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Abstract

This paper deals with the development of a realistic shape optimization of damaged columns that are subjected to conservative 

and non-conservative forces, using the Genetic Algorithm (GA). The analysis is based on the design of the most optimized 

shape of the column under the constraint of constant weight, considering the Static, Vibrational, and Flutter characteristics. 

Under the action of conservative and non-conservative longitudinal forces, an elastic column loses its stability. A numerical 

analysis based on FEM has been performed on a uniform damaged column, to compute the fundamental buckling load, 

vibration frequency, and flutter load, under various end restraints. An optimization search based on the Genetic Algorithm is 

then executed, to find the optimal shape design of the column. The optimized column references the one having the highest 

buckling load, highest vibration frequency, and highest flutter load, among all the possible shapes of the column, for a given 

volume. A comparison is then made between the values obtained for the optimized damaged column, and those obtained 

for the optimized undamaged column. The comparison reveals that the incorporation of damage in the column alters its 

optimal shape to only a certain extent. Also, the critical load and frequency values for the optimized damaged column are 

comparatively low, compared with those obtained for the optimized undamaged column. However, these results hold true 

only for moderate-intensity damage cases. For high intensity damage, the optimal shape may not remain the same, and may 

vary, according to the severity of damage.
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1. Introduction

This paper studies a GA-based optimization algorithm 

for the discrete shape design of a damaged column having 

different end constraints, with the maximum buckling load 

and frequency of the first mode, for a conservative system. 

Numerical calculations to get the discrete shape design of the 

column with a circular cross-section for buckling load and 

fundamental frequency maximization are performed, under 

the three basic support conditions of a column, viz. clamped-

free (C/F); clamped-simply supported (C/S); and simply 

supported (S/S). 

The non-conservative problem involves the analysis of 

a damaged C/F column, subjected to a tangential follower 

force at the free end. A C/F column, subjected to a tangential 

follower force at the free end, is referred to as beck’s column 

(Bolotin, 1963). At a certain critical value of the force, Beck’s 

column dynamically loses its stability, through a phenomenon 

called self-excited oscillations, which is referred to as flutter 

(Bolotin, 1963; Evan-Ivanowski, 1976). Elishakoff (2005) 

criticized the existence of a follower force. Sugiyama et al. 

(1999) described the appearance of realistic follower forces 

in engineering structures. Recent advances in the field of the 

aeroelastic behaviour of aerospace structures under follower 

loads have been reviewed and discussed by Datta and Biswas 

(2011). 

Ishida and Sugiyama (1995) proposed a genetic based 

algorithm for the shape design of the strongest column. 

They observed that the buckling load ratio (eigenvalue ratio) 

of the searched column to the uniform one for the C/F and 
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C/S condition reached 1.32 and 1.31, respectively. The 

optimization of Beck’s column on the basis of the maximum 

buckling load is found in the literature (Hanaoka and 

Washizu, 1980; Langthjem and Sugiyama, 1999).

Sugiyama et al. (1993) gave the optimal shape design to 

maximize the critical force of a cantilevered column, under 

the constraint of constant volume. Sugiyama et al. (2012) 

presented a realistic structural optimization of cantilevered 

columns subjected to a rocket-based follower force, with 

an experimental verification of the same. It was found 

that under realistic structural optimization, the flutter 

parameter of the shape designed column is approximately 

1.2 times larger than that of the uniform (reference) 

column. The studies on the shape optimization of a column 

based on static buckling load and flutter behaviour are 

available in the literature, and are discussed. However, no 

such investigations based on the vibration behaviour of the 

optimized shape are found.

Again, the presence of damage is inevitable in a structure, 

both isotropic and composite. Extensive studies (Rahul 

and Datta, 2013) on the static and dynamic instability 

characteristics of structures having internal damage are 

found in the literature. However, the shape optimization of 

structural elements with internal flow is not available. 

The present paper deals with the development of a realistic 

shape optimization of damaged columns that are subjected 

to conservative and non-conservative forces, using the 

Genetic algorithm (GA). The optimization was performed 

under the constraint of constant weight.

2. Description of Problem

2.1 Finite Element Method of Formulation

Let us consider a long slender damaged column of total 

length L. It is discretized into N uniform elements of length 

h. It is required to find the best shape of the column, with the 

weight constraint, for which:

ⅰ. Static buckling problem: 	(Pcr)fundamental is maximum

ⅱ. Vibrational problem: 	 ωfundamental is maximum

ⅲ. Flutter problem: 	�� PFlutter (Flutter-Load) is maximum

The elemental mass and stiffness matrices for the static 

buckling and vibrational problems are as follows (Cook et al. 

1989):

Mass Matrix
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For the analysis under conservative forces, a circular cross-

section is considered. The boundary conditions considered 

are C/F, C/S, and S/S.

The non-conservative problem involves flutter, which is 

discussed in section 1. The problem is described as a long 

slender column having a C/F boundary condition, and 

is subjected to an end compressive follower force at the 

free end. A rectangular cross-section is considered for this 

problem. Fig. 1 describes the follower load problem of a 

slender column having a rectangular cross-section.

In Fig. 1, the mass per unit length of the column is denoted 

by m. It is assumed that b is larger than t, in order to sustain 

vibrations in the x-y plane (b ≥ t).

The formulation of load-stiffness matrix due to follower 

force is based on the equations of motion presented through 

Hamilton’s principle, as follows:
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subjected to an end compressive follower force at the free end. A rectangular cross-section is 

considered for this problem. Fig. 1 describes the follower load problem of a slender column 

having a rectangular cross-section. 

In Fig. 1, the mass per unit length of the column is denoted by m. It is assumed that b is 

larger than t, in order to sustain vibrations in the x-y plane (b ≥ t). 

