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Abstract

A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the 

far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore 

the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth 

to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, 

this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. 

In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global 

optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance 

taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo 

orbit and avoid collisions with threatening objects. 
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1. Introduction

In 1760, Leonard Euler formulated the restricted three 

body problem in a rotating frame handmade prediction on 

the premise that three collinear equilibrium points (L1, L2, 

L3) exist. In his 1772 essay “essaisur le probleme des Trois 

Corps”, Lagrange confirmed Euler’s prediction and solved 

for two additional equilibrium points (L4, L5) which form an 

equilateral triangle with the primaries. Henri Poincare later 

demonstrated in his “Methodes Nouvelles de la Mechanique 

Celeste” that there could be no such analytic quantities in 

positions, velocities and mass ratio. He concluded that the 

three body problem could not be solved using algebraic 

formulas and integrals[1]. The Sun-Earth and Earth-Moon 

Lagrange points as well as their Halo orbits are shown in Fig.1.

The triangular equilibrium points, L4 and L5, could be used 

as parking regions because no station keeping is necessary on 

those points. On the other hand, the collinear points L1, L2 

and L3 can be selected for space observation and planetary 

exploration missions. They can provide good observation 

orbits toward the Sun in the Sun-Earth system during Sun 

observation missions. A spacecraft for the space observation 

mission orbiting around the Sun-Earth L2 point can provide 

constant observation geometry with half of the entire celestial 
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sphere available at any given time. Additionally, an orbit 

around the Sun-Earth L2 point is useful for non-cryogenic 

missions that require great thermal stability, suitable for 

highly precise visible light telescopes. Periodic orbits 

around the Earth-Moon L2 point can be used to establish 

a permanent communication link between the Earth and 

the far side of the Moon as suggested by A.C. Clark in 1950 

and R. Farquhar in 1966. An orbit around a Lagrange point 

provides the ability for Earth transfer, return trajectory 

and interplanetary transport. Recent studies have also 

demonstrated that even formation flying is possible using 

the Lagrange points[2].

Table 1 lists past, present and future spacecraft missions 

on the Lagrange points[3]. The ARTEMIS mission was the 

first to navigate and perform station keeping operations on 

the Earth-Moon L1 and L2 Lagrange points. ARTEMIS P1 and 

P2 spacecrafts were used for simultaneous measurements of 

particles and electromagnetic fields from the two locations. 

They provided the first ever three-dimensional information 

on how energetic particle acceleration takes place near the 

Moon’s orbit in the distant magnetosphere and in the solar 

wind[4].

Roughly 50 man-made objects had been placed in the 

lunar orbit since the dawn of space exploration up to mid-

2005. At least 34 of them have crashed onto the Moon or been 

maneuvered out of the lunar orbit. Several of the remaining 

spacecrafts and propulsion units are also believed to have 

reached the lunar surface[5]. Although the number of man-

made debris or asteroids in the lunar orbit is still small, 

a collision avoidance maneuver system would be useful 

to reduce the probability of colliding with uncontrolled 

threatening objects from the outer space.

The scope of this paper focuses on an insertion maneuver 

to the quasi-halo orbit using global optimization methods 

including simulated annealing, genetic algorithm and 

pattern search. Prior works related to this research are 
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Fig.1. Lagrange Point Orbits and Halo orbits 

Table 1. Spacecraft missions on the Lagrange Points 

Point Status Earth-Sun Earth-Moon 

L1 

Mission 
Completed 

ISEE-3, Genesis Not reported 

On Operation WIND, SOHO, ACE Not reported 

Planned 
LISA Pathfinder, KUAFU, Deep Space Climate 

Observatory, Solar-C 
Not reported 

L2 

Mission 
Completed 

WIND, Chang'e2 ARTEMIS P1/P2 

On Operation 
WMAP, Planck Surveyor, Herschel Space 

Observatory 
Not reported 

Planned 
JWST,Gaia, Terrestrial Planet Finder, Darwin, Wide 

Field Infrared Survey Telescope, Euclid 
Exploration Gateway Platform

L4 On Operation STEREO A Not reported 
L5 On Operation STEREO B Not reported 
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Roughly 50 man-made objects had been placed in the lunar orbit from the dawn of space exploration 

to mid of 2005. At least 34 of them have crashed onto the Moon or been maneuvered out of the lunar 

orbit, and several of the remaining spacecrafts and propulsion units are also believed to have reached 

the lunar surface[5]. Although the number of man-made debris or asteroids in the lunar orbit is small, 

a collision avoidance maneuver is sometimes necessary to reduce the probability of collision against 
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described as follows. Santos et al. studied the transfer 

trajectories between two coplanar orbits using several 

impulses, using genetic algorithms to find solutions 

that minimize fuel consumption[6]. Paluszek et al. used 

a downhill simplex, genetic algorithm and simulated 

annealing to investigate the problem of finding a minimum 

time trajectory from the Earth to the Mars orbit using 

a fixed thrust electric propulsion system[7]. Wang et 

al. implemented the pattern search method to reduce 

deviations between calculations performed by the on-

board calculation and the ground elaboration orbit models 

with the goal of improving the accuracy of on-board 

attitude determination for satellites[8]. Vries developed an 

efficient method of satellite maneuver optimization based 

on a Monte Carlo approach in combination with simulated 

annealing[9]. Lastly, Kim et al. studied a genetic algorithm 

optimization of the lunar transfer trajectory using a weak 

stability boundary[10].

