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Abstract

The modern development in design of airships and aerostats has led to unconventional configurations quite different from the 

classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered 

very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation 

should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added 

to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The 

aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with 

unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is 

properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data 

available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision 

required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the 

purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons. 
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NOMENCLATURE 
a��   :   vector of linear and rotational acceleration of the body  

a, b, c :  semi-axis of ellipsoids 

C�� , B�� :  influence coefficients on the j-th element acting on the control point of the i-th element  

e :   eccentricity of the ellipsoid considered in Lamb’s formula 

f���������  :  vector of forces and moments due to the added mass 

G :   Green’s function 

h :  radius of the sphere with surface Σ considered in Green’s Theorem 

L :   length of the airship 
u, v, w :  body linear velocity along the x, y, and z axis, respectively 
p, q, r  �  body angular velocity around the center of buoyancy, about the x, y, and z axis, 

respectively 

Sbody  :     external surface of the body wetted by fluid 

Sinf  :   surface of the infinite radius sphere  

T  :   kinetic energy of the fluid enclosed between Sinf  and  Sbody 

u� v� w� p� q� r� :  linear and angular acceleration, in the x, y, and z directions, and about the 

roll, pitch, and yaw axis, respectively  

Vol:   volume of the airship 

K��, M��, N�� :  AM moments around the x, y, and z axis, respectively 

X��, Y��, Z�� :  AM forces along the x, y, and z axis, respectively 

α, β, γ:  normal cosines direction of the boundary elements (QUAD, TRIA) of the surface, 

respectively 

�, � :  parameters used to compute explicit value of elongated ellipsoid with Lamb’s formula 

Φ     :   flow potential 

��  :   potential on the lower side of a trailing edge of a streamlined body 

��  :   potential on the upper side of a trailing edge of a streamlined body 

 : 	� vector of linear and rotational acceleration 

of the body 

a, b, c : 	 semi-axis of ellipsoids

Cij , Bij : 	� influence coefficients on the j-th element 

acting on the control point of the i-th 

element 

e : 	� eccentricity of the ellipsoid considered in 

Lamb’s formula
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Sinf : 	� surface of the infinite radius sphere 

T  : 	� kinetic energy of the fluid enclosed 

between Sinf and Sbody
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1. Introduction 
In recent years, there has been a renewed interest in airships and aerostats, due to the advancement of 

new technologies and materials, and the increasing need for environmentally friendly and sustainable 

ways of transport. The availability of thin photovoltaic arrays capable of converting the energy 

provided by solar radiation into electricity, and the development of new thin fabrics with very good 

strength-to-weight ratio and low permeability to gases have enabled successful feasibility studies of 

high altitude solar airships. In solar powered airships, the power available to the propulsion plant 

depends on the efficiency of the solar film, and on the shape of the airship. The amount of surface 

covered by solar film, and its orientation with respect to the incident solar rays, play a fundamental role 

in solar energy capture. On the other hand, the geometry of the airship strongly affects the volume-to-

surface ratio and the aerodynamic drag; the first is important, since the buoyancy is mainly affected by 

the volume (and the airship weight is proportional to the envelope surface); while the drag is strongly 

linked to the power needed to guarantee a defined speed. The classical ellipsoidal shape, universally 

described as the best solution from the early era of airships, up to the end of the past millennium [1], 

guarantees a very good volume-to-weight ratio and a low drag; however, this configuration has very 

low surface available for solar panels, which limits its applicability to energetically sustainable airships. 

Due to this limit, while dealing with solar configurations, a plethora of innovative configurations has 

recently been proposed, which configurations are in many respects unconventional. Several of these 

have been evaluated [2], in order to obtain large top surfaces, low drag, and good volume-to-weight 

ratio. A new method for airship design and weight evaluation was proposed by Ref. [3], while Ref. [4] 

provided a state-of-the-art review for the design and analysis of this new class of airships. The current 

literature does not adequate address the importance of the added masses, and these studies indicated 

that the classical formulae used for added masses computation introduced for ellipsoidal shapes are not 

valid for the unconventional airship configurations. The problem of added masses for a new 

configuration was introduced by Ref. [5], albeit for a specific shape of hybrid airship; while Ref. [2] 
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1. Introduction

In recent years, there has been a renewed interest in 
airships and aerostats, due to the advancement of new 
technologies and materials, and the increasing need for 
environmentally friendly and sustainable ways of transport. 
The availability of thin photovoltaic arrays capable of 
converting the energy provided by solar radiation into 
electricity, and the development of new thin fabrics with 
very good strength-to-weight ratio and low permeability 
to gases have enabled successful feasibility studies of 
high altitude solar airships. In solar powered airships, 
the power available to the propulsion plant depends on 
the efficiency of the solar film, and on the shape of the 
airship. The amount of surface covered by solar film, and 
its orientation with respect to the incident solar rays, play 

a fundamental role in solar energy capture. On the other 
hand, the geometry of the airship strongly affects the 
volume-to-surface ratio and the aerodynamic drag; the 
first is important, since the buoyancy is mainly affected by 
the volume (and the airship weight is proportional to the 
envelope surface); while the drag is strongly linked to the 
power needed to guarantee a defined speed. The classical 
ellipsoidal shape, universally described as the best 
solution from the early era of airships, up to the end of the 
past millennium [1], guarantees a very good volume-to-
weight ratio and a low drag; however, this configuration 
has very low surface available for solar panels, which limits 
its applicability to energetically sustainable airships. Due 
to this limit, while dealing with solar configurations, a 
plethora of innovative configurations has recently been 
proposed, which configurations are in many respects 
unconventional. Several of these have been evaluated [2], 
in order to obtain large top surfaces, low drag, and good 
volume-to-weight ratio. A new method for airship design 
and weight evaluation was proposed by Ref. [3], while Ref. 
[4] provided a state-of-the-art review for the design and 
analysis of this new class of airships. The current literature 
does not adequate address the importance of the added 
masses, and these studies indicated that the classical 
formulae used for added masses computation introduced 
for ellipsoidal shapes are not valid for the unconventional 
airship configurations. The problem of added masses for 
a new configuration was introduced by Ref. [5], albeit for 
a specific shape of hybrid airship; while Ref. [2] suggested 
the computation of an equivalent ellipsoid shape, which 
approximates the actual unconventional shape. 

To supplement the state-of-the-art understanding in 
this important but often overlooked aspect, this paper 
provides added masses data for a number of new airship 
configurations that are collected and computed herein; 
this data can be useful for developing flight simulators and 
dynamic models, for studying the behavior of airships, and 
for advancing their control systems strategies. Data about 
scientific balloons are also presented: in this case the shape 
of the envelope changes, during the climb to the design 
altitude. These balloons are usually partially inflated on 
the ground [6], while during climbing, the inside gas can 
expand, without significantly increasing the pressure 
acting on the envelope. While on the ground, the lifting gas 
fills only the upper part of the balloon; hence, the balloon 
does not assume the typical spherical shape, but a more 
streamlined one. If good precision is required in the study of 
the balloon’s ascent phase, the added masses contributions 
of the balloon actual shape (which depends on the internal 
pressure of the lifting gas and altitude) should be carefully 
evaluated.