The formulation of load-stiffness matrix due to follower force is based on the equations of 

motion presented through Hamilton’s principle, as follows: 

δ � �� � � �WC���
�� �� � � δWNC

��
�� �� � 0                       (1) 

where, T is the kinetic energy, V is the elastic potential energy, WC is the work done by the 

conservative component of the applied follower force, and δWNC is the virtual work done by 

the non-conservative component of the applied follower force. The Load- stiffness matrix can 

be expressed as: 

Load Stiffness             ����������������� � 
��
�  �

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�   

The terminologies for the matrices expressed above, which are required for the finite element 

formulation, are explained as follows: 

A0 =  C.S. Area of uniform-column element 

Ai   =  C.S. Area of ith element of stepped-column 

I0 =  Area moment of Inertia of uniform-column  

Ii    =  Area moment of Inertia of ith element of stepped-column 

h    =  Length of each element 

�    =  Material Density 

E =  Young’s Modulus of Elasticity 

η =  Non-conservativeness parameter 

 

INCORPORATION OF DAMAGE PARAMETER 

The damage is incorporated element-wise in the column, as shown in Fig. 2, as per the 

following criteria: 

i. Since weight is the constraint parameter for the optimization, the damage is 

incorporated in such a way that its total weight remains constant. 

(1)
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Factor ‘λ’ is introduced in the above expression, to take care of the density changes at 

the damage location, while maintaining the constant weight constraint. A typical value 

of λ is √2, when [EId / EI0] = 0.5. 

During the optimization process, no mass would be taken away, or be transferred to 

the damaged element for relocation. It would remain intact within the column. 

 

2.2 Formulation and Algorithm 

Constraint: The total weight of the column is constant 

CASE 1: STATIC (BUCKLING) 

Let,  �� � ��
��     �� � �������

������ � � �
��
���

�
 

The elastic stiffness would be a function of x.  

���� � 
�����
�� � ���� �

�2 � ��2 �
� � �� 2

��2 �� �2 ��
� 2 �� �

� 

The Eigenvalue problem to be solved is:   

 | [K (x)]e – [K]g | = 0            

ρA   

	�� Factor ‘
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The problem can be now be written as 
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Since the elastic stiffness depends on x, the above equation will give different eigenvalues for 

different sets [x]. The eigenvalues are the critical buckling loads of the system. 

 

Aim: To find the best set [��] (� i=1 to N), so as to maximize the Buckling Load Pcr, while 

keeping the total weight of the column unchanged. 

 

The defining weight ratio for each element is: 

�� � ��� ��� �  (� i=1 to N)  

where,  �� = weight per element of the uniform column 

�� = weight of the ith element of the stepped-column 

The total weight of the column can be expressed as: ∑ ������ � ���  => ∑ ������ � �. 

Introducing new parameters �� (� i=1 to N), where �� is assumed to be an integer, and 

�� is a step parameter, the weight of an element can be expressed as 

 �� � ���� � ����  

or �� � ���� �  �� ��        (Dividing by ��) 

where, ���� = Minimum weight of an element 

Therefore, ∑ ������ � ∑ �� � ����
��

����  

 ∑ ������ � ���� ���� �
��  = M 

M = The total number of parameters ��; and M is fixed. 

 

Now, 

Density = Mass per unit length/Cross-section Area (the length of each element is the same)  

 Mass per unit length = Density * Area  

 Mass per unit Length is proportional to (radius)2 

(2)

The problem can be now be written as
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weight of the column unchanged.

The defining weight ratio for each element is:
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It can be seen that for fixed values of ���� and ��, w� is a linear function of ��. So, we 

need to find the best set [m], for which Pcr is maximum, subject to constant M. 
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The Eigenvalue problem to be solved is: 

 � � �������� � ��������  � � 

  � ��������������� � ��� � � �      (5) 

Both Mass and Stiffness matrices are functions of [x], and for every such possible set [x], the 

characteristic equation will give different eigenvalues, which are simply the vibration 

frequencies of the system. As [��] is dependent on [��], as has already been explained in the 

previous case, the problem reduces to finding the best set [m].  

Aim: To find the best set [��] (� i=1 to N), for which the fundamental Frequency is 

maximum, subject to constant M. 

CASE 3: FLUTTER 

From eq. (1), the equation of motion for a non-conservative system can be expressed as 

 Mass per unit length = Density * Area 
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(5)

Both Mass and Stiffness matrices are functions of [x], and 

for every such possible set [x], the characteristic equation 

will give different eigenvalues, which are simply the vibration 

frequencies of the system. As [xi] is dependent on [mi], as has 

already been explained in the previous case, the problem 

reduces to finding the best set [m]. 

Aim: To find the best set [mi] 
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The geometric stiffness is a function of the load P. Expressing the matrix in a slightly 

modified manner, 

 ���� � � � ����                     (2) 

The problem can be now be written as 

 | [K (x)]e – P[K]g | = 0                      (3) 

Since the elastic stiffness depends on x, the above equation will give different eigenvalues for 

different sets [x]. The eigenvalues are the critical buckling loads of the system. 

 

Aim: To find the best set [��] (� i=1 to N), so as to maximize the Buckling Load Pcr, while 

keeping the total weight of the column unchanged. 

 

The defining weight ratio for each element is: 

�� � ��� ��� �  (� i=1 to N)  

where,  �� = weight per element of the uniform column 

�� = weight of the ith element of the stepped-column 

The total weight of the column can be expressed as: ∑ ������ � ���  => ∑ ������ � �. 

Introducing new parameters �� (� i=1 to N), where �� is assumed to be an integer, and 

�� is a step parameter, the weight of an element can be expressed as 

 �� � ���� � ����  

or �� � ���� �  �� ��        (Dividing by ��) 

where, ���� = Minimum weight of an element 

Therefore, ∑ ������ � ∑ �� � ����
��

����  

 ∑ ������ � ���� ���� �
��  = M 

M = The total number of parameters ��; and M is fixed. 