This paper investigates an insertion maneuver of a 

spacecraft into the Earth-Moon L2 quasi-halo orbit by 

using simulated annealing, genetic algorithm and pattern 

search method to decrease the probability of collision with 

threatening uncontrolled objects. The fitness function is 

used to minimize the distance between the reference L2 

quasi-halo orbit and a maneuvering spacecraft. The STK/

Astrogator, STK/AdvCat and Matlab global optimization 

toolbox are utilized as simulation tools[12, 22].

Unlike the aforementioned works, this study aims to 

compare global optimization methods for an insertion 

maneuver into the Earth-Moon L2 quasi-halo orbit with 

collision avoidance taken into consideration. The most 

valuable benefit of this approach is that it can get a periodic 

orbit trajectory near the unstable Lagrange points where the 

gravitational attractions of the Earth and Moon equalize.

The rest of this paper is organized as follows. Section 2 

contains a brief introduction of the optimization algorithm 

used in this paper. The circular restricted three body problem 

is described in Section 3. Section 4 presents the maneuver 

plan for an insertion into the Earth-Moon L2 quasi-halo 

orbit using global optimization. Sections 5 and 6 describe 

simulation results and the conclusion.

 

2. Global Optimization Algorithm

The non-linear solver based on the gradient method 

quickly converges to a local minimum near the initial guess, 

but may not find a global solution. In contrast, the global 

search method is able to search more effectively within an 

entire solution space and find a global minimum[12]. This 

paper compares three global optimization algorithms. The 

simulated annealing method uses stochastic iteration or 

meta-heuristics which is derivative-free and can handle 

problems without constraints or boundary conditions. 

This method can find a global solution given a slow-

enough cooling schedule. The genetic algorithm is based 

on evolutionary computation and also uses stochastic 

iteration without gradients. The pattern search method uses 

deterministic iteration, which is known to be more robust 

and efficient in computation time. 

The simulated annealing method is a generic 

probabilistic meta-heuristic method proposed by 

Kirkpatrick, Gelett and Vecchiinin in 1983 to find a global 

minimum of a cost function. The method originated from 

thermodynamics and models the cooling process of a 

metal, with the initial state fed into a neighbor-generating 

function to create a random neighboring state. Any 

downhill step is accepted for minimizing functions, and 

the process is repeated from a new point afterward. If an 

uphill step is accepted, the simulated annealing can escape 

from a local minimum. This uphill decision is made using 

the Metropolis criteria.  As optimization progresses, the 

length of the steps decreases and the solution gets closer 

to a global optimum[9, 12].

The Genetic algorithm introduced in 1975 by John 

Holland is a meta-heuristic global search method for solving 

optimization problems. The genetic algorithm creates a 

population and applies genetic operators such as mutation 

and crossover for finding the best solution. The three most 

important requirements for using the genetic algorithms are 

the definition of an objective function, the implementation of 

a genetic representation, and the implementation of genetic 

operators. The genetic algorithm is an iterative scheme 

where the population is modified using the best features 

of the ‘genes’ from previous generations. The selection, 

crossover and mutation operators are applied to identify the 

best solution[6, 12, 13].

Pattern search is an optimization process also known as 

the direct-search, derivative-free and black-box method. 

It can be used on problems that are not continuous or 

differentiable. It was named by Hooke and Jeeves in 1961 

and does not require an optimized function gradient. Fermi 

and Metropolis at the Los Alamos nuclear laboratory later 

developed a more advanced method with an adjustable 

mesh size. Pattern search evaluates the objective function 

at the lattice point centered on the current iteration to find 

the best objective function value then defines a new iteration 

at the resulting lattice point. The algorithm also expands 

or contracts the lattice depending on whether a more 

appropriate solution has been found. The generation point 
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in a pattern is determined by polling, with the maximum 

number of points generated at each step. The efficiency of 

the solution can be improved by controlling the polling order 

of the points[3, 12, 14].

 

3. Circular Restricted Three Body Problem

The general three body problem posits that three bodies 

with arbitrary masses attract one another according to the 

universal law of gravitation. The gravitational three body 

problem requires 18 integrals of motion, but the number 

of integrals could be reduced to 8 by using conserved 

quantities; six of these scalar integrals are determined 

from the conservation of linear momentum, three from the 

conservation of total angular momentum, and one integral 

from the conservation of energy[15].

The three body problem can be simplified into a circular 

restricted three body problem defined as a system of two 

bodies in a circular orbit about their barycenters, and a third 

body with negligible mass. In the Earth-Moon barycentric 

frame, the barycenter of the two celestial bodies becomes the 

origin. The x axis is parallel to the line between the Earth and 

Moon, and is directed from the Earth toward the Moon. The 

y axis is 90 degrees from the x axis in the Earth and Moon’s 

plane of motion. The y axis is positive in the general direction 

of the motion of the Moon relative to the Earth. The z axis 

is defined to complete a right-handed coordinate system 

and is normal to the plane of motion spanned by the x and 

y axes[16]. From a combination of the kinematic expansion, 

a scalar, second order and nonlinear set of differential 

equations are derived as:
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x� � �y� � x� �� ���μ����μ��� � μ�����μ�
�� � F�

�    (1) 

y� � ��x� � y� �� ���μ���� � μ�
�� �

F�
�     (2) 

z� � �����μ���� � μ�
�� �

F�
�     (3) 

where d and r denote the non-dimensional distance from the Earth to the spacecraft and the non-dimensional 

distance from the Moon to the spacecraft, respectively. μand (1-μ) represent the non-dimensional mass of the 

Moon and the non-dimensional mass of the Earth, respectively.F�, F� andF�denote external perturbation forces 
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On one of the three collinear liberation points (x�� in the planar case, it is assumed that the external 
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x� � �y� � ��� � ��x     (4) 

y� � ��x� � �� � ��y     (5) 

z� � ���z       (6) 

where � � ���μ�
|���μ|� �

μ
|�����μ|� . 