The added masses concept is related to the fact that 
an accelerated body affects the fluid field in which it is 
immersed, and consequently increases the kinetic energy 
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in the fluid. The term “added masses” is usually defined 
as the inertia of the mass of fluid displaced by the body. 
The added masses term should always be included in the 
motion equation; but when the mass of the fluid displaced 
is smaller than the mass of the vehicle itself (this is usually 
the case for aircraft), the term is often neglected. For 
instance, Ref. [2] computes the ratio between the air mass 
displaced by a Boeing 747 and its mass equal to 0.01, while 
this value jumps to 770 for an air bubble moving into 
water. Added masses provide critical effects in the motion 
equations of vehicles like airships, balloons, submarine 
vehicles, and ships, and should be considered by their 
designers. According to the work by Ref. [7], the concept of 
added mass was introduced by Dubua in 1776, following 
the experiment study of the small oscillations of a spherical 
pendulum proposed by Ref. [8]; afterwards, Green in 1833 
and Stokes in 1843 [9] focused their attention on the 
sphere, computing an exact mathematical expression of 
the added masses. At the beginning of the past century, 
several studies were carried out to compute added masses 
for bodies with two or three planes of symmetry: in 
particular the interest focused on airships whose shape 
was axial-symmetric. One of the seminal works related 
to added masses was published by Lamb in 1918 [10]; it 
presents added masses coefficients for ellipsoid-based 
shapes, and it is still used for the computation of added 
masses for traditional shaped airships. Munk [11] in 1924 
presented a similar study to compute the added masses 
coefficient, later used by airship designers to take this 
effect into account. In succession, Implay [12] in 1961 
considered the problem of added masses, with the study 
of the expression for added mass of a rigid body moving 
in an ideal fluid. With the introduction of computers and 
algorithms, the panel method developed in aerodynamics 
was applied to compute the added mass coefficients 
matrix; in this way, the solution of potential equations 
on complex geometries was possible, by exploiting the 
computing capabilities of machines. These methodologies, 
originated in the early 1960’s, are still attractive, because 
the governing equations need to be solved at the 
boundary [7], and the current computing capabilities are 
adequate, and continually improving. An implementation 
of the panel method by the authors (discussed in the 
later section), allows arbitrary shapes to be considered. 
Furthermore, the method provides advantages over a 
volume mesh typical of Finite Difference, Finite Volume, 
or Finite Element methods, assuring the efficient solution 
of a lower dimensional system of equations. Birkhoff [8] 
generalized the added mass computation mathematical 
framework to an arbitrary body moving in different 
(laminar and turbulent) flow regimes. However, explicit 
closed-loop formulae for computing added masses are 
only available for simple bodies. The Laplace equation 
with boundary conditions given on the surface of the body 

and at infinity should be solved, to compute the added 
masses. The most widespread solution methods are 
based on the separation of variables, and the singularity 
method developed and introduced by Refs. [13], [14], 
and [15]. Following Ref. [16], an explicit solution is now 
available, albeit only for the oblate spheroid, elongated 
ellipsoid of revolution, sphere, disc, and elliptic plates. 
In marine applications, the problem of added masses 
is addressed for slender bodies like ships, in which one 
dimension is usually greater than the other two (e.g. 
a cylinder); in this case, as discussed by Ref. [9], the 
added mass coefficient matrix could be computed with 
the plane section method in orthogonal directions, with 
respect to the axis along the largest dimension. The same 
author proposes exploiting the method of an equivalent 
ellipsoid in complex cases, computing the approximated 
added mass coefficients, considering a body with the 
same volume of a three axial ellipsoid. A similar concept 
was presented in Ref. [2], but the estimation is inaccurate 
for the complex and irregular shapes typical of modern 
unconventional airships, although it can be considered 
a way to provide preliminary added masses estimates. 
Another approach to added masses computation is by 
performing experimental tests; this has been applied, 
for instance, to swimmers [17]. Other authors like Refs. 
[18] and [19] developed frameworks to compute added 
masses for airships whose shape can be approximated 
with mathematical expressions. However, due to the 
recent interest in unconventional airship configurations, 
and the huge number of developed unconventional 
configurations, their designers should be provided with 
better estimates of added masses, thus enabling precise 
simulations of airship dynamics, which is quite important 
in the case of complex shapes. 

This paper presents a methodology to compute the 
full matrix of added masses for bodies of arbitrary shape, 
exploiting a method based on the Boundary Element 
Method; it presents also some examples of unconventional 
airship shapes, and provides data about their added 
masses contributions. Moreover, the proposed method 
allows finding the best trade-off between computational 
time and results accuracy, by defining the mesh size. The 
rest of the paper is organized as follows: the next section 
provides the mathematical framework lying behind 
the computation of added masses and their modern 
implementation on computers. The third section presents 
considerations about method validation and benchmarks 
with literature, the influence of the mesh definition on 
the obtained results, and the needs for meshing the 
external geometry of bodies, along with the definition 
and computation of the dimensionless coefficients. The 
fourth section provides added masses tables for 20 airship 
and balloon shapes. The paper concludes with pertinent 
remarks.
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2. ����Mathematical framework and implemen-
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2.1 Added masses matrix features

The response of a body to an applied force in a 
specific direction generally induces an acceleration 
that involves three translation and three angular 
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length represents the volume of the vehicle, which is 
proportional to the mass of water displaced by the outer 
hull.

2. �The coefficients representing the effect of time on an 

angular acceleration use ρl5.
3. �The remaining coefficients, representing the effects 

of a force on an angular acceleration, or the effect of a 

moment on a linear acceleration, use ρl4.

This implies that for a body moving in a potential flow, 
the AM coefficients matrix in non-dimensional form can be 
expressed as:
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be expressed as: 
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For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  
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potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 
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a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 
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where, r� is the vector that indicates the position of the point. 
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assumption is that a body moving with a constant acceleration in an incompressible potential flow can 
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For an incompressible fluid, the continuity equation is: 
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incompressible, and irrotational flow.    
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1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 

u�� � u��� � ω��� � r�                       (14) 

where, r� is the vector that indicates the position of the point. 
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For an incompressible fluid, the continuity equation is: 
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and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 
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where, r� is the vector that indicates the position of the point. 
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For an incompressible fluid, the continuity equation is:
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assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 
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U����r�, t� � � ��r�, t�       (9) 

For an incompressible fluid, the continuity equation is: 
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and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 
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u�� � u��� � ω��� � r�                       (14) 
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 
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where, r� is the vector that indicates the position of the point. 
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be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 
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For an incompressible fluid, the continuity equation is: 
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incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 
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where, r� is the vector that indicates the position of the point. 
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be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 
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For an incompressible fluid, the continuity equation is: 
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incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 
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the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 
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where, r� is the vector that indicates the position of the point. 
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 
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[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 
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determined by the relation: 
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where, r� is the vector that indicates the position of the point. 
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assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 

be expressed as: 

U����r�, t� � � ��r�, t�       (9) 

For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 
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the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 
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assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 
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For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 
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where, r� is the vector that indicates the position of the point. 
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The definition of a scalar potential field is fundamental to the computation of added masses. The 

assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 

be expressed as: 
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For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 

u�� � u��� � ω��� � r�                       (14) 

where, r� is the vector that indicates the position of the point. 
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The definition of a scalar potential field is fundamental to the computation of added masses. The 

assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 
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U����r�, t� � � ��r�, t�       (9) 

For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
��
�� � �                   (13) 

where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 
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For an incompressible fluid, the continuity equation is: 
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and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    

��� � �        (11) 

The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
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where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 
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where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 
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The definition of a scalar potential field is fundamental to the computation of added masses. The 

assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 

be expressed as: 

U����r�, t� � � ��r�, t�       (9) 

For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    
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The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
��
�� � �                   (13) 

where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 
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Table 6: AM for some unconventional airship configurations

 Picture of the airship configuration Added masses matrix coefficients

�
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�
� X�� X�� X��Y�� Y�� Y��Z�� Z�� Z��
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Y�� Y�� Y��
Z�� Z�� Z��

K�� K�� K��M�� M�� M��N�� N�� N��

K�� K�� K��
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N�� N�� N�� �

��
��
�
�

1

Configuration inspired by the designer Reindy Allendra 

(http://allendra.carbonmade.com/)

