NOCP suitable for solution using the PS method can be represented by Eqs. (1) – (3), after 

applying the affine transformation defined in Eq. (4), over a time horizon of ],[ 0 fttt  [10-11]. 
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The PS method transcribes Eq. (1) using quadrature weights Kk
kkw 
0}{ , as represented by Eq. (5), 

and the system dynamics can be parameterized using either the differentiation method or the 

integration method, the transcribed results of which are shown in Eq. (6) and Eq. (7), 

respectively, for Kj ,,0  .
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system dynamics can be parameterized using either the 

differentiation method or the integration method, the 

transcribed results of which are shown in Eq. (6) and Eq. (7), 

respectively, for j=0, ..., K.
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where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  
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Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 
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The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

(5)
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For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

 and 

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 
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The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
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represented with the variables at each of the CP and the two end points can be carried out with 
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jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 
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jD  reflects the 
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Then, the states   corresponding to the kth point   of the CP 

can be estimated, using:

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

(9)

The coefficient 

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

 is an influence coefficient with respect 

to 

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

, and the same formula can be used to approximate the 

control 

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 

the following procedures: 

(i) Compute states and controls Kk
kkk

0}~,~{ ux  at each of the CPs, using Eq. (8). 

(ii) Compute the cost and constraint functions that are parameterized, using the variables at 

each of the CPs, and the two end points. 

, using 

 - 3 - 

  





K

k
kkkk

N
f FwttttJ

0

0
0 )~,~,~(

2
)(),(  uxxx                                                                                   (5) 

 





K

k
kkk

f
jkjk

tt
tDD

0

0
0

)0( ~,~,~
2

)(~ uxfxx                                                                                            (6) 

 





K

k
kkkjk

f
j I

tt
t

0

0
0

~,~,~
2

)()~(~  uxfxx                                                                                                 (7) 

where, kx~  and ku~  represent the state and control variables corresponding to the kth CP. The terms 

jkD  and jkI  are the elements of the differentiation and integration matrices. )0(
jD  reflects the 

effect of initial states when the initial time is not included in the CPs, as in the LG, and the 

flipped Legendre-Gauss-Radau (FLGR) points [12]. By satisfying the equality and inequality 

constraints shown in Eq. (3) at each of the CPs and the two end points, the NOCP is completely 

transformed into a solvable NLP.  

For convenience, we can differentiate the state and control variables at each of the CPs, 
Kk

kkk

0}~,~{ ux , from those corresponding to the CNs, Mm

nmm

0},{ ux , where M is typically one of 

}2,1,{  KKK , depending on whether or not the end points are incorporated in the CPs. For 

the application of the GCN, the following interpolation formula is defined to approximate the 

continuous states in the computational domain, using states Mm
mm

0}{x  at each of the GCN.  

l

M

l
l xx 




0

)()(   with lmml  )(                                                                                                           (8) 

Then, the states kx~  corresponding to the kth point k~  of the CP can be estimated, using: 

      l

M

l
klk xx 




0

~~   with )~(~
klkl                                                                                                                     (9) 

The coefficient kl~  is an influence coefficient with respect to lx , and the same formula can be 

used to approximate the control ku~ , using Ml
ll

0}{u . Therefore, the solution of the NLP 

represented with the variables at each of the CP and the two end points can be carried out with 
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CPs, using Eq. (8).

(ii) ��Compute the cost and constraint functions that are 

parameterized, using the variables at each of the CPs, 

and the two end points.

(iii) ��Compute the Jacobian matrices for the cost and 

constraint functions, with respect to 
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(v) Terminate the routine, if the solution converges. Otherwise, repeat steps (i) through (iv). 

The Jacobians in step (iii) can be easily approximated, using the influence coefficient matrix. As 

an example, the gradient of the integral cost function, as shown in Eq. (5), with respect to a 

control vector mu , can be estimated using Eq. (11). 
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The state and control variables Mm
mmm

0},{ ux  defined at the GCN become the design variables in 

the resultant NLP. The modified weight kmw~  in Eq. (11) reflects the sensitivity of the NLP to 

},{ mm ux , which depends on both the type of the interpolation function )(l , and the 

distribution of the GCN, as shown in Fig. 1. Therefore, a careful selection of interpolation 

functions, as well as types of GCN, is crucial for the successful implementation of the GCN, by 

preserving sufficient sensitivity to all of the design variables.  