The eigenvalue of Eqs.(4)~(6) is 

(1)
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where d and r denote the non-dimensional distance from the 

Earth to the spacecraft and the non-dimensional distance 

from the Moon to the spacecraft, respectively. μand (1-μ) 

represent the non-dimensional mass of the Moon and the 

non-dimensional mass of the Earth, respectively. Fx, Fy and Fz 

denote external perturbation forces on the x and y axes and 

the thrust of the spacecraft respectively.

On one of the three collinear liberation points (xe) in the 

planar case, it is assumed that the external perturbation and 

thrust are zero. Then, Eqs.(1)~(3) can be written as:
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λ��� � ���β� � �β�� � β�
�     (7) 

λ��� � ���β� � �β�� � β�
�     (8) 

λ��� � ��√c      (9) 

where β� � � � �
� and β� � ���c � ���c � �� . 

The general solution is written as: 
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���� �� ��k�α�eλ� � k�α�e�λ� � k�A�����ω��� � φ�  (11) 

���� �� �A�c���ω�� � ψ�     (12) 

where k� � �����ω��
�ω� , k� � �����ω���

�ω�� . α�, α�, A� and A� can be calculated from the initial condition, and φ 

and ψ are angular phases. 

To analyze the periodic motion, assume α� andα�are zero. Then the linearized solution becomes[15] : 

���� �� A�c���ω��� � φ�     (13) 

���� �� ��k�A�����ω��� � φ�    (14) 
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The different types of periodic orbits near a collinear point are; 

A� � ���A� � �: Planar Lyapunov Orbits 

A� � ������ � ��: Vertical Lyapunov Orbits 

A� � ���A� � ���ω�� � ω�: Lissajous Orbits( or Quasi-Halo Orbits) 

A� � ���A� � ���ω�� � ω�: Halo Orbits 

The Lyapunov orbits are divided into a horizontal Lyapunov orbit and a vertical Lyapunov orbit. The horizontal 

Lyapunov orbit is a planar orbit with no out-of-plane motion and lies entirely within the orbital plane of the 

primaries. The vertical Lyapunov orbit is almost a vertical orbit with a typical eight-shape doubly symmetric 

geometry which is axisymmetric about the x-axis and symmetric with respect to the xz plane. 

The Lissajous orbit is defined as a trajectory with an in-plane and out-of-plane oscillation, but the oscillation 

frequencies of the in-plane and out-of-plane motion differ over time. The Lissajous orbits can be seen as quasi-

symmetric to the xy-plane and xz-plane. 
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are;

Ax≠0 & Az=0 : Planar Lyapunov Orbits

Ax=0 & Az≠0 : Vertical Lyapunov Orbits

Ax≠0 & Az≠0 & ωxy≠ωz : �Lissajous Orbits(or Quasi-Halo 

Orbits)

Ax≠0 & Az≠0 & ωxy=ωz : Halo Orbits

The Lyapunov orbits are divided into a horizontal 

Lyapunov orbit and a vertical Lyapunov orbit. The horizontal 

Lyapunov orbit is a planar orbit with no out-of-plane motion 

and lies entirely within the orbital plane of the primaries. 

The vertical Lyapunov orbit is almost a vertical orbit with 

a typical eight-shape doubly symmetric geometry which is 

axisymmetric about the x-axis and symmetric with respect 

to the xz plane.

The Lissajous orbit is defined as a trajectory with an 
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in-plane and out-of-plane oscillation, but the oscillation 

frequencies of the in-plane and out-of-plane motion 

differ over time. The Lissajous orbits can be seen as quasi-

symmetric to the xy-plane and xz-plane.

The halo orbit has an in-plane and out-of-plane motion. 

However, the frequency stays the same and the orbit is 

periodic. The symmetricity to the xy-plane of the primaries 

no longer exists. The halo orbit only exists for the minimum 

in-plane amplitude and provides an exclusion zone located 

around the line connecting the primaries.

The quasi-halo orbit is a “mixture” of the Lissajous and 

halo orbits. The orbit circulates through the same path as 

the halo orbit, but its shape is similar to torus. The quasi-

halo orbit originates from the Lissajous orbits with a specific 

minimum boundary value of the out-of-plane amplitude. 

At this boundary amplitude, the Lissajous orbit loses their 

symmetry with respect to the xy-plane and starts to develop 

an exclusion zone about the line connecting the primaries. 

It is very useful for science and observation missions with 

formation flights[3, 17, 18].