 

Now, 

Density = Mass per unit length/Cross-section Area (the length of each element is the same)  

 Mass per unit length = Density * Area  

 Mass per unit Length is proportional to (radius)2 

, for which the 

fundamental Frequency is maximum, subject to constant M.

CASE 3: FLUTTER

From eq. (1), the equation of motion for a non-conservative 

system can be expressed as
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Case 2: Vibrational 

Area Ratio    
𝐴𝐴𝑖𝑖
𝐴𝐴𝑜𝑜

= 𝜋𝜋 𝑟𝑟𝑖𝑖2

𝜋𝜋𝑟𝑟𝑜𝑜2
=  (𝑟𝑟𝑖𝑖

𝑟𝑟𝑜𝑜
)

2
 

Since,  𝑥𝑥𝑖𝑖 = 𝐼𝐼𝑖𝑖
𝐼𝐼𝑜𝑜

 = (𝑟𝑟𝑖𝑖
𝑟𝑟𝑜𝑜

)
4
     =>    𝐴𝐴𝑖𝑖

𝐴𝐴𝑜𝑜
= √𝑥𝑥𝑖𝑖 

Mass matrix would be a function of x. 

[M] = 
𝜌𝜌𝐴𝐴𝑜𝑜ℎ
420 √𝑥𝑥𝑖𝑖   (

156 22 54 −13
22 4 13 −3
54 13 156 −22

−13 −3 −22 4
) 

Eigenvalue problem to be solved: 

 | -ω2 [M(x)] + [K(x)]e  | = 0 

  | 𝑀𝑀[(𝑥𝑥)]−1[𝐾𝐾(𝑥𝑥)]𝑒𝑒 - ω2I | = 0                 (5) 

Both Mass and Stiffness matrices are functions of [x] and for every such possible set [x], the 

characteristic equation will give different eigenvalues which are nothing but vibration frequencies of 

the system. As it is already explained in the previous case that [𝑥𝑥𝑖𝑖] is dependent on [𝑚𝑚𝑖𝑖], the problem 

reduces to find the best set [m].  

Aim: To find the best set [𝑚𝑚𝑖𝑖] (∀ i=1 to N) for which, fundamental Frequency is maximum; subjected 

to constant M. 

 

Case 3: Flutter 

From eq. (1), the equation of motion for non-conservative system can be expressed as 

[M(x)]{Ẍ} + [K(x)]e{X}– [ Kg]{X} + [ KL]{X} = 0                        (6) 

where [KL] involves non-conservativeness parameter (Pradhan, Datta 2006) due to follower force. The 

geometric & load stiffness matrices are written in a slightly modified manner by taking the load P & 

non-conservativeness parameter η outside the matrices as shown below. 

 [K]g  P*[K]g 

 [K]L (ηP)*[K]L 

(6)

where, [KL] involves the non-conservativeness parameter 

(Pradhan, Datta 2006), due to the follower force. The 

geometric and load stiffness matrices are written in a 

slightly modified manner, by taking the load P and non-

conservativeness parameter 

4 

 

subjected to an end compressive follower force at the free end. A rectangular cross-section is 

considered for this problem. Fig. 1 describes the follower load problem of a slender column 

having a rectangular cross-section. 

In Fig. 1, the mass per unit length of the column is denoted by m. It is assumed that b is 

larger than t, in order to sustain vibrations in the x-y plane (b ≥ t). 

The formulation of load-stiffness matrix due to follower force is based on the equations of 

motion presented through Hamilton’s principle, as follows: 

δ � �� � � �WC���
�� �� � � δWNC

��
�� �� � 0                       (1) 

where, T is the kinetic energy, V is the elastic potential energy, WC is the work done by the 

conservative component of the applied follower force, and δWNC is the virtual work done by 

the non-conservative component of the applied follower force. The Load- stiffness matrix can 

be expressed as: 

Load Stiffness             ����������������� � 
��
�  �

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�   

The terminologies for the matrices expressed above, which are required for the finite element 

formulation, are explained as follows: 

A0 =  C.S. Area of uniform-column element 

Ai   =  C.S. Area of ith element of stepped-column 

I0 =  Area moment of Inertia of uniform-column  

Ii    =  Area moment of Inertia of ith element of stepped-column 

h    =  Length of each element 

�    =  Material Density 

E =  Young’s Modulus of Elasticity 

η =  Non-conservativeness parameter 

 

INCORPORATION OF DAMAGE PARAMETER 

The damage is incorporated element-wise in the column, as shown in Fig. 2, as per the 

following criteria: 

i. Since weight is the constraint parameter for the optimization, the damage is 

incorporated in such a way that its total weight remains constant. 

 outside of the matrices, as 

shown below.
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follower force. The geometric and load stiffness matrices are written in a slightly modified 

manner, by taking the load P and non-conservativeness parameter η outside of the matrices, 

as shown below. 

 ���� � � � ����  

 ���� � �η�� � ���� 

Therefore, eq. (6) can be written as 

�M�x��� � � �K�x����X�� ��� K�� � η� KL���X� � �                        (7) 

For the purely applied follower force to the column, η=1. η=0 implies a conservative loading 

system. η in the range 0 ≤ η ≤1 implies a follower load having a tangency parameter. 

Assuming the solution to eq. (7) in the form {X} = {X0} eiωt, eq. (7) reduces to: 

��K�x���� ��� K�� � η� KL�� �  ���M�x������� � �                   (8) 

The stability of the system is determined by investigating the nature of the eigenvalue ω, 

which is complex in nature. 

Case I:  Im(ω) ≥ 0;    Stable. 

Case II:  Im(ω) < 0 and Re(ω)=0;  Divergence type of instability. 