2.2E‐3 0 ‐1.05E‐3 0  5.59E‐5 0

2.14E‐2 0 1.21E‐4  0  ‐3.05E‐4

2.64E‐2 0  ‐8.18E‐4 0

1.46E‐5  0  ‐2.28E‐5

symm 9.87E‐4 0

6.86E‐4

(18)

where, 
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Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 
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, one obtains:here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(23)

By considering 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

, and recalling the initial 
condition 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

, the kinetic energy can be cast as:

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(24)

It is straightforward to note that the two integrals are 
identical, but for the surfaces on which they are applied. 
The second integral can be considered negligible, due to the 
asymptotical behavior of 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

 as h→∞ (where h is the radius of 
the sphere with surface 

 
Figure 1: Body moving in the domain with wake surface 

This vector equation can be written in basic components, such as: 
u� � u�� � ��z � ��y
u� � u�� � ��x � ��z
u� � u�� � ��y � ��x

      (15) 

The projection of velocity on the normal n� on the surface S is: 

u� � u� cos�n, x� � u� cos�n, y� � u� cos�n, z�                       (16) 

For the sake of simplicity, the following abbreviations are chosen: 

α � cos�n, x��    β � cos�n, y� �    γ � cos�n, z�         (17) 

in order to write the watertight condition as: 
��
����S � u� � u��α � u��β � u��γ � ���γy � βz� � ���αz � γx� � ���βx � αy�         (18) 

where, α, β, γ, �γy � βz�, �αz � γx�, �βx � αy� depend only on the body’s shape. Assuming linearity, 

the fluid potential can be written as follows: 

� �  u���� � u���� � u���� � ���� � ���� � ����      (19) 

 

The potentials �� are such that i � �,�,� are for the body moving along the x,y,z axes, while i � �,�,� 

are for the body rotating around the same axes with unit angular velocities. The solution of the Laplace 

problem can be found by subdividing it into 6 sub-problems.  The first one can be formulated for the 

solution of the Laplace equation  ���� � �, with the watertight condition on the surface S:  
��
����S � α      and              lim���

���
�� � �       (20,21) 

It is very important to note that all the potentials are only functions of the body’s shape, and of the 

choice of the coordinate system attached to the body. The added masses computation follows the 

evaluation of the kinetic energy of the displaced fluid: assume a body with surface S, moving in a fluid 

bounded by a sphere with surface Σ and radius h, containing the body.  The kinetic energy of the fluid 

displaced by the body can be defined by the integral: 

� �  �
� ρ � v� 

V d� � � ����
���� � ���

���� � ���
����� 

V dx dy dz   (22) 

), and of its first derivative as 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

 

→∞. As a result:

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(25)

By substituting Eq. (19) into Eq. (25), and writing: 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(26)

the kinetic energy can be further simplified, to read:

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(27)

where, 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

 are the added masses, and can be expressed as:

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

(28)

Observing the last equation, it can be noted that 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

does 
not depend on the kinematic of the motion, but only on the 
body’s shape. By applying Green’s formula to the functions 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

 and 

here, ρ is the density of the fluid. Using Green’s transformation for two function (��� ��), one obtains: 

� ������
 

V dV � � � ��
���
���

 
S�� dS � � ������

 
V dV               (23) 

By considering �� � �� � � , and recalling the initial condition ��� � �, the kinetic energy can be 

cast as: 

� �  � �
� � � 

�� 
���

 
S dS � �

� � � 
�� 
���

 
� dS                      (24) 

It is straightforward to note that the two integrals are identical, but for the surfaces on which they are 

applied. The second integral can be considered negligible, due to the asymptotical behavior of � as 

� � � (where h is the radius of the sphere with surface Σ), and of its first derivative as |r�| � �. As a 

result: 

� �  � �
� � � 

�� 
���

 
S dS                          (25) 

By substituting Eq. (19) into Eq. (25), and writing:  
u�� � u�; u�� � u�; u�� � u�ω� � u�; ω� � u�; ω� � u�                      (26) 

the kinetic energy can be further simplified, to read: 

� �  �
� ∑ λ��u������� u�                              (27) 

where, λ�� are the added masses, and can be expressed as: 

λ�� � �ρ � ��� 
���

 
S ��dS       (28) 

Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 

only on the body’s shape. By applying Green’s formula to the functions �� and �� on the volume V 

between the surface S and Σ, one obtains: 

� ������ � ������ 
V dV � � ���

�� �
��� � ��

�� �
��� � 

S dS � � ���
�� �

��� � ��
�� �
��� � 

� dS  (29) 

Equation (11) leads to ��� �  ��� � �; hence, the left-hand side of the equation is negligible, while 

the second integral of the right-hand side is negligible as � � �   [9] (where h is the radius of the 

sphere with surface Σ). Therefore, the infinite fluid surrounding the body withstands the following 

condition:  

� ��
�� �

���
 

S dS �  � ��
�� �
���

 
S dS      (30) 

Consequently, it can be stated that λ�� � λ�� . As indicated earlier, the number of constants to be 

determined is reduced from 36 to 21, due to the symmetry of the added mass matrix.  

 on the volume V between the surface S and 

 
Figure 1: Body moving in the domain with wake surface 

This vector equation can be written in basic components, such as: 
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The projection of velocity on the normal n� on the surface S is: 
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Table 6: AM for some unconventional airship configurations

 Picture of the airship configuration Added masses matrix coefficients

�
��
��
�
� X�� X�� X��Y�� Y�� Y��Z�� Z�� Z��

X�� X�� X��
Y�� Y�� Y��
Z�� Z�� Z��

K�� K�� K��M�� M�� M��N�� N�� N��

K�� K�� K��
M�� M�� M��
N�� N�� N�� �

��
��
�
�

1

Configuration inspired by the designer Reindy Allendra 

(http://allendra.carbonmade.com/)

2.2E‐3 0 ‐1.05E‐3 0  5.59E‐5 0

2.14E‐2 0 1.21E‐4  0  ‐3.05E‐4

2.64E‐2 0  ‐8.18E‐4 0

1.46E‐5  0  ‐2.28E‐5

symm 9.87E‐4 0

6.86E‐4

(29)
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Observing the last equation, it can be noted that λ�� does not depend on the kinematic of the motion, but 
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The final step to consider is the boundary integral equation evaluation. Consider a closed region V with 

boundary S and the unit vector n� normal to S, as depicted in Fig. 2. Boundary S of the flow region 

includes the surface of the body SB, the surface of the wake SW, and the outer control surface S� . The 

latter includes the surface of the body and the trailing vortex surface.  

Using Green’s theorem, the perturbation velocity potential at each point of the field can be expressed as 

an integral equation corresponding to the distribution of the source and the dipole. Therefore, for the 

field point P in the region V, this is [23]:  

����P� � � ��Q� ��
��� dS � � ���Q�

��� �dS � 
SB

 
SB
� � ���Q� 

S�
��
��� dS         (31) 

where, G is the Green’s function, which might be expressed in the form G=1/r,  and r is the distance 

between the point field P and point source Q. The boundary conditions to be applied are reported in the 

previous section. The right-hand side of Eq. (31) has three terms. The first two are the dipole and the 

source of the body, while the third is the dipole of the vortex wake surface (defined only for lifting 

bodies). 

2.4 Numerical Implementation  

The discretization of Eq. (31) leads to a linear system of algebraic equations for the unknown � as: 
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Fig. 3. ��Green’s theorem on the body
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field P and point source Q. The boundary conditions to be 
applied are reported in the previous section. The right-hand 
side of Eq. (31) has three terms. The first two are the dipole 
and the source of the body, while the third is the dipole of the 
vortex wake surface (defined only for lifting bodies).