 

4. ��Insertion Maneuver Planning for Earth-
Moon L2 Quasi-Halo Orbit

In CR3BP (Circular Restricted Three Body Problem), the 

third small body is located at the Lagrange point where the 

gravitational pull of two large bodies is balanced. There exist 

five Lagrange points in the Earth-Moon rotating coordinate 

system. L1, L2 and L3 are saddle points which are stable along 

the axis between the two primary bodies but unstable in the 

other direction. Station keeping maneuvers are therefore 

required to remain at these points. The L4 and L5 points are 

stable and do not require station keeping maneuvers. The 

Quasi-halo orbit can perform periodic motion but is not 

actually an orbit around the Lagrange point. The Quasi-halo 

orbit can also supply trajectories to transfer into and out of the 

Lagrange orbits by providing low energy manifolds[18, 19].

A spacecraft placed in an Earth-Moon L2 quasi-halo 

orbit can communicate between the Earth and the far 

side of the Moon. This quasi-halo orbit could be used to 

establish a lunar space station that can serve as a gateway 

for solar system exploration or as a fueling spacecraft to 

help other spacecrafts depart the Earth Moon system with 

lower maneuver costs. This can reduce the overall size of the 

spacecraft as well as the cost of the mission.

For this mission, a spacecraft requires an impulsive 

burn to transfer from the Earth parking orbit to the point 

of insertion into the quasi-halo orbit. Additionally, an 

insertion maneuver is required to approach an Earth-

Moon L2 quasi-halo orbit. There are three types of transfers 

to enter the quasi-halo orbit; direct transfer, low thrust 

transfer and ballistic lunar trajectory transfer. Parker[20] 

calculated the fuel savings for these different types of 

transfers for a spacecraft travelling from the Earth parking 

orbit at 185km altitude to the Earth-Moon L2 point. Parker 

showed that the direct transfer from LEO to L2 requires a 

total delta-V of 3.9823 km/s over 5 days of transfer time. 

This paper adopted the direct transfer because the low 

thrust and ballistic lunar trajectory transfers to the Moon 

require relatively long transfer times. Such long durations 

to reach the quasi-halo orbit would decrease the reliability 

of the mission[21].

Although halo orbit is both periodic and time independent 

in the CR3BP, it does not consider all the gravitational and 

non-gravitational effects of the full solar system, the solar 

radiation pressure and the non-uniform gravity of the 

Earth and the Moon. A differential correction method is 

used to compute maneuver time and delta-V to inject a 

satellite into an Earth-Moon L2 quasi-halo orbit departing 

from a circular low Earth parking orbit. A quasi-halo orbit 

insertion maneuver is also investigated using the differential 

corrector. The STK/Astrogator contains full-force models 

and interplanetary propagation/targeting techniques. Table 

2 lists the initial state of a spacecraft on the low Earth orbit.

The mission starts from an initial low Earth circular parking 

orbit followed by a quasi-halo orbit injection maneuver near 

the Earth-Moon L2 Lagrange point. The insertion point of 

the quasi-halo orbit is selected at 20,000 km in the z axis, 

and 0 km in the x and y axes with the origin of the Earth-

Moon L2 point. To make a periodic orbit for station keeping, 

the end condition for this propagation segment after one 

period requires that the spacecraft cross the Earth-Moon 

L2 Z-X plane with Vx=0. The delta-v required for quasi-halo 

orbit insertion using the differential-corrector method in 

STK Astrogator is obtained as shown in Table 3. Table 3 lists 

the maneuver information and state of the spacecraft on 

transfer orbit for insertion into the Earth-Moon L2 quasi-

halo orbit[22].

After the insertion maneuver into the quasi-halo orbit, it 

is assumed that collision is expected from an uncontrolled 

object on the Earth-Moon L2 quasi-halo orbit. Table 4 

shows the initial state of the uncontrolled object. If a 

potential collision risk is detected, a precise orbit should be 

determined by using all possible tracking data from global 

observation sites on Earth. Table 5 lists orbit determination 

covariance and the collision information of the assumed 

spacecraft with the uncontrolled object.

Once the collision risk is greater than a maximum threshold, 

a plan for avoidance maneuver should be generated. An 
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acceptable avoidance maneuver plan should produce an orbit 

change that reduces the risk of collision while still meeting 

positioning constraints to retain the quasi-halo orbit.

Figure 2. shows a flowchart to calculate the optimal 

maneuver and evaluate its performance for collision 

avoidance while remaining in the quasi-halo orbit. STK/Pro 

to is used as the starting point to model, analyze, visualize 

and communicate with other components. The STK/

Astrogator propagates the orbit of a spacecraft with delta-V 

at the maneuver start time generated from the Matlab global 

optimization algorithm. It then integrates an accurate full 

perturbation model that includes solar radiation pressure 

and planet gravitational perturbation, where “Tman” and 

“ΔVRIC” represent the maneuver time in UT, the delta-V in 

radial, in-track and cross-track respectively. The collision 

probability is obtained from STK/AdvCAT, which adopts the 

Alfano formula[23, 24, 25, 26, 27]. Alfano developed the two-

dimensional collision probability equation in the encounter 

plane given in Cartesian space as a combination of error 

functions and exponential terms as shown in Eqs.(16)~(18). 

Alfano used a rectangular coordinate system to obtain the 

collision probability value, but did not assume that the 

velocity remains constant for each tube segment.
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Robj denotes the total cross sectional radius of two objects 

assumed to be circular. σx, σy, xm and ym denote the standard 

deviation and distance from the center in the direction of each 

axis.

The control states are impulsive burn time and delta-v in 

the radial, in-track and cross-track directions.