Case III:  Im(ω) < 0 and Re(ω)≠0;  Flutter type of instability. 

Again, it can be seen that elastic-stiffness and mass matrices are functions of [xi] similar to 

the previous cases, and [x�] is dependent on [m�], as discussed before. So, for the flutter 

analysis also, we need to find the best set [m], which maximizes the Flutter Load of the 

column, under constant weight constraint. 

 

SHAPE OPTIMIZATION USING GA 

i. An initial set [m] is generated randomly in the beginning, such that the elements of 

the set satisfy the constant weight criterion: [∑ ������  = M]  

M is constant, and explicitly defined. 

ii. Generation of the initial Population of strings: An initial population of strings is 

generated in a random manner. The number of generated strings is represented by S. 
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the previous cases, and [x�] is dependent on [m�], as discussed before. So, for the flutter 

analysis also, we need to find the best set [m], which maximizes the Flutter Load of the 

column, under constant weight constraint. 

 

SHAPE OPTIMIZATION USING GA 

i. An initial set [m] is generated randomly in the beginning, such that the elements of 

the set satisfy the constant weight criterion: [∑ ������  = M]  

M is constant, and explicitly defined. 

ii. Generation of the initial Population of strings: An initial population of strings is 

generated in a random manner. The number of generated strings is represented by S. 

Therefore, eq. (6) can be written as
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For the purely applied follower force to the column, 
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subjected to an end compressive follower force at the free end. A rectangular cross-section is 

considered for this problem. Fig. 1 describes the follower load problem of a slender column 

having a rectangular cross-section. 

In Fig. 1, the mass per unit length of the column is denoted by m. It is assumed that b is 

larger than t, in order to sustain vibrations in the x-y plane (b ≥ t). 

The formulation of load-stiffness matrix due to follower force is based on the equations of 

motion presented through Hamilton’s principle, as follows: 

δ � �� � � �WC���
�� �� � � δWNC

��
�� �� � 0                       (1) 

where, T is the kinetic energy, V is the elastic potential energy, WC is the work done by the 

conservative component of the applied follower force, and δWNC is the virtual work done by 

the non-conservative component of the applied follower force. The Load- stiffness matrix can 

be expressed as: 

Load Stiffness             ����������������� � 
��
�  �

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�   

The terminologies for the matrices expressed above, which are required for the finite element 

formulation, are explained as follows: 

A0 =  C.S. Area of uniform-column element 

Ai   =  C.S. Area of ith element of stepped-column 

I0 =  Area moment of Inertia of uniform-column  

Ii    =  Area moment of Inertia of ith element of stepped-column 

h    =  Length of each element 

�    =  Material Density 

E =  Young’s Modulus of Elasticity 

η =  Non-conservativeness parameter 

 

INCORPORATION OF DAMAGE PARAMETER 

The damage is incorporated element-wise in the column, as shown in Fig. 2, as per the 

following criteria: 

i. Since weight is the constraint parameter for the optimization, the damage is 

incorporated in such a way that its total weight remains constant. 

=1. 
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 ≤1 implies a follower load having a tangency parameter. 

Assuming the solution to eq. (7) in the form {X} = {X0} eiωt, eq. 

(7) reduces to:
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�M�x��� � � �K�x����X�� � K���X� � � KL��X� � �                        (6) 

where, [KL] involves the non-conservativeness parameter (Pradhan, Datta 2006), due to the 

follower force. The geometric and load stiffness matrices are written in a slightly modified 

manner, by taking the load P and non-conservativeness parameter η outside of the matrices, 

as shown below. 

 ���� � � � ����  

 ���� � �η�� � ���� 

Therefore, eq. (6) can be written as 

�M�x��� � � �K�x����X�� ��� K�� � η� KL���X� � �                        (7) 

For the purely applied follower force to the column, η=1. η=0 implies a conservative loading 

system. η in the range 0 ≤ η ≤1 implies a follower load having a tangency parameter. 

Assuming the solution to eq. (7) in the form {X} = {X0} eiωt, eq. (7) reduces to: 

��K�x���� ��� K�� � η� KL�� �  ���M�x������� � �                   (8) 

The stability of the system is determined by investigating the nature of the eigenvalue ω, 

which is complex in nature. 

Case I:  Im(ω) ≥ 0;    Stable. 

Case II:  Im(ω) < 0 and Re(ω)=0;  Divergence type of instability. 

Case III:  Im(ω) < 0 and Re(ω)≠0;  Flutter type of instability. 

Again, it can be seen that elastic-stiffness and mass matrices are functions of [xi] similar to 

the previous cases, and [x�] is dependent on [m�], as discussed before. So, for the flutter 

analysis also, we need to find the best set [m], which maximizes the Flutter Load of the 

column, under constant weight constraint. 

 

SHAPE OPTIMIZATION USING GA 

i. An initial set [m] is generated randomly in the beginning, such that the elements of 

the set satisfy the constant weight criterion: [∑ ������  = M]  

M is constant, and explicitly defined. 

ii. Generation of the initial Population of strings: An initial population of strings is 

generated in a random manner. The number of generated strings is represented by S. 

(8)

The stability of the system is determined by investigating 

the nature of the eigenvalue ω, which is complex in nature.

Case I: 	 Im(ω) ≥ 0; 	 Stable.

Case II: 	 Im(ω) < 0 and Re(ω)=0;	�� Divergence type of 

instability.

Case III: 	 Im(ω) < 0 and Re(ω)≠0;	�� Flutter type of 

instability.

Again, it can be seen that elastic-stiffness and mass 

matrices are functions of [xi] similar to the previous cases, 

and [xi] is dependent on [mi], as discussed before. So, for the 

flutter analysis also, we need to find the best set [m], which 
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maximizes the Flutter Load of the column, under constant 

weight constraint.