2.4 Numerical Implementation 

The discretization of Eq. (31) leads to a linear system of 
algebraic equations for the unknown 

The definition of a scalar potential field is fundamental to the computation of added masses. The 

assumption is that a body moving with a constant acceleration in an incompressible potential flow can 

be represented by a scalar potential field �. The fluid velocity at point r� with respect to the origin can 

be expressed as: 

U����r�, t� � � ��r�, t�       (9) 

For an incompressible fluid, the continuity equation is: 

� � U��� � �                             (10) 

and substituting Eq. (8) in Eq. (9) one obtains the Laplace’s equation, which is valid for inviscid, 

incompressible, and irrotational flow.    

��� � �        (11) 

The boundary conditions necessary for the solution of the Laplace’s equation are as follows: 

1. The watertight condition, valid on the surface S 
��
����S � u�        (12) 

where, n� is the external normal direction to surface S, while u� is the projection of velocity of a 

point of the body on the normal n�. 

2. Stationary condition at infinity: 

lim���
��
�� � �                   (13) 

where, r is the distance from the origin to the fluid point.  

3. Inviscid lifting flows invoke the Kutta condition to enforce pressure continuity, in order to 

ensure that the flow at the trailing edge leaves smoothly. Wake sheet potential must equal the 

potential jump of the upper and lower part of the trailing edge, so as to keep pressure continuity 

[22]. Since non-lifting flow is considered here, there was no need to apply the Kutta condition, 

which for the sake of completeness is reported as  �� � �� � ��. 

The condition (11) has to be examined in more detail. Assuming  u����u��, u��, u��� to be the velocity of 

a point 0 of the body, and ω����ω�, ω�, ω�� as the angular velocity of the body with respect to the point 0, 

the velocity of an arbitrary point of the body, including any point on its surface S, is straightforwardly 

determined by the relation: 

u�� � u��� � ω��� � r�                       (14) 

where, r� is the vector that indicates the position of the point. 
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Table 6: AM for some unconventional airship configurations

 Picture of the airship configuration Added masses matrix coefficients

�
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Y�� Y�� Y��
Z�� Z�� Z��
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N�� N�� N�� �
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�

1

Configuration inspired by the designer Reindy Allendra 

(http://allendra.carbonmade.com/)

2.2E‐3 0 ‐1.05E‐3 0  5.59E‐5 0

2.14E‐2 0 1.21E‐4  0  ‐3.05E‐4

2.64E‐2 0  ‐8.18E‐4 0

1.46E‐5  0  ‐2.28E‐5

symm 9.87E‐4 0

6.86E‐4

(33)

B�� �  � �
�������� dS�

 
SB             (34) 

Herein, C�� and B�� are the influence coefficients on the element j acting on the control point of the 

element i. NB is the number of elements on the body surface. After substituting the boundary Eq. (11), 

the matrix form of Eq. (32) is expressed as: 

��πδ � C�NB�NB ���NB��� � �B�NB�NB ���
����NB��

�
     (35) 

where,  δ�� is the Kronecker delta function. Obviously, to obtain the unit flow potential in each of the 

six flow conditions, the solution procedure has to be repeated for all the six boundary conditions, being: 
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 The computation of the added masses matrix can be performed when the potential ��� � has been 

found for every boundary condition k, and for every element. Equation (28) leads to the following AM 

matrix: 
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           (37) 

The apices in Eq. (37) refer to the condition k, as reported in Eq. (36). 

3. Method validation 
3.1 Method validation and influence of the mesh definition  

This section describes some validation tests carried out to verify the methodology herein described and 

implemented. The added masses coefficients of a sphere and of an elongated spheroid have been 

computed, and the results obtained have been checked against results from the literature, specifically 
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The apices in Eq. (37) refer to the condition k, as reported 
in Eq. (36).
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where, ρ is the density of fluid surrounding the body, a, b, and c are the semi-axes of the ellipsoid, and 

A0, B0, and C0 are coefficients appearing in Eq. (40), which depend only on the shape of the ellipsoid.   
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The analytical computation of all the λ coefficients for a sphere has been carried out by Ref. [10]. 

According to Lamb’s work, which is a reference for airship of traditional configuration, an elongated 

spheroid of axes a , a , c,  having a < c and moving in c direction, presents the coefficient of inertia: 
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The rotational added mass of inertia of a spheroid rotating about one of the minor axes is: 

λ�� � λ�� � � �������
�����������������������     (46) 

where, �� �� �  have the same meaning as reported before. Obviously, λ��  is negligible, since the 

ellipsoid, rotating about the axis coincident to the c axis, doesn’t displace fluid.  As a result, in this case, 

the surrounding fluid doesn’t add any inertia to the angular acceleration of the body.   

The λ��  coefficients currently described are dimensional. Their non-dimensional counterparts for the 

translational AM, following Lamb’s approach, are: 

(39)
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where ii= 11, 22, 33. It is worth noting that the added masses in the particular cases described (sphere 

and elongated spheroid) have been converted to a dimensionless form, by dividing the dimensional 

coefficients by the mass of fluid displaced.  The dimensionless form for the rotational AM terms [9] are: 
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Analytical AM terms obtained by means of Eqs. (37) and (38) are then compared with the data 

obtained by the Boundary Element Method (BEM). The shapes chosen are a sphere, and a prolate 

spheroid. To evaluate the dependency of the results from the mesh size, the cases have been 

investigated for both sphere and ellipsoid. Table 1 reports the geometrical data related to the two 

meshed shapes used to verify the computational code. These two models have been meshed with an 

increasing number of elements, in order to show the convergence of the translational and rotational AM 

coefficients. Tables 2 and 4 show all the dimensionless coefficients for every model, for an increasing 

number of elements. The exact value, computed with Lamb’s formula, is reported at the top of each 

column. In order to allow the reader to have an idea of the error, Tables 3 and 5 report the percent error 

between the computed value and Lamb’s value.  
Table 1: Models used for the validation of the method. 

Sphere 

a=b=c

Elongated spheroid 

a=b<c ; a/c = b/c =0.5 

Table 2: Results obtained with the sphere model: trend of added masses matrix coefficients with mesh number of 

elements. 

Lamb’s 
coefficient 

0.5  0.5  0.5  0  0  0 

Number of 
elements 

A11  A22  A33  A44  A55  A66 

Table 2. �Results obtained with the sphere model: trend of added 
masses matrix coefficients with mesh number of elements.
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Table 2: Results obtained with the sphere model: trend of added masses matrix coefficients with mesh number of 

elements. 

Lamb’s 
coefficient 

0.5  0.5  0.5  0  0  0 

Number of 
elements 

A11  A22  A33  A44  A55  A66 

1992 0.474  0.474 0.474 ‐1.39E‐06 ‐1.2E‐06 ‐1,2E‐06 

3092 0.479  0.479 0.478 ‐5.47E‐07 ‐6.4E‐07 ‐5.5E‐07 

4014 0.481  0.481 0.481 ‐3.68E‐07 ‐3E‐07 ‐3.2E‐07 

5298 0.484  0.484 0.484 ‐1.91E‐07 ‐2.1E‐07 ‐2.1E‐07 

6586  0.485  0.485 0.485 ‐1.21E‐07 ‐1.3E‐07 ‐1.3E‐07 

7290 0.486  0.486 0.486 ‐1.01E‐07 ‐1E‐07 ‐1E‐07 

8422 0.487  0.487 0.487 ‐6.98E‐08 ‐8.1E‐08 ‐6.9E‐08 

9586 0.488  0.488 0.488 ‐8.03E‐08 ‐6.5E‐08 ‐6.6E‐08 

10520 0.488  0.488 0.488 ‐5.56E‐08 ‐4.9E‐08 ‐5.2E‐08 

 