The fitness value can be written as
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where ∆Li represents the ith position difference between the 

reference orbit and an orbit generated by the optimization 

algorithm. Pc and K represent a maximum collision probability 

and a weighting factor, respectively. The maximum collision 

probability is set to 10-4 and collision miss distance is set to 

100km.

5. Simulation Results

For comparison, ten simulation trials were performed to 

determine the influence of the cost function on each global 

13 

 

   P� � R���·�
√�·π·σ�·� · �α � β� · ex� ���

R���·��·����
� ����

�

�·σ�� �         (16) 

   α � ∑ erf���� �����·R�����·������·�
σ�√� �          (17) 

   β � ∑ erf���� ������·R�����·������·�
σ�√� �          (18) 

R��� denotes the total cross sectional radius of two objects assumed to be circular. σ�, σ�, x� and y� denote 

the standard deviation and distance from the center in the direction of each axis. 

The control states are impulsive burn time and delta-v in the radial, in-track and cross-track directions. 

The fitness value can be written as 

� � ∑ ∆L��t�� � ���P�N���      (16) 

where ∆L� represents the ith position difference between the reference orbit and an orbit generated by the 

optimization algorithm. P�  and K represent a maximum collision probability and a weighting factor, 

respectively. The maximum collision probability is set to 10�� and collision miss distance is set to 100km. 

 

Fig.2. A Flowchart of Optimal Maneuver Planning 

 

 

 

 

 

 

 

 

STK/Pro

STK/CAT STK/Astrogator

Global Opt. 
Algorithm
(Matlab)

Tman

VRIC

Converge?

Calculate
Fitness Value

End
Yes

No

Fig. 2. ��A Flowchart of Optimal Maneuver Planning

Table 2. ��The Initial State of the Spacecraft on the Earth Orbit for Injec-
tion to Transfer Orbit
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Table 2.The Initial State of the Spacecraft on the Earth Orbit for Injection to Transfer Orbit 

Item Value 

Coordinate System Earth Inertial 

Coordinate Type Target Vector Outgoing Asymptote 

Orbit Epoch 1 Jul 2025 12:00:00.000UTCG 

Radius of Periapsis 6778 km 

C3 Energy -1.62335 km^2/Sec^2 

RA of Outgoing Asymptote 252.107 deg 

Declination of Outgoing 
Asymptote 

-24.848 deg 

Velocity Azimuth at 
Periapsis 

82.9741 deg 

True Anomaly 0.000786134 deg 

Spacecraft Properties 

Total Mass: 800kg(Dry Mass: 500 kg, Fuel 
Mass : 300 kg) 

Area /Mass Ratio: 1.25e-9 km^2/kg 
Tank Pressure : 5000 Pa, Fuel Density: 1000 

kg/m^3 
Cr: 2.0, Cd: 2.0, Drag Area:1m^2, SPR Area: 

1m^2 
Solar Radiation Pressure Area : 20m^2 

Radiation Pressure Coefficient : 1.0 
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Table 3. Insertion Maneuver by Differential Corrector 

Item Value 

Maneuver Type Impulsive 
Engine Model Constant Trust and Isp(500N, 300 sec) 

CoordinateSystem Earth Inertial 

Maneuver Time 7 Jul 2025 23:20:41.629 UTCG 

Delta-V(km/sec) Vx:0.88709, Vy: -0.29449, Vz: -0.12307 

Estimated Fuel Used 219.342 kg 

Estimated Burn 
Duration 

1290.61 sec 

 

Table 4.The Initial State of an Uncontrolled Object 

Central Body Moon 

Orbit Epoch 15 Jul 2025 17:19:14.361 UTCG 

Coordinate Type Cartesian 

Coordinate System J2000 

Propagator HPOP 

Position(km) 
Velocity(km/sec) 

X: 50665.7, Y: 3519.95, Z: -14372.3 
Vx: 0.028431,Vy: 0.34545, Vz: 0.75294 

 

Table 5.Orbit Determination Covariance and Collision Information 

T(km) C(km) N(km) Size(m) 
L2 Probe 5 5 5 5 

HALO Object 5 5 5 50 
Collision Exp. 

Time 15 Jul 2025 17: 19: 14 

Minimum 
Dist.(km) 

0.534 

Collision Prob. 1.02e-2 
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optimization case. In this simulation, the optimization 

parameters ‘MaxIter’, ‘MaxFunEvals’ and ‘TolFun’ is set to 

4000, 4000 and 10e-6, respectively. If the optimality measure 

is less than ‘TolFun’, the iterations end, and ‘TolFun’ can also 

be a relative bound. ‘MaxIter’ is a bound on the number of 

solver iterations. ‘MaxFunEvals’ is a bound on the number of 

function evaluations. 

Figure 3.a~c show the 3D view for one of 10 cases in 

view of the Moon fixed frame to get an insertion maneuver 

into a quasi-halo orbit by a simulated annealing, a genetic 

algorithm and a pattern search algorithm. The uncontrolled 

object approaches from the direction of the Moon toward 

the spacecraft on the quasi-halo orbit. Possible collision 

is declared by the conjunction analysis software and the 

global optimal algorithm attempts to find the best solution 

with the boundary constraints provided. The fitness values 

are checked at each iteration. The white line indicates 

the Moon trajectory and the green line stands for the 

spacecraft trajectory before the maneuver for quasi-halo 

orbit insertion. The red line represents the quasi-halo orbit 

after the insertion maneuver converged using the global 

optimization algorithm. The quasi-halo orbit is periodic 

in the Y-Z axis as shown in the left side images of Figs. 3. 