SHAPE OPTIMIZATION USING GA

ⅰ. ��An initial set [m] is generated randomly in the 

beginning, such that the elements of the set satisfy the 

constant weight criterion: 
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M is constant, and explicitly defined.

ⅱ. ��Generation of the initial Population of strings: 

An initial population of strings is generated in a 

random manner. The number of generated strings 

is represented by S. Each string contains the 

information pertaining to the weight transfer from 

one element to another element. Two finite numbers 

are encoded in binary form for each string. An 

additional bit is added to the string, which contains 

the information related to the direction of weight-

shift. If it is 0, it represents backward shift; and if it 

is 1, it represents forward shift. If the number of 

elements N=16, then 4 bits are required to represent 

the position of an element, because (16)10 = (1111)2. 

So, each string contains 9 bits, in which the first and 

last four bits represent the element numbers between 

which weight transfer takes place, and the middle bit 

represents the direction of weight shift. For instance, 

the string 010010111 represents the movement of 

9 

 

Each string contains the information pertaining to the weight transfer from one 

element to another element. Two finite numbers are encoded in binary form for each 

string. An additional bit is added to the string, which contains the information related 

to the direction of weight-shift. If it is 0, it represents backward shift; and if it is 1, it 

represents forward shift. If the number of elements N=16, then 4 bits are required to 

represent the position of an element, because (16)10 = (1111)2. So, each string contains 

9 bits, in which the first and last four bits represent the element numbers between 

which weight transfer takes place, and the middle bit represents the direction of 

weight shift. For instance, the string 010010111 represents the movement of w from 

the 5th (=22+1) element, to the 8th (=22+21+20+1) element. The middle bit is 1, which 

represents that the weight transfer takes place in the forward direction, from the 5th to 

the 8th element. If it is 0, then w would be shifted from the 8th to the 5th element 

(backward direction), based on certain conditions. 

iii. Before the transference of weight from the ith element to the jth element, it is checked 

whether , and i=j in the string. In both these cases, no weight 

shifting is done, and the next string is examined. 

iv. When the string doesn’t fall under any category, as explained in step iii, i.e.  

and i  in the string, then movement is performed, and the value of the 

optimization-function is computed, according to the new set [m]. For the static and 

vibration problem, the optimization-function is the buckling load and vibration 

frequency, respectively. For the follower-force problem, the optimization-function is 

the Flutter load. Again, two possibilities arise. The value of the optimization-function 

increases or decreases. If the optimization-function increases, then the new 

distribution of weights is updated, and stored as the latest set [m]. If it decreases, then 

w is restored back to its previous location.  

v. FITNESS EVALUATION: The fitness value of each string is computed and stored. 

The fitness value of a string is essentially the value of the optimization-function 

obtained, when the weight transfer takes place according to the string. Those strings 

with high fitness values are considered as healthy parents.   

vi. REPRODUCTION: After the storage process, the evolutionary operation of GAs 

(Pratihar, 2008) is applied to the population of strings. Reproduction is the first step of 

evolution. Not all the GA-strings contained in the population may be of equal worth, 
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ⅴ. ��FITNESS EVALUATION: The fitness value of each string 

is computed and stored. The fitness value of a string 

is essentially the value of the optimization-function 

obtained, when the weight transfer takes place 

according to the string. Those strings with high fitness 

values are considered as healthy parents.  

ⅵ. ��REPRODUCTION: After the storage process, the 

evolutionary operation of GAs (Pratihar, 2008) is 

applied to the population of strings. Reproduction 

is the first step of evolution. Not all the GA-strings 

contained in the population may be of equal worth, 

in terms of their fitness values. In this step, good 

strings are selected from the overall population, 

based on their fitness information.	  

SELECTION SCHEME USED: Proportionate 

selection/ Roulette-Wheel Selection	  

In this scheme, the probability of a string to be selected 

in the mating pool is considered to be proportional 

to its fitness. This is implemented with the help of 

a Roulette wheel, as shown in Fig. 3. The top surface 

area of the wheel is divided into S parts (S = population 

size), in proportion to the fitness values f1, f2… fn. The 

wheel is rotated in a particular direction, and after it 

stops, a fixed pointer is used to indicate the winning 

area. A particular sub-area representing a GA-solution 

is probabilistically selected to be the winner, and the 

probability that the ith area will be declared so, is given 

by the following expression: 
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given by the following expression:  

  � � �� ∑ ������
�    

where, �� = the fitness value of the ith string  

The wheel is rotated N times, and each time, only one area is identified by the pointer 

to be the winner. In this scheme, a good string is selected a number of times. This 

process results in the generation of a mating pool. 

vii. CROSSOVER: In crossover, there is an exchange of properties between two parents, 

as a result of which, two children solutions are produced. To carry out this operation, 

the parents or mating pairs (each pair consists of two strings) are selected at random 

from the mating pool. A total of S/2 mating pairs are formed, from a population of 

strings of size S. The parents are checked as to whether they will participate in 

crossover or not, by tossing a coin, whose probability of appearing heads is Pc. If 

heads appears, the parent participates in crossover, to produce two children. 

Otherwise, they remain intact in the population. A number lying between 0 and 1 is 

generated, using a random number generator. If the random number is smaller than, or 

equal to Pc, the outcome of coin-flipping is considered as true; else it is false. 

Once a particular mating pair is selected for crossover, the crossing site is decided 

using a random number generator, by generating an integer lying between 1 and (L-1), 

where L is the length of string. In our case, L=9, because each string is made up of 9 

bits.   

	 where, fi  = the fitness value of the ith string 

	�� The wheel is rotated N times, and each time, only one 

area is identified by the pointer to be the winner. In this 

scheme, a good string is selected a number of times. 