Table 3: Error between the expected sphere AM coefficients, and the AM coefficients computed using the proposed 

approach      

Error % (sphere)

Number of 
elements 

A11  A22  A33  A44  A55  A66 

1992  5.247  5.267 5.262 0.000278 0.000231 0.000231 

3092  4.226  4.246 4.247 0.000109 0.000128 0.00011 

4014  3.723  3.746 3.743 7.36E‐05 6.03E‐05 6.35E‐05 

5298  3.251  3.237 3.277 3.82E‐05 4.13E‐05 4.13E‐05 

6586  2.923  2.917 2.938 2.42E‐05 2.59E‐05 2.54E‐05 

7290  2.776  2.781 2.794 2.01E‐05 1.99E‐05 2.06E‐05 

8422  2.586  2.610 2.585 1.4E‐05 1.63E‐05 1.38E‐05 

9586  2.404  2.440 2.436 1.61E‐05 1.31E‐05 1.33E‐05 

10520  2.300  2.324 2.330 1.11E‐05 9.79E‐06 1.05E‐05 

Table 4. Results obtained with the prolate spheroid model: trend of the added masses matrix coefficients with the mesh 

number of elements. 

Lamb’s 
coefficient  

0.21  0.704  0.704  0  0.239  0.239 

Number of 
elements  A11  A22 A33 A44 A55 A66 
1888 0.2011  0.658 0.659 ‐1.27E‐06 0.214 0.214 

3248  0.2032  0.669 0.669 ‐5.48E‐07 0.220 0.220 

4256 0.2041  0.674 0.673 ‐4.19E‐07 0.223 0.223 

5168 0.2045  0.676 0.677 ‐2.51E‐07 0.224 0.224 

6586 0.2053  0.679 0.680 ‐2.1E‐07 0.226 0.226 

7290 0.2054  0.680 0.681 ‐1.96E‐07 0.227 0.227 

8422 0.2058  0.683 0.682 ‐1.56E‐07 0.228 0.228 

9586 0.2061  0.684 0.684 ‐1.14E‐07 0.229 0.229 

10520 0.2062  0.685 0.685 ‐9.64E‐08 0.229 0.229 
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As a result, in this case, the surrounding fluid doesn’t add 
any inertia to the angular acceleration of the body.  
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where, ρ is the density of fluid surrounding the body, a, b, and c are the semi-axes of the ellipsoid, and 

A0, B0, and C0 are coefficients appearing in Eq. (40), which depend only on the shape of the ellipsoid.   
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The analytical computation of all the λ coefficients for a sphere has been carried out by Ref. [10]. 

According to Lamb’s work, which is a reference for airship of traditional configuration, an elongated 
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The rotational added mass of inertia of a spheroid rotating about one of the minor axes is: 
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ellipsoid, rotating about the axis coincident to the c axis, doesn’t displace fluid.  As a result, in this case, 
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Analytical AM terms obtained by means of Eqs. (37) and (38) are then compared with the data 

obtained by the Boundary Element Method (BEM). The shapes chosen are a sphere, and a prolate 
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described for example in Refs. [25, 26], exploiting an algorithm based on the Delaunay triangulation 

[27]. Tables 2-5 address the influence of the mesh density on the added masses coefficients. 
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Table 6: AM for some unconventional airship configurations

 Picture of the airship configuration Added masses matrix coefficients
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1

Configuration inspired by the designer Reindy Allendra 

(http://allendra.carbonmade.com/)

2.2E‐3 0 ‐1.05E‐3 0  5.59E‐5 0

2.14E‐2 0 1.21E‐4  0  ‐3.05E‐4

2.64E‐2 0  ‐8.18E‐4 0

1.46E‐5  0  ‐2.28E‐5

symm 9.87E‐4 0

6.86E‐4

2

Configuration inspired by the “Manned Cloud” concept by 

Jean-Marie Massaud 

(http://www.massaud.com/site/en/#/works/design/transport)

1.56E‐3 0 ‐5.42E‐4 0  5.964E‐5 0

1.5E‐2 0 ‐2.33E‐4  0  ‐2.76E‐4

1.83E‐2 0  ‐4.097E‐4 0

2.29E‐6  0  ‐8.66E‐6

Symm 5.463E‐4 0

3.67E‐4

3

Configuration inspired by the “The flying yacht” concept 

(http://www.theflyingyacht.com/)

1.25E‐2 0 7.21E‐5 0  2.222E‐4 0

5.54E‐2 0 ‐1.050E‐3  0  1.842E‐2

5.3E‐2 0  ‐1.726E‐2 0

4.888E‐5  0  ‐3.189E‐04

Symm 6.936E‐3 0

7.467E‐03

4

Configuration inspired by the “Dynairship” concept from the 

Aereon Company 

(http://www.aereon.com/pages/DYNAIRSHIPII.html)

7.884E‐3 0 4.619E‐03  0  8.937E‐4 0

1.165E‐2 0 ‐1.166E‐5  0 ‐2.902E‐4

1.818E‐1  0  1.309E‐2 0

5.428E‐3  0 ‐1.815E‐4

symm 6.451E‐3 0

5.653E‐4

5

Configuration inspired by the P.791 concept by Lockeed 

Martin Company (see 

http://www.lockheedmartin.com/us/products/p-791.html for 

further details) 

2.792E‐2 0 ‐9.789E‐5  0  2,775E‐4 0

5.432E‐2 0 5,099E‐4  0 ‐1.836E‐4

1.490E‐1  ‐3.282E‐4 0

1.016E‐3  1.136E‐5

symm 3.739E‐3 0

7.117E‐4
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5

Configuration inspired by the P.791 concept by Lockeed 

Martin Company (see 

http://www.lockheedmartin.com/us/products/p-791.html for 

further details) 

2.792E‐2 0 ‐9.789E‐5  0  2,775E‐4 0

5.432E‐2 0 5,099E‐4  0 ‐1.836E‐4

1.490E‐1  ‐3.282E‐4 0

1.016E‐3  1.136E‐5

symm 3.739E‐3 0

7.117E‐4

6

Configuration inspired by the Nautilus/Polytechnic of Turin 

Double-hull airship designed by M. Battipede, M. Lando, 

P.A. Gili, P. Vercesi (www.citation.com)

1.218E‐2 0 0 0  0 0

5.304E‐2 0 0  0 ‐1.166E‐4

1.348E‐1  0  ‐4.12E‐3 0

2.997E‐3  0 0

symm 3.06E‐3 0

2.021E‐3

7

Configuration inspired by the “Alize disc” from P. 

Balaskovic, LTA corporation (www.operation-lta.com).

2.933E‐2 0 ‐9.298E‐5  0  ‐9.63E‐4 0

2.927E‐2 0 1.017E‐3  0 3.704E‐6

2.345E‐1  0  2,576E‐4 0

5.485E‐3  0 5.854E‐7

symm 5.495E‐3 0

1.671E‐5

8

Configuration inspired by the “Airship One” designed by 

Gosha Galitsky 

(http://www.coroflot.com/gosha_id/AirShipOne/1)

9.375E‐3 0 ‐6.291E‐4  0  5.136E‐4 0

7.832E‐2 0 ‐8.446E‐5  0 ‐2.649E‐3

8.641E‐2  0  ‐5.676E‐3 0

4.407E‐3  ‐1.132E‐4

symm 1.548E‐3 0

1.960E‐3

9

Configuration inspired by the ML866 airship designed by 

Aeroscraft ( www.aerosml.com)

1.252E‐2 0 0 0  1.263E‐3

2.404E‐2 0 ‐1.293E‐3  0 0

1.613E‐1  0  0 0

1.937E‐3  0 0

symm 4.957E‐3 0

2.501E‐4
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6

Configuration inspired by the Nautilus/Polytechnic of Turin 

Double-hull airship designed by M. Battipede, M. Lando, 

P.A. Gili, P. Vercesi (www.citation.com)

1.218E‐2 0 0 0  0 0

5.304E‐2 0 0  0 ‐1.166E‐4

1.348E‐1  0  ‐4.12E‐3 0

2.997E‐3  0 0

symm 3.06E‐3 0

2.021E‐3

7

Configuration inspired by the “Alize disc” from P. 