Table 4. ��The Initial State of an Uncontrolled Object

15 

 

Table 3. Insertion Maneuver by Differential Corrector 

Item Value 

Maneuver Type Impulsive 
Engine Model Constant Trust and Isp(500N, 300 sec) 

CoordinateSystem Earth Inertial 

Maneuver Time 7 Jul 2025 23:20:41.629 UTCG 

Delta-V(km/sec) Vx:0.88709, Vy: -0.29449, Vz: -0.12307 

Estimated Fuel Used 219.342 kg 

Estimated Burn 
Duration 

1290.61 sec 

 

Table 4.The Initial State of an Uncontrolled Object 

Central Body Moon 

Orbit Epoch 15 Jul 2025 17:19:14.361 UTCG 

Coordinate Type Cartesian 

Coordinate System J2000 

Propagator HPOP 

Position(km) 
Velocity(km/sec) 

X: 50665.7, Y: 3519.95, Z: -14372.3 
Vx: 0.028431,Vy: 0.34545, Vz: 0.75294 

 

Table 5.Orbit Determination Covariance and Collision Information 

T(km) C(km) N(km) Size(m) 
L2 Probe 5 5 5 5 

HALO Object 5 5 5 50 
Collision Exp. 

Time 15 Jul 2025 17: 19: 14 

Minimum 
Dist.(km) 

0.534 

Collision Prob. 1.02e-2 

 

  

Table 5. ��Orbit Determination Covariance and Collision Information

15 

 

Table 3. Insertion Maneuver by Differential Corrector 

Item Value 

Maneuver Type Impulsive 
Engine Model Constant Trust and Isp(500N, 300 sec) 

CoordinateSystem Earth Inertial 

Maneuver Time 7 Jul 2025 23:20:41.629 UTCG 

Delta-V(km/sec) Vx:0.88709, Vy: -0.29449, Vz: -0.12307 

Estimated Fuel Used 219.342 kg 

Estimated Burn 
Duration 

1290.61 sec 

 

Table 4.The Initial State of an Uncontrolled Object 

Central Body Moon 

Orbit Epoch 15 Jul 2025 17:19:14.361 UTCG 

Coordinate Type Cartesian 

Coordinate System J2000 

Propagator HPOP 

Position(km) 
Velocity(km/sec) 

X: 50665.7, Y: 3519.95, Z: -14372.3 
Vx: 0.028431,Vy: 0.34545, Vz: 0.75294 

 

Table 5.Orbit Determination Covariance and Collision Information 

T(km) C(km) N(km) Size(m) 
L2 Probe 5 5 5 5 

HALO Object 5 5 5 50 
Collision Exp. 

Time 15 Jul 2025 17: 19: 14 

Minimum 
Dist.(km) 

0.534 

Collision Prob. 1.02e-2 
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5. Simulation Results 

For comparison, ten simulation trials were performed to determine the influence of the cost function on each 

global optimization case. In this simulation, the optimization parameters ‘MaxIter’, ‘MaxFunEvals’ and ‘TolFun’ 

is set to 4000, 4000 and 10e-6, respectively. If the optimality measure is less than ‘TolFun’, the iterations end, 

and ‘TolFun’ can also be a relative bound. ‘MaxIter’ is a bound on the number of solver iterations. 

‘MaxFunEvals’ is a bound on the number of function evaluations.  

Fig.3.a~c show the 3D view for one of 10 cases in view of the Moon fixed frame to get an insertion maneuver 

into a quasi-halo orbit by a simulated annealing, a genetic algorithm and a pattern search algorithm. The 

uncontrolled object approaches from the direction of the Moon toward the spacecraft on the quasi-halo orbit. 

Possible collision is declared by the conjunction analysis software and the global optimal algorithm attempts to 

find the best solution with the boundary constraints provided. The fitness values are checked at each iteration. 

The white line indicates the Moon trajectory and the green line stands for the spacecraft trajectory before the 

maneuver for quasi-halo orbit insertion. The red line represents the quasi-halo orbit after the insertion maneuver 

converged using the global optimization algorithm. The quasi-halo orbit is periodic in the Y-Z axis as shown in 

the left side images of Figs. 3. The right side images of Figs. 3. in the X-Z axis illustrate that inclinations are 

formed. Figs. 4 show radial, in-track and cross-track distance difference between the spacecraft trajectory 

generated by the differential corrector and the spacecraft trajectory generated by global optimization methods 

for the first case 1. 

 

Fig.3a Simulation Results (Simulated Annealing Case 1) 
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Fig. 3a. Simulation Results (Simulated Annealing Case 1)
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Fig.3b Simulation Results (Genetic Algorithm Case 1) 

 

Fig.3c Simulation Results (Pattern Search Case 1) 

 

 

Fig.4a RIC and Range Distance Difference (Simulated Annealing Case 1) 

Fig. 3b. Simulation Results (Genetic Algorithm Case 1)
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The right side images of Figs. 3. in the X-Z axis illustrate 

that inclinations are formed. Figs. 4 show radial, in-track 

and cross-track distance difference between the spacecraft 

trajectory generated by the differential corrector and the 

spacecraft trajectory generated by global optimization 

methods for the first case 1.