This process results in the generation of a mating pool.
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ⅶ. ��CROSSOVER: In crossover, there is an exchange of 

properties between two parents, as a result of which, 

two children solutions are produced. To carry out 

this operation, the parents or mating pairs (each pair 

consists of two strings) are selected at random from 

the mating pool. A total of S/2 mating pairs are formed, 

from a population of strings of size S. The parents 

are checked as to whether they will participate in 

crossover or not, by tossing a coin, whose probability 

of appearing heads is Pc. If heads appears, the parent 

participates in crossover, to produce two children. 

Otherwise, they remain intact in the population. A 

number lying between 0 and 1 is generated, using a 

random number generator. If the random number 

is smaller than, or equal to Pc, the outcome of coin-

flipping is considered as true; else it is false.	  

Once a particular mating pair is selected for crossover, 

the crossing site is decided using a random number 

generator, by generating an integer lying between 1 

and (L-1), where L is the length of string. In our case, 

L=9, because each string is made up of 9 bits.  	  

A Single Point Cross Over scheme is used in our 

Analysis. A crossover site lying between 1 and (L-1) is 

selected randomly, as explained above. The left side 

of the crossover site is left unaltered, and swapping is 

done between the two substrings lying on the right side 

of the crossover site. 

	 Parents:	 0 1 1 0 0 | 0 1 1 0

		  0 0 1 1 0 | 1 0 1 1 

	 Children:	 0 1 1 0 0 | 1 0 1 1

		  0 0 1 1 0 | 0 1 1 0

ⅷ. ��MUTATION: The concept of mutation is applied, 

in which 1 is converted to 0, and vice versa. The role 

of mutation is to push a string from a local basin of 

solutions, to a global basin of solutions. The probability 

of mutation is kept low, to avoid random search.

The maximum number of generations is defined, 

depending upon some terminating criteria. The best possible 

set [m] is obtained from the final generation of strings. Fig. 4 

shows a schematic diagram of the working cycle of GA, as 

explained in the above steps.

3. Results and Discussion

The results are presented on the basis of the dimensions of 

the column, as follows:

Static and Vibrational analysis (Circular cross-section)

Material	 =	 Steel

Young’s Modulus (E)	 =	 2.056 x 1011 N/m2

Density of Material	 =	 7800 Kg/m3

Total Length of Column	 =	 1 m

Diameter of Uniform Column (D0)	 =	 100 mm
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Flutter Analysis (Rectangular cross-section)

Material	 =	 Steel

Young’s Modulus (E)	 =	 2.056 x 1011 N/m2

Density of Material	 =	 7800 Kg/m3

Total Length of Column	 =	 1 m

Width of uniform column, b0 	 =	 10 cm

Thickness of uniform column, t0	 =	 1 cm

Table 1. Comparison between buckling load values of uniform and optimized undamaged columns, under various end restraints (Static Analysis)
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Tables used in the text: 

 
 
 

Table 1. Comparison between buckling load values of uniform and optimized undamaged columns, 

under various end restraints (Static Analysis) 

Boundary 

Condition 
Mode Number 

Uniform 

Column   

[1e+06 Newton]

Optimized 

Column    

[1e+06 Newton] 

Percentage 

Increase in Pcr (%)

C/F

1 2.4927 3.291 32.03 

2 22.4097 28.9354 29.12 

3 62.2608 78.2717 25.72 

C/S

1 20.378 26.6033 30.55 

2 60.235 75.2610 24.94 

3 120.033 146.593 22.13 

S/S

1 9.9606 12.9706 30.22 

2 39.8444 50.2884 26.21 

3 89.6615 109.0527 21.63 

 
 
 Table 2. Comparison between Vibration frequencies of uniform and optimized undamaged columns, for various BCs (Vibrational Analysis)
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Table 2. Comparison between vibrational frequencies of uniform and optimized undamaged columns, 

for various BCs (Vibrational Analysis) 

Boundary 

Condition 
Mode Number 

Uniform 

Column  

[1e+03 rad/s] 

Optimized 

Column    

[1e+03 rad/s] 

Percentage 

Increase in ω (%) 

C/F

1 0.451 1.4724 226.26 

2 2.828 4.8377 71.06 

3 7.919 15.161 91.45 

C/S

1 1.979 2.7969 41.33 

2 6.413 10.152 58.29 

3 13.38 18.727 39.94 

S/S

1 1.2668 1.3410 5.857 

2 5.0672 5.3649 5.875 

3 11.402 12.151 6.569 
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CASE I: NO DAMAGE

Static and Vibrational Analysis:

Table 1 shows a comparison between the buckling load 

values of uniform and optimized undamaged columns, 

under various end restraints, for the first three modes of 

buckling. It can be seen that the optimized shape column 

has higher buckling loads, for all boundary conditions. 

Similarly, Table 2 shows a comparison between the vibration 

frequencies of uniform and optimized undamaged columns, 

under various end restraints, for the first three modes 

of vibration. Fig. 5 shows the optimized shapes for the 

undamaged column (circular cross section), having different 

boundary conditions, based on static and vibrational 

analysis. The results show that under static and vibrational 

analysis, the optimized shape of the undamaged column for 

C/F and S/S boundary conditions possesses a wider part at 

the midspan. For the case of the C/S boundary condition, the 

midspan gets narrower.

Flutter Analysis:

Flutter analysis for the optimized shape of the column 

was carried out with a rectangular cross-section, for the 

clamped-free (C/F) boundary condition, subjected to 

non-conservative follower load (Fig. 1). For the optimized 

column, the best mi distribution (element wise) is as follows:

[m]	 =	 [23  12  4  13  25  32  36  31  37  31  27  20  8  12  0  9];
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condition, based on flutter analysis. The optimal shape of the column under flutter analysis 

shows that the column has a wide part at the midspan, and a narrow part at the tip.  

This result compares well with the results presented by Sugiyama et al. (1993). 