Balaskovic, LTA corporation (www.operation-lta.com).

2.933E‐2 0 ‐9.298E‐5  0  ‐9.63E‐4 0

2.927E‐2 0 1.017E‐3  0 3.704E‐6

2.345E‐1  0  2,576E‐4 0

5.485E‐3  0 5.854E‐7

symm 5.495E‐3 0

1.671E‐5

8

Configuration inspired by the “Airship One” designed by 

Gosha Galitsky 

(http://www.coroflot.com/gosha_id/AirShipOne/1)

9.375E‐3 0 ‐6.291E‐4  0  5.136E‐4 0

7.832E‐2 0 ‐8.446E‐5  0 ‐2.649E‐3

8.641E‐2  0  ‐5.676E‐3 0

4.407E‐3  ‐1.132E‐4

symm 1.548E‐3 0

1.960E‐3

9

Configuration inspired by the ML866 airship designed by 

Aeroscraft ( www.aerosml.com)

1.252E‐2 0 0 0  1.263E‐3

2.404E‐2 0 ‐1.293E‐3  0 0

1.613E‐1  0  0 0

1.937E‐3  0 0

symm 4.957E‐3 0

2.501E‐4

10

Configuration inspired by the concept by Personal Blimp 

Company (www.personalblimp.com)

2.553E‐1 0 0 0  0 0

2.542E‐1 0 0  0 2.85E‐3

2.565E‐1  0  ‐2.859E‐3 0

1.844E‐4  0 0

symm 3.243E‐5 0

6.286E‐5

11

Configuration inspired by the spherical airship by the 21st

Century Airships Inc. (www.21stcenturyairship.com)

2.721E‐1 0 0 0  0 0

2.719E‐1 0 0  0 ‐3.555E‐3

2.691E‐1  0  3.556E‐3 0

2.697E‐5  0 0

symm 5.805E‐4 0

5.524E‐4

12

Configuration inspired by the SkyFreighter concept by 

Millenium Airship (www.milleniumairship.com)

9.687E‐3 0 1.365E‐4  0  ‐8.811E‐4 0

3.54E‐2 0 1,274E‐3  0 5,752E‐4

9.976E‐2  0  ‐4.363E‐4 0

5.801E‐4  0 5.092E‐5

symm 2.501E‐3 0

4.393E‐4

13

Configuration inspired by Strato Cruiser Concept by T. 

Schaedler and M.J. Brown 

(http://www.dezeen.com/2007/10/08/strato-cruiser-airship-

concept-by-tino-schaedler-and-michael-j-brown/)

4.756E‐3 0 ‐1.46E‐3 0  ‐5.997E‐4 0

1.585E‐2 0 8.351E‐5  0  4.662E‐4

6.964E‐2 0  1.823E‐3 0

2.061E‐4  0  ‐6.245E‐6

Symm 2.538E‐3 0

4.218E‐4
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Table 6: AM for some unconventional airship configurations

11 

Configuration inspired by the spherical airship by the 

21st Century Airships Inc. 

(www.21stcenturyairship.com)

2.721E‐1 0 0 0  0 0

2.719E‐1 0 0  0 ‐3.555E‐3

2.691E‐1  0  3.556E‐3 0

2.697E‐5  0 0

symm 5.805E‐4 0

5.524E‐4

12 

Configuration inspired by the SkyFreighter concept by 

Millenium Airship (www.milleniumairship.com)

9.687E‐3 0 1.365E‐4  0  ‐8.811E‐4 0

3.54E‐2 0 1,274E‐3  0 5,752E‐4

9.976E‐2  0  ‐4.363E‐4 0

5.801E‐4  0 5.092E‐5

symm 2.501E‐3 0

4.393E‐4

13 

Configuration inspired by Strato Cruiser Concept by T. 

Schaedler and M.J. Brown 

(http://www.dezeen.com/2007/10/08/strato-cruiser-

airship-concept-by-tino-schaedler-and-michael-j-

brown/)

4.756E‐3 0 ‐1.46E‐3  0  ‐5.997E‐4 0

1.585E‐2 0 8.351E‐5  0 4.662E‐4

6.964E‐2  0  1.823E‐3 0

2.061E‐4  0 ‐6.245E‐6

Symm 2.538E‐3 0

4.218E‐4

14 

Traditional Configuration inspired by the Skyship 600 

airship by Airship Industries 

( http://en.wikipedia.org/wiki/Airship_Industries_Skyship_600)

4.27E‐3 0 ‐3.535E‐6  0  1.230E‐5 0

3.353E‐2 0 ‐5.594E‐5  0 ‐1.261E‐4

3.194E‐02  0  9,841E‐5 0

4,977E‐6  1.827E‐6

symm 1.002E‐3 0

1.029E‐3

15 

Configuration inspired by the “Stalker Airship” by K. 

Judlin for Yanko Design 

(http://www.yankodesign.com/2008/07/14/stalker-

symbiotic-exploration-in-the-year-xxii/)

6.816E‐4 0 ‐9.987E‐6  0  7.625E‐4 0

6.033E‐3 0 ‐4.739E‐6  0 3.525E‐5

9.740E‐2  0  ‐2.263E‐4 0

1.477E‐5  0 ‐9.776E‐8

symm 2.514E‐3 0

1.453E‐4

16 

Configuration inspired by the “Skylifter Airship” 

configuration proposed by the Skylifter Company 

(http://skylifter.com.au/)

1.511E‐2 0 0 0  1.514E‐3 0

1.511E‐02 0 ‐1.533E‐3  0 0

2.835E‐01  0  0 0

8.507E‐03  0 0

symm 8.525E‐03 0

0
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14

Traditional Configuration inspired by the Skyship 600 airship 

by Airship Industries 

( http://en.wikipedia.org/wiki/Airship_Industries_Skyship_60

0)

4.27E‐3 0 ‐3.535E‐6 0  1.230E‐5 0

3.353E‐2 0 ‐5.594E‐5  0 ‐1.261E‐4

3.194E‐02 0  9,841E‐5 0

4,977E‐6  1.827E‐6

symm 1.002E‐3 0

1.029E‐3

15

Configuration inspired by the “Stalker Airship” by K. Judlin 

for Yanko Design 

(http://www.yankodesign.com/2008/07/14/stalker-symbiotic-

exploration-in-the-year-xxii/)

6.816E‐4 0 ‐9.987E‐6  0  7.625E‐4 0

6.033E‐3 0 ‐4.739E‐6  0 3.525E‐5

9.740E‐2 0  ‐2.263E‐4 0

1.477E‐5  0 ‐9.776E‐8

symm 2.514E‐3 0

1.453E‐4

16

Configuration inspired by the “Skylifter Airship” 

configuration proposed by the Skylifter Company 

(http://skylifter.com.au/)

1.511E‐2 0 0 0  1.514E‐3 0

1.511E‐02 0 ‐1.533E‐3  0 0

2.835E‐01  0  0 0

8.507E‐03  0 0

symm 8.525E‐03 0

0

unconventional airships cannot be achieved through the 
conventional formulas used for ellipsoids, even though 
they could be used as useful comparison data. Tables 6 and 
7 present some unconventional configurations of airships 
and some typical hot air balloons shapes, together with their 
added masses coefficients. It is worth noting that all the 
configurations proposed here are inspired by real concepts 
documented in scientific papers and websites. About the 
axis reference system, as explained in the first insert, the 
X axis is longitudinal, and points towards the nose of the 
configuration, the Y axis lies in the lateral direction, pointing 
the right side of the body, while the Z axis is vertical, oriented 
to the top of the shape. The origin of the reference system is 
centered in the centre of volume of the configurations.