Tables 6a~c and Fig. 5a~c show the simulation results for 

avoidance maneuver planning using global optimization. 
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Fig.3b Simulation Results (Genetic Algorithm Case 1) 

 

Fig.3c Simulation Results (Pattern Search Case 1) 

 

 

Fig.4a RIC and Range Distance Difference (Simulated Annealing Case 1) 

Fig. 3c. Simulation Results (Pattern Search Case 1)
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Fig.4b RIC and Range Distance Difference (Genetic Algorithm Case 1) 

 

Fig.4c RIC and Range Distance Difference (Pattern Search Case 1) 

 

Tables 6a~c and Fig. 5a~c show the simulation results for avoidance maneuver planning using global 

optimization. The maximum iteration for each optimization method was set to 4,000. For the simulated 

annealing, the minimum best-cost-function was 1.6704e4, while the maximum best-cost-function was 4.8500e4. 

The minimum best-cost-function was 1.353e4 using the genetic algorithm, and the maximum was 2.902e4. With 

the pattern search method, the minimum best-cost-function was 1.53249e4, and the maximum was 2.8472e4. All 

cases produce periodic orbits. However, the pattern search converged faster than the others. Before avoidance 

maneuver, the predicted distance reached approximately 0.533 km and the collision probability was 1.02e-2. 

After collision avoidance, all of the cases detected no collision because the collision warning is set to 100km as 

the miss distance. 

Fig. 5a~c show the best fitness function values for all iterations. The fitness function of the simulated annealing 

method decreased faster than the other cases, but it ended at the maximum iteration value. The minimum and 

maximum fitness function values of the genetic algorithm and the pattern search are similar, though the pattern 

search values converged more rapidly. The pattern search method converged more rapidly than the other cases 

Fig. 4b. RIC and Range Distance Difference (Genetic Algorithm Case 1)
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Table 6a. Simulation Result after Avoidance Maneuver Planning Using Simulated Annealing
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but ended at the maximum 1000 iterations. 

 

Table 6a. Simulation Result after Avoidance Maneuver Planning Using Simulated Annealing 

Case 

No 

Man_Time 

(UTCG) 

DelV_x 

(km/s,ECI) 

DelV_y 

(km/s,ECI) 

DelV_z 

(km/s,ECI) 
TotalDelV Cost Fun 

Max. 
Func. 
Eval. 

Collision 

Prob. 

1 7 Jul 2025 23:10:01.920 0.850505 -0.291555 -0.130624 0.908530 3.2527e4 4000 No Warn. 

2 7 Jul 2025 23:10:01.920 0.901398 -0.289530 -0.131955 0.955907 1.7037e4 4000 No Warn. 

3 7 Jul 2025 23:10:01.920 0.889694 -0.303757 -0.097427 0.945155 1.6704e4 4000 No Warn. 

4 7 Jul 2025 23:10:01.920 0.864243 -0.291628 -0.130641 0.921428 2.4393e4 4000 No Warn. 

5 7 Jul 2025 23:28:19.200 0.865691 -0.296707 -0.119394 0.922882 2.3530e4 4000 No Warn. 

6 7 Jul 2025 23:29:36.960 0.838590 -0.287033 -0.140430 0.897409 3.7957e4 4000 No Warn. 

7 7 Jul 2025 23:19:06.240 0.837496 -0.297909 -0.114908 0.896300 4.2240e4 4000 No Warn. 

8 7 Jul 2025 23:10:27.840 0.921033 -0.301070 -0.097284 0.973863 3.4012e4 4000 No Warn. 

9 7 Jul 2025 23:23:25.440 0.826213 -0.279156 -0.154978 0.885762 4.8500e4 4000 No Warn. 

10 7 Jul 2025 23:20:24.000 0.869968 -0.267055 -0.179721 0.927611 3.4286e4 4000 No Warn. 

 

Table 6b. Simulation Result after Avoidance Maneuver Planning Using Genetic Algorithm 

Case 

No 

Man_Time 

(UTCG) 

DelV_x 

(km/s,ECI) 

DelV_y 

(km/s,ECI) 

DelV_z 

(km/s,ECI) 
Total DelV Best 

Cost Fun 

Max. 
Fun. 
Eval. 

Collision 

Prob. 

1 7 Jul 2025 23:23:34.080 0.897378 -0.304766 -0.094120 0.952380 2.902e4 4000 No Warn. 

2 7 Jul 2025 23:28:36.480 0.884162 -0.287613 -0.139542 0.940179 1.353e4 4000 No Warn. 

3 7 Jul 2025 23:20:15.360 0.879809 -0.285391 -0.144266 0.936123 1.621e4 4000 No Warn. 

4 7 Jul 2025 23:10:27.840 0.909170 -0.296791 -0.112597 0.962992 2.455e4 4000 No Warn. 

5 7 Jul 2025 23:08:26.880 0.920401 -0.293585 -0.117621 0.973224 2.705e4 4000 No Warn. 

6 7 Jul 2025 23:25:09.120 0.888628 -0.294739 -0.122487 0.944211 1.373e4 4000 No Warn. 

7 7 Jul 2025 23:25:00.480 0.879775 -0.296022 -0.120297 0.936005 1.855e4 4000 No Warn. 

8 7 Jul 2025 23:28:36.480 0.869536 -0.293840 -0.126260 0.926486 2.019e4 4000 No Warn. 

9 7 Jul 2025 23:13:55.200 0.917336 -0.285886 -0.137184 0.970596 2.292e4 4000 No Warn. 