 

CASE II: DAMAGE 

Static and Vibrational Analysis: 

Table 3 shows a comparison between the buckling load values of uniform and optimized 

damaged columns, under various end restraints, for the first three modes of buckling. Table 4 

shows a comparison between the vibration frequencies of uniform and optimized damaged 

columns, under various end restraints, for the first three modes of vibration. It can be seen 

that the incorporation of damage in the column results in reduction of the buckling load and 

vibration frequencies for the optimized damaged column, as compared to the optimized 

undamaged column. 

Fig. 7 shows the optimized shapes for the damaged column (circular cross-section) having 

different boundary conditions, based on buckling and vibrational analysis. It is observed that 

the optimized shapes of the damaged column for static and vibrational cases remain similar to 

those of the undamaged column. From the results, it can be concluded that the column having 

the highest values of Pcr (the static case) and ω (the vibrational case) has a unique shape 

corresponding to each boundary condition, and the incorporation of damage in the column 

only alters that shape to a certain extent. The overall geometry of the column remains nearly 

the same. This result holds true for moderate intensity-level damage. When the damage is 

severe i.e. (EId/EI0) < 0.5, then the optimized shapes may be entirely different. 

 

Flutter Analysis: 

Similar to the case of undamaged column, flutter analysis was carried out for the damaged 

column having a rectangular cross-section, for clamped-free (C/F) boundary condition, to 

find the optimized shape column with maximum flutter load. For the optimized damaged 

column, the best  distribution (element-wise) is as follows: 

[m] = [23  12   4  13  25  32  35  31  20  31  27  20   9  12   0   9] ; 

[ ] =  [1.1350    0.6400    0.2800    0.6850    1.2250    1.5400    1.6750 

1.4950    1.0000    1.4950    1.3150   1.0000    0.5050    0.6400    

	 = 	�� [1.1350   0.6400   0.2800   0.6850   1.2250   1.5400   

1.7200   1.4950   1.7650   1.4950   1.3150   1.0000   

0.4600    0.6400   0.1000   0.5050];

It is observed that the flutter load for the uniform column 
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Static Analysis    Vibrational Analysis 

 

  Clamped-Free (C/F)    Clamped-Free (C/F) 

 

  

Clamped-Simply supported (C/S)      Clamped-Simply supported (C/S) 

 

  

Simply supported (S/S)    Simply supported (S/S) 

 

Fig. 5. Optimized shapes for the undamaged circular cross-section column, under Static and 

Vibrational analysis (Fundamental modes) 

 
  

Fig. 5. Optimized shapes for the undamaged circular cross-section column, under Static and Vibrational analysis (Fundamental modes)
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is around 36,000 N; whereas, for the optimized column, the 

flutter load is found to be around 82,000 N, which is 2.28 

times the flutter-load value of the uniform column. Fig. 6 

shows the optimized shape for the undamaged column 

(rectangular cross-section), having a clamped-free (C/F) 

boundary condition, based on flutter analysis. The optimal 

shape of the column under flutter analysis shows that the 

column has a wide part at the midspan, and a narrow part 

at the tip. 

This result compares well with the results presented by 

Sugiyama et al. (1993).

CASE II: DAMAGE

Static and Vibrational Analysis:

Table 3 shows a comparison between the buckling 

load values of uniform and optimized damaged columns, 

under various end restraints, for the first three modes of 

buckling. Table 4 shows a comparison between the vibration 

frequencies of uniform and optimized damaged columns, 

under various end restraints, for the first three modes of 

Table 3. Comparison between buckling load values of uniform and optimized damaged columns, under various end restraints (Static Analysis)
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Table 3. Comparison between buckling load values of uniform and optimized damaged columns, 

under various end restraints (Static Analysis) 

Boundary 

Condition 
Mode Number 

Uniform 

Column with 

damage  

[1e+06 Newton]

Optimized 

Column with 

damage    

[1e+06 Newton] 

Percentage 

Increase in Pcr (%)

C/F

1 2.358 3.0423 29.02 

2 20.755 26.419 27.29 

3 60.253 74.909 24.32 

C/S

1 18.571 23.526 26.68 

2 58.612 72.124 23.05 

3 109.556 137.077 25.12 

S/S

1 8.844 11.004 24.42 

2 39.603 48.445 22.33 

3 80.955 100.602 24.27 
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Flutter Analysis 

 

Fig. 6. Optimized shape for the undamaged rectangular cross-section column, under Flutter Analysis 

(Fundamental mode) 

 
  

Fig. 6. Optimized shape for the undamaged rectangular cross-section column, under Flutter Analysis (Fundamental mode) 
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vibration. It can be seen that the incorporation of damage 

in the column results in reduction of the buckling load and 

vibration frequencies for the optimized damaged column, as 

compared to the optimized undamaged column.

Fig. 7 shows the optimized shapes for the damaged 

column (circular cross-section) having different boundary 

conditions, based on buckling and vibrational analysis. 

It is observed that the optimized shapes of the damaged 

column for static and vibrational cases remain similar to 

those of the undamaged column. From the results, it can be 

concluded that the column having the highest values of Pcr 

(the static case) and ω (the vibrational case) has a unique 

shape corresponding to each boundary condition, and the 

incorporation of damage in the column only alters that 

shape to a certain extent. The overall geometry of the column 

remains nearly the same. This result holds true for moderate 

intensity-level damage. When the damage is severe i.e. 

(EId/EI0) < 0.5, then the optimized shapes may be entirely 

different.

Flutter Analysis:

Similar to the case of undamaged column, flutter analysis 

was carried out for the damaged column having a rectangular 

cross-section, for clamped-free (C/F) boundary condition, 

to find the optimized shape column with maximum flutter 

load. For the optimized damaged column, the best mi 

distribution (element-wise) is as follows:

[m]	 =	[23  12   4  13  25  32  35  31  20  31  27  20   9  12   0   9] ;
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condition, based on flutter analysis. The optimal shape of the column under flutter analysis 

shows that the column has a wide part at the midspan, and a narrow part at the tip.  