This paper considers two different types of interpolation. Because the PS method utilizes the 

Lagrange interpolating polynomials to approximate states and controls in a continuous time 

domain, they seem to be a natural choice for accurate interpolation for Eq. (8). However, the 

computation of the influence coefficient matrix using those functions needs a matrix inversion, 

which may degrade interpolation accuracy, as a result of the large condition number of the 

related matrix, when the number of CPs is increased. As an alternative, the local Lagrange 

interpolating polynomial is tested as the first type of interpolation in this study, and the spline 

interpolation is considered as the second approach. For this purpose, some manipulations are 

required to obtain a formula similar to Eq. (8), using spline interpolation polynomials. In case an 

Nth-order polynomial is used, a continuous function )(tf  can be approximated using the discrete 

data set M
mmm tf 0},{  , and the related spline interpolation can be represented by: 

.

(iv) ��Solve the NLP using the robust SQP (rSQP) algorithm, 

and update 
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(v) ��Terminate the routine, if the solution converges. 
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Otherwise, repeat steps (i) through (iv).

The Jacobians in step (iii) can be easily approximated, 

using the influence coefficient matrix. As an example, the 

gradient of the integral cost function, as shown in Eq. (5), 

with respect to a control vector um, can be estimated using 

Eq. (11).
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Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can 

be easily computed.  

Applications and Discussions 

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a 

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in 

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the 

modified weights can vary with 11 nodes, depending on the types of interpolation. The 

quadrature weight 2w  corresponding to the second CP is distributed over many of the CNs; and 

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to 

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum 

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each 

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly 

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause 

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the 

tested interpolation methods, in that it generates a much more even distribution of the modified 

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the 

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic 

natural spline. 

For applications of the proposed GCN approach to the solution of an NOCP, the following 

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].   
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influence coefficient matrix can be easily computed. 

3. Applications and Discussions

As previously mentioned, a GCN can be built adaptively 

for the analysis purposes, to obtain a highly flexible node 

strategy. However, a GCN generated with an equal step size 

is utilized in this paper, to validate simply the usefulness 

of the proposed method. Fig. 2 shows how the modified 

weights can vary with 11 nodes, depending on the types of 
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interpolation. The quadrature weight w2 corresponding to 

the second CP is distributed over many of the CNs; and the 

sensitivity of the NLP to the initial state and control variables 

is restored with 
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. Therefore, the boundary controls 

can be predicted, even using the LG CP, without resorting 

to applying either an inaccurate extrapolation, or a rigorous 

approach using Pontryagin’s minimum principle, as used 

in Ref. [7]. As the order of the interpolation functions is 

increased, each quadrature weight spreads its influence 

more strongly to many of the GCNs. However, the highly 

oscillatory behavior with higher-order polynomials may 

degrade solution accuracy, and cause numerical divergence. 

As shown in Fig. 2, the natural spline seems to be the best 

among the tested interpolation methods, in that it generates 

a much more even distribution of the modified weights, 

than other approaches. Therefore, follow-on applications of 

the GCN are limited to the use of the natural spline. Fig. 3 

represents the modified quadrature weights with the septic 

natural spline.

For applications of the proposed GCN approach to 

the solution of an NOCP, the following minimum energy 

problem with a path constraint, which has an analytic 

solution, is selected [10].  
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(a) Local Lagrange interpolation 
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(b) Natural spline 
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(c) Not-a-knot spline 

Fig. 2. Modified weights depending on interpolation functions  
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subject to: 
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where, the interpolation polynomial is expressed by: 
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                                                                                                                                (17) 

Since Eq. (16) has the same form as Eq. (8), the corresponding influence coefficient matrix can 

be easily computed.  