10 7 Jul 2025 23:17:48.480 0.909015 -0.288382 -0.133660 0.962984 1.891e4 4000 No Warn. 
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7 7 Jul 2025 23:25:00.480 0.879775 -0.296022 -0.120297 0.936005 1.855e4 4000 No Warn. 

8 7 Jul 2025 23:28:36.480 0.869536 -0.293840 -0.126260 0.926486 2.019e4 4000 No Warn. 

9 7 Jul 2025 23:13:55.200 0.917336 -0.285886 -0.137184 0.970596 2.292e4 4000 No Warn. 
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Table 6c. Simulation Result after Avoidance Maneuver Planning Using Pattern Search 

Case 

No 

Man_Time 

(UTCG) 

DelV_x 

(km/s,ECI) 

DelV_y 

(km/s,ECI)

DelV_z 

(km/s,ECI) 
Total DelV Best Cost 

Fun 

Max. 
Func
Eval. 

Collision 

Prob. 

1 7 Jul 2025 23:14:21.120 0.886258 -0.283714 -0.147013 0.942104 1.6527e4 279 No Warn. 

2 7 Jul 2025 23:11:36.960 0.902937 -0.296465 -0.114899 0.957282 2.1010e4 211 No Warn. 

3 7 Jul 2025 23:19:58.080 0.917523 -0.298591 -0.106289 0.970722 2.8470e4 125 No Warn. 

4 7 Jul 2025 23:19:58.080 0.919001 -0.297857 -0.107845 0.972067 2.8472e4 414 No Warn. 

5 7 Jul 2025 23:20:24.000 0.890843 -0.295652 -0.119651 0.946217 1.5324e4 896 No Warn. 

6 7 Jul 2025 23:14:21.120 0.899524 -0.282099 -0.148789 0.954391 1.8371e4 112 No Warn. 

7 7 Jul 2025 23:19:58.080 0.915705 -0.293800 -0.119325 0.969058 2.3589e4 508 No Warn. 

8 7 Jul 2025 23:12:54.720 0.886717 -0.283660 -0.147006 0.942519 1.6693e4 278 No Warn. 

9 7 Jul 2025 23:19:58.080 0.899802 -0.298733 -0.110234 0.954482 2.1358e4 119 No Warn. 

10 7 Jul 2025 23:19:58.080 0.915109 -0.292987 -0.121500 0.968519 2.2820e4 152 No Warn. 
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Fig. 5a. Fitness Function by Simulated Annealing Fig. 5a. Fitness Function by Simulated Annealing

The maximum iteration for each optimization method was 

set to 4,000. For the simulated annealing, the minimum best-

cost-function was 1.6704e4, while the maximum best-cost-

function was 4.8500e4. The minimum best-cost-function 

was 1.353e4 using the genetic algorithm, and the maximum 

was 2.902e4. With the pattern search method, the minimum 

best-cost-function was 1.53249e4, and the maximum was 

2.8472e4. All cases produce periodic orbits. However, the 

pattern search converged faster than the others. Before 

avoidance maneuver, the predicted distance reached 

approximately 0.533 km and the collision probability was 

1.02e-2. After collision avoidance, all of the cases detected 

no collision because the collision warning is set to 100km as 

the miss distance.
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Figure 5.a~c show the best fitness function values for all 

iterations. The fitness function of the simulated annealing 

method decreased faster than the other cases, but it 

ended at the maximum iteration value. The minimum and 

maximum fitness function values of the genetic algorithm 

and the pattern search are similar, though the pattern search 

values converged more rapidly. The pattern search method 

converged more rapidly than the other cases but ended at 

the maximum 1000 iterations.

6. Conclusion

This study investigated an insertion maneuver 

considering collision avoidance against an uncontrolled 

 Fig. 5b. Fitness Function by Genetic Algorithm Fig. 5b. Fitness Function by Genetic Algorithm
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object in the Earth-Moon L2 quasi-halo orbit. Global 

optimization algorithms including simulated annealing, 

genetic algorithm and pattern search were used to minimize 

the differences between a reference orbit and an orbit after 

avoidance maneuver. The simulations were performed using 

the STK/Astrogator and Matlab global optimization toolbox. 

All three algorithms are used to obtain the maneuver start 

time and delta-V so as to reduce the collision probability 

from uncontrolled objects and to retain the reference 

trajectory calculated by the differential corrector with the 

Fig. 5c. Fitness Function by Pattern Search Fig. 5c. Fitness Function by Pattern Search
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STK/Astrogator.

The genetic algorithm method could create new individuals 

by combining different solutions, while simulated annealing 

created a new individual by modifying only a solution with 

a local move. Consequently, the genetic algorithm method 

performed better than the simulated annealing method.

From the performance point of view, genetic algorithm 

is a slow starter with more accuracy, while the simulated 

annealing method starts quickly and can obtain a relatively 

good solution in a short time. The convergence of the genetic 

algorithm took longer than that of the simulated annealing 

method.

The genetic algorithm method uses a large search space 

and requires a lot of iterations for optimization, while the 

pattern search method finds a certain direction and requires 

relatively fewer steps for solving the problem. Additionally, 

the genetic algorithm method optimizes its search space 

in complicated problems, while the pattern search method 

displays the best performance with a relatively smaller 

search space and less computing time.

This approach can be applied to an actual quasi-halo 

orbit mission for inserting a spacecraft into a halo orbit with 

collision avoidance maneuver for the Earth-Moon and the 

Sun-Earth Lagrange point mission.
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