5. Discussions

One of the configurations presented (#3) does not present 
any plane of symmetry; the off-the-diagonal values are quite 
high, if compared to the translational and rotational element 
lying on-the-diagonal, and the matrix is sparse, with a few 
elements with zero value. Configurations #1, #2, #3, #4, #5, 
#7, #8, #9, #12, #13, #14, and #15 present a single longitudinal 
plane of symmetry; in this case, the added masses matrix 

shows six (6) off-diagonal elements whose value are different 
from zero. Configurations #6, #10, #11, #16, #17, #18, #19, and 
#20 present two planes of symmetry; out-of-diagonal terms 
in the matrix show low values, and only two off-diagonal 
cells are different from zero. Their absolute value tends to the 
same result, if the object has axial symmetry property about 
an axis. 

It is worth noticing that the terms in the matrix are 
dimensionless; hence, the shapes that are similar to a sphere 
present values of the translational terms that are more or less 
half the values reported by Lamb [10]. In Lamb’s work, the 
dimensionless variables were based on the volume of the 
sphere, 4/3 π r3, while here the cube of length (2r)3 is used, 
hence the ratio is about 2. When the body is axial-symmetric 
and streamlined, the difference in the diagonal translational 
terms tend to be larger, with two terms equal in value. On 
the other hand, complex shapes, like configurations #16, 
#19, and #20, present null values of rotation element around 
the Z axis; these bodies are perfectly axial-symmetric, so 
that a rotation around the Z axis does not displace fluid. 
The configuration #17 represent a shape similar to an hot 
air balloon with gores, and in this case a rotation around 
the Z axis moves a part of fluid, so that the correspondingly 
value in the added masses matrix is different from zero. 
Values found for spheres or oblate spheroids presenting 
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Table 7. AM for balloon configurations
Table 7: AM for balloon configurations

 Picture of balloon 

configuration

Added masses matrix coefficients

17 

Typical hot air balloon configuration 

inspired by the Ultramagic manufacturer 

design (www.ultramagic.com) 

2.283E‐1 0  0  0  ‐6.782E‐4 0 

2.282E‐1 0  6.766E‐4  0  0 

2.38E‐1 0  0  0 

1.248E‐3  0  0 

Symm  1.245E‐3 0 

1.128E‐3

18 

Special shape hot air balloon inspired by 
the Cameron manufacturer design[6] 

1.415E‐1 0  0  0  ‐2.763E‐2 0 

1.863E‐1 0  ‐1.197E‐4  0  0 

6.467E‐1 0  0  0 

4.781E‐3  0  0 

symm  1.18E‐2 0 

1.14E‐2

19 

Spherical scientific balloon at medium altitude 

[6] 

1.888E‐1 0  0  0  1.271E‐3 0 

1.888E‐1 0  ‐1.268E‐3  0  0 

2.672E‐1 0  0 

1.466E‐3  0  0 

Symm  1.465E‐3 0 

0 

20 

Spherical scientific balloon at low 

altitude[6] 

2.984E‐1 0  0  0  9.279E‐3 0 

2.985E‐1 0  ‐9.265E‐3  0  0 

2.367E‐1 0  0  0 

9.208E‐3  0  0 

symm  9.225E‐3 0 

0 

altitude put reference [6]

put reference [6]
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three planes of symmetry have already been presented in 
the section dealing with validation; in this case, the elements 
in the mass matrixes are all null, except the values A11, A22, 
A33, A44, and A55, as already found by Lamb. The increase in 
precision obtainable with the application of the coefficients 
presented in this paper can be evaluated by comparing 
the results with the equivalent ellipsoid method, which is 
currently suggested by the literature [2] for unconventional 
shapes. Due to the difference between the Lamb and the 
SNAME [21] methods to obtain dimensionless quantities, 
some corrections should be applied. Two shapes will be 
considered: #12, which represents a complex shape; and #14, 
which is close to an axial-symmetric ellipsoidal shape. First, 
an equivalent ellipsoid with longitudinal semi-axis a and 

lateral and vertical semi-axes equal to b is found for shapes 
#12 and #14. Considering the same volume (Vol) and length 
(l) of the real shape, it follows that:

the matrix is sparse, with a few elements with zero value. Configurations #1, #2, #3, #4, #5, #7, #8, #9, 

#12, #13, #14, and #15 present a single longitudinal plane of symmetry; in this case, the added masses 

matrix shows six (6) off-diagonal elements whose value are different from zero. Configurations #6, #10, 

#11, #16, #17, #18, #19, and #20 present two planes of symmetry; out-of-diagonal terms in the matrix 

show low values, and only two off-diagonal cells are different from zero. Their absolute value tends to 

the same result, if the object has axial symmetry property about an axis.  

It is worth noticing that the terms in the matrix are dimensionless; hence, the shapes that are similar to a 

sphere present values of the translational terms that are more or less half the values reported by Lamb 

[10]. In Lamb’s work, the dimensionless variables were based on the volume of the sphere, 4/3 π r3, 

while here the cube of length (2r)3 is used, hence the ratio is about 2. When the body is axial-symmetric 

and streamlined, the difference in the diagonal translational terms tend to be larger, with two terms 

equal in value. On the other hand, complex shapes, like configurations #16, #19, and #20, present null 

values of rotation element around the Z axis; these bodies are perfectly axial-symmetric, so that a 

rotation around the Z axis does not displace fluid. The configuration #17 represent a shape similar to an 

hot air balloon with gores, and in this case a rotation around the Z axis moves a part of fluid, so that the 

correspondingly value in the added masses matrix is different from zero. Values found for spheres or 

oblate spheroids presenting three planes of symmetry have already been presented in the section 

dealing with validation; in this case, the elements in the mass matrixes are all null, except the values 

A11, A22, A33, A44, and A55, as already found by Lamb. The increase in precision obtainable with the 

application of the coefficients presented in this paper can be evaluated by comparing the results with 

the equivalent ellipsoid method, which is currently suggested by the literature [2] for unconventional 

shapes. Due to the difference between the Lamb and the SNAME [21] methods to obtain dimensionless 

quantities, some corrections should be applied. Two shapes will be considered: #12, which represents a 

complex shape; and #14, which is close to an axial-symmetric ellipsoidal shape. First, an equivalent 

ellipsoid with longitudinal semi-axis a and lateral and vertical semi-axes equal to b is found for shapes 

#12 and #14. Considering the same volume (Vol) and length (l) of the real shape, it follows that: 

       (48) 

An a/b ratio can be so found for configurations #12 and #14, and values of k1, k2, and k’ can be found 

from the Table included in the paper by Lamb [10], as Figure 9 shows.  

(51)

An a/b ratio can be so found for configurations #12 and 
#14, and values of k1, k2, and k’ can be found from the Table 
included in the paper by Lamb [10], as Fig.9 shows. 

Table 8 summarizes the results obtained, in terms of 
ellipsoid fitness ratio, and coefficients.

To compare added masses coefficients obtained with the 
dimensionless one from Ref. [21] adopted here (Aij), the 
following relations should be considered:

 
Figure 9: k1, k2, k’ coefficients from Lamb report [Lamb, H.] 