This result compares well with the results presented by Sugiyama et al. (1993). 

 

CASE II: DAMAGE 

Static and Vibrational Analysis: 

Table 3 shows a comparison between the buckling load values of uniform and optimized 

damaged columns, under various end restraints, for the first three modes of buckling. Table 4 

shows a comparison between the vibration frequencies of uniform and optimized damaged 

columns, under various end restraints, for the first three modes of vibration. It can be seen 

that the incorporation of damage in the column results in reduction of the buckling load and 

vibration frequencies for the optimized damaged column, as compared to the optimized 

undamaged column. 

Fig. 7 shows the optimized shapes for the damaged column (circular cross-section) having 

different boundary conditions, based on buckling and vibrational analysis. It is observed that 

the optimized shapes of the damaged column for static and vibrational cases remain similar to 

those of the undamaged column. From the results, it can be concluded that the column having 

the highest values of Pcr (the static case) and ω (the vibrational case) has a unique shape 

corresponding to each boundary condition, and the incorporation of damage in the column 

only alters that shape to a certain extent. The overall geometry of the column remains nearly 

the same. This result holds true for moderate intensity-level damage. When the damage is 

severe i.e. (EId/EI0) < 0.5, then the optimized shapes may be entirely different. 

 

Flutter Analysis: 

Similar to the case of undamaged column, flutter analysis was carried out for the damaged 

column having a rectangular cross-section, for clamped-free (C/F) boundary condition, to 

find the optimized shape column with maximum flutter load. For the optimized damaged 

column, the best  distribution (element-wise) is as follows: 

[m] = [23  12   4  13  25  32  35  31  20  31  27  20   9  12   0   9] ; 

[ ] =  [1.1350    0.6400    0.2800    0.6850    1.2250    1.5400    1.6750 

1.4950    1.0000    1.4950    1.3150   1.0000    0.5050    0.6400    

	 = 	��[1.1350    0.6400    0.2800    0.6850    1.2250    1.5400    

1.6750    1.4950    1.0000    1.4950    1.3150   1.0000    

0.5050    0.6400    0.1000    0.5050];

It is observed that the flutter load for the uniform 

damaged column is around 30,000 N; whereas, for the 

optimized damaged column, it is around 58,000 N. The shape 

optimization has enhanced the flutter load of the column to 

1.93 times the flutter load of the uniform column. It is clear 

from previous observations that the incorporation of damage 

in the column reduces its strength. Here also, the same fact is 

observed. For the optimized undamaged column, the flutter 

load rises to 2.28 times the flutter load value of the uniform 

column; whereas, including damage in the column only 

reduces the load increment for the optimized shape by up 

to 1.93 times.

The values of Pcr and ω for the optimized damaged 

column are comparatively lower, than those of the optimized 

undamaged column. For example, for the C/F condition, the 

critical buckling load for the optimized undamaged column is 

32.03 % higher than that of the uniform undamaged column. 

Whereas, for the damaged column, the optimized shape has 

a Pcr value that is only 29.02 % higher than that of the uniform 

damaged column, for the same boundary condition. So, it 

Table 4. Comparison between Vibration frequencies of uniform and optimized damaged columns, for various BCs (Vibrational Analysis)
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Table 4. Comparison between vibrational frequencies of uniform and optimized damaged columns, 

for various BCs (Vibrational Analysis) 

Boundary 

Condition 
Mode Number 

Uniform 

Column with 

damage  

[1e+03 rad/s] 

Optimized 

Column with 

damage 

[1e+03 rad/s] 

Percentage 

Increase in ω (%) 

C/F

1 0.446 1.4374 222.19 

2 2.665 4.5793 71.85 

3 7.878 14.727 86.93 

C/S

1 1.893 2.5230 33.25 

2 6.399 9.5068 48.57 

3 12.71 17.115 34.63 

S/S

1 1.195 1.2353 3.36 

2 5.053 5.3060 5.02 

3 10.87 11.705 7.71 
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can be concluded that up to a certain extent, Pcr and ω values 

for the optimized column decrease, with the increase in the 

damage intensity level. The result is always affirmative for 

the fundamental mode. For higher modes, it may, or may 

not, be true. A similar kind of behaviour is observed in the 

case of non-conservative loading. The damage only modified 

the geometry of the optimized column up to a certain extent. 

The overall nature of the shape remained the same, i.e. wider 

at the midspan, and narrower at the free end. Again, this 

result holds good only for low intensity damage.	

4. Concluding Remarks

The optimal design problem of damaged columns that are 

subjected to conservative and non-conservative forces has 

been investigated, to find the optimal shape of the columns, 

with maximum buckling load, vibrational frequency, and 

flutter load as the parameters. The constraint is constant 

weight, and is formulated by considering the fundamental 

modes. Damage is incorporated into the column at a specific 

location, by reducing the bending stiffness of the element. 

It has been concluded that for moderate intensity damage, 

the optimized shapes of the damaged column remain 

similar to those of the optimized undamaged column. The 

values of Pcr, ω, and flutter load for the optimized damaged 

column are comparatively lower, than those of the optimized 

undamaged column.
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Static Analysis    Vibrational Analysis 

  

Clamped-free (C/F)    Clamped-Free (C/F) 

 

  

Clamped-Simply supported (C/S)       Clamped-Simply supported (C/S) 

 

  

Simply supported (S/S)    Simply supported (S/S) 

 

Fig. 7. Optimized shapes for the damaged circular cross-section column, under Static and vibrational 

analysis (Fundamental modes) 

 

Fig. 7. Optimized shapes for damaged circular cross-section column, under Static and vibrational analysis (Fundamental modes) 
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