Applications and Discussions 

As previously mentioned, a GCN can be built adaptively for the analysis purposes, to obtain a 

highly flexible node strategy. However, a GCN generated with an equal step size is utilized in 

this paper, to validate simply the usefulness of the proposed method. Fig. 2 shows how the 

modified weights can vary with 11 nodes, depending on the types of interpolation. The 

quadrature weight 2w  corresponding to the second CP is distributed over many of the CNs; and 

the sensitivity of the NLP to the initial state and control variables is restored with 0~
202 w .

Therefore, the boundary controls can be predicted, even using the LG CP, without resorting to 

applying either an inaccurate extrapolation, or a rigorous approach using Pontryagin’s minimum 

principle, as used in Ref. [7]. As the order of the interpolation functions is increased, each 

quadrature weight spreads its influence more strongly to many of the GCNs. However, the highly 

oscillatory behavior with higher-order polynomials may degrade solution accuracy, and cause 

numerical divergence. As shown in Fig. 2, the natural spline seems to be the best among the 

tested interpolation methods, in that it generates a much more even distribution of the modified 

weights, than other approaches. Therefore, follow-on applications of the GCN are limited to the 

use of the natural spline. Fig. 3 represents the modified quadrature weights with the septic 

natural spline. 

For applications of the proposed GCN approach to the solution of an NOCP, the following 

minimum energy problem with a path constraint, which has an analytic solution, is selected [10].   
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The NOCP analysis is initialized with x1(t)=x2(t)=0 and 

u(t)=-4 for all CNs. The analysis results with varying orders 

of the interpolation polynomials are compared in Figs. 

4-6. The solution with the septic spline (N=7) tends to be 

divergent, and the quantic spline (N=5) presents a relatively 

large difference between two solutions, corresponding to the 

CP and GCN, respectively. This difference can be used as a 

measure of inaccuracy of the applied interpolation formula. 

Fig. 6 shows the convergence of the cost function prediction. 

The PS method using the GCN and the 9th- or 11th-order 

natural spline interpolations outperforms the standard 

method, in that it presents faster initial convergence. Fig. 

7 supports this claim, by showing that the solution based 

on the GCN provides better initial convergence in control 

prediction around two end points, with enhanced sensitivity 

to the corresponding controls.

One major drawback in using the GCN is related to the 

structure of the corresponding NLP. The reformulated 

NLP with the GCN generates a denser structure in the 

Karush-Kuhn-Tucker system, than that with the standard 

PS approach. Further, the computation of the influence 

coefficients may become inaccurate, as the number of nodes 

is increased. These problems can be mitigated through the 

use of knotting techniques [16]. Figs. 8-10 show the results 

of applying a knotting technique to the GCN. The converged 

solution with the standard PS method using LG CP cannot 

predict the controls at two end points, and at the knot located 

at t=0.6. On the other hand, the solution with the GCN 

provides better convergence in control prediction around 

these points, than that using the standard PS method. Fig. 

11 shows the application of the GCN with the differentiation 

and integration methods, the results of which prove that 

there are no limits to the application of the proposed GCN 

method to the PS method. 

4. Conclusions

This paper proposed the application of generalized 

computational nodes, to reduce inconveniences in solving 

a nonlinear optimal control problem with the standard 

pseudospectral method. For the interpolation of the state 

and control variables at each of the collocation points, 

Lagrange interpolating polynomials and spline functions 

were tested, to select the most favorable interpolation 
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method. The natural spline functions outperformed the 

other interpolation functions tested, with considerably fewer 

oscillatory behaviors in the modified quadrature weights. 

The state and control variables predicted at the generalized 

computational nodes can show large differences from those 

at the collocation points. Since this difference can be a 

measure of inaccurate interpolation, it should be minimized, 

by using a suitably chosen leading order of the natural spline 

functions. The application of generalized computational 

nodes showed faster initial convergence in control 

prediction, than the standard pseudospectral approach. 

In addition, the knotting technique could be applied to 

enhance sparsity in the Karush-Kuhn-Tucker system, when 

generalized computational nodes are used.
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Fig. 9. Convergence characteristics of control predictions with the knotting technique 
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