Table 8 summarizes the results obtained, in terms of ellipsoid fitness ratio, and coefficients. 
Table 8: Lamb’s AM coefficients for Configurations 12 and 14.  
 a/b ratio K1  K2 K’ 

Configuration #12 6.13 0.045 0.92 0.77 

Configuration #14 3.57 0.1 0.83 0.54 

 

To compare added masses coefficients obtained with the dimensionless one from Ref. [21] adopted 

here (Aij), the following relations should be considered: 
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With l=2a, and calling τ=a/b, this leads to: 

  (50) 

Table 9 shows a comparison between coefficients computed with the proposed method, and by the 

methodology by Lamb based on the equivalent ellipsoid. The table clearly shows how applying the 

equivalent ellipsoid method to a traditional airship shape, like config. #14, leads to small errors; on the 

other hand, applying the equivalent ellipsoid method to an unconventional shape with complex shape 

(e.g. config. #12) can introduce significant errors. The added masses contribution is critical, when 
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Table 6: AM for some unconventional airship configurations

 Picture of the airship configuration Added masses matrix coefficients
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Configuration inspired by the designer Reindy Allendra 

(http://allendra.carbonmade.com/)

2.2E‐3 0 ‐1.05E‐3 0  5.59E‐5 0

2.14E‐2 0 1.21E‐4  0  ‐3.05E‐4

2.64E‐2 0  ‐8.18E‐4 0

1.46E‐5  0  ‐2.28E‐5

symm 9.87E‐4 0

6.86E‐4

(53)

Table 9 shows a comparison between coefficients 
computed with the proposed method, and by the 
methodology by Lamb based on the equivalent ellipsoid. The 
table clearly shows how applying the equivalent ellipsoid 

 
Figure 9: k1, k2, k’ coefficients from Lamb report [Lamb, H.] 
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 a/b ratio K1  K2 K’ 

Configuration #12 6.13 0.045 0.92 0.77 

Configuration #14 3.57 0.1 0.83 0.54 

 

To compare added masses coefficients obtained with the dimensionless one from Ref. [21] adopted 

here (Aij), the following relations should be considered: 
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With l=2a, and calling τ=a/b, this leads to: 
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Table 9 shows a comparison between coefficients computed with the proposed method, and by the 

methodology by Lamb based on the equivalent ellipsoid. The table clearly shows how applying the 

equivalent ellipsoid method to a traditional airship shape, like config. #14, leads to small errors; on the 

other hand, applying the equivalent ellipsoid method to an unconventional shape with complex shape 

(e.g. config. #12) can introduce significant errors. The added masses contribution is critical, when 

Fig. 10. ��k1, k2, k’ coefficients from Lamb report [Lamb, H.] 

Table 8. Lamb’s AM coefficients for Configurations 12 and 14. Table 8: Lamb’s AM coefficients for Configurations 12, 14. 

a/b K1 K2 K’ 

Config#12 6.13 0.045 0.92 0.77 

Config #14 3.57 0.1 0.83 0.54 

Table 9: AM matrix coefficients for Configurations 12, 14. 

Config.  A11 A22 A33 A44 A55 A66

#12

Proposed method on real 

shape 
9.69E-3 9.97E-2 3.54E-2 5.8E-4 4.4E-4 2.5E-3 

Lamb method on 

equivalent ellipsoid 
6.2E-4 1.28E-2 1.28E-2 0 5.51E-4 5.51E-4 

Equiv. ellipsoid vs. Real 

shape difference 
-93.6% -87.2% -63.8% - +25.2% -78% 

#14

Proposed method on real 

shape 
4.27E-3 3.19E-2 3.35E-2 4.98E-6 1.02E-3 1.03E-3 

Lamb method on 

equivalent ellipsoid 
4.11E-3 3.41E-2 3.41E-2 0 1.19E-3 1.19E-3 

Equiv. ellipsoid vs. Real 

shape difference 
-3.75% +6.9% +1.79% / +16.7% +15.5% 

Table 9. AM matrix coefficients for Configurations 12, 14.

Table 8: Lamb’s AM coefficients for Configurations 12, 14. 

a/b K1 K2 K’ 

Config#12 6.13 0.045 0.92 0.77 

Config #14 3.57 0.1 0.83 0.54 

Table 9: AM matrix coefficients for Configurations 12, 14. 

Config.  A11 A22 A33 A44 A55 A66

#12

Proposed method on real 

shape 
9.69E-3 9.97E-2 3.54E-2 5.8E-4 4.4E-4 2.5E-3 

Lamb method on 

equivalent ellipsoid 
6.2E-4 1.28E-2 1.28E-2 0 5.51E-4 5.51E-4 

Equiv. ellipsoid vs. Real 

shape difference 
-93.6% -87.2% -63.8% - +25.2% -78% 

#14

Proposed method on real 

shape 
4.27E-3 3.19E-2 3.35E-2 4.98E-6 1.02E-3 1.03E-3 

Lamb method on 

equivalent ellipsoid 
4.11E-3 3.41E-2 3.41E-2 0 1.19E-3 1.19E-3 

Equiv. ellipsoid vs. Real 

shape difference 
-3.75% +6.9% +1.79% / +16.7% +15.5% 
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method to a traditional airship shape, like config. #14, leads  
to small errors; on the other hand, applying the equivalent 
ellipsoid method to an unconventional shape with complex 
shape (e.g. config. #12) can introduce significant errors. 
The added masses contribution is critical, when modeling 
the dynamic of systems like airships, hot air balloons, 
and submarine vehicles; for instance, by computing the 
acceleration of a sphere 

modeling the dynamic of systems like airships, hot air balloons, and submarine vehicles; for instance, 

by computing the acceleration of a sphere (λ=0.5), and neglecting the added masses contribution, a 50% 

error with respect to the correct value is obtained, with a consequent overestimation of the acceleration.  
Table 9: AM matrix coefficients for Configurations 12, 14. 
Config.  A11 A22 A33 A44 A55 A66 

#12 

Proposed method on 

the real shape 
9.69E-3 9.97E-2 3.54E-2 5.8E-4 4.4E-4 2.5E-3 

Lamb’s method on the 

equivalent ellipsoid 
6.2E-4 1.28E-2 1.28E-2 0 5.51E-4 5.51E-4 

Equiv. ellipsoid vs. 

Real shape difference 
-93.6% -87.2% -63.8% - +25.2% -78% 

#14 

Proposed method on 

the real shape 
4.27E-3 3.19E-2 3.35E-2 4.98E-6 1.02E-3 1.03E-3 

Lamb’s method on the 

equivalent ellipsoid 
4.11E-3 3.41E-2 3.41E-2 0 1.19E-3 1.19E-3 

Equiv. ellipsoid vs. 

Real shape difference 
-3.75% +6.9% +1.79% / +16.7% +15.5% 

  

ACKNOWLEDGMENTS 
This research has been supported by the European Union, Seventh Framework Programme (FP7/2007-

2013) under grant agreement n° FP7-AAT GA-2011-285602-MAAT-Multibody Advanced Airship for 

Transport. 

References
[1]  Khoury, G.A., and Gillet, J.D.,  “Airship Technology”, Cambridge University Press, Cambridge, UK, 1999. 

[2] Carichner, G.E., and Nicolai, L., , “Fundamentals of Aircraft and Airship Design, Volume Two - Airship 

Design and Case Studies”, AIAA Education Series, April 2013, ISBN-13: 978-1600868986. 

[3] Ceruti, A. and Marzocca, P. “Conceptual Approach to Unconventional Airship Design and Synthesis”, J. 

Aerosp. Eng., 2013. 

DOI: 10.1061/(ASCE)AS.1943-5525.0000344 

, and neglecting the added 
masses contribution, a 50% error with respect to the correct 
value is obtained, with a consequent overestimation of the 
acceleration. 
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