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Abstract

We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for 

multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with 

head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently 

separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the 

super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, 

we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode 

(NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-

loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario 

show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Key words:  Cooperative guidance law; Finite time disturbance observer (FTDO), Super-twisting algorithm (STA), Nonsingular 

fast terminal sliding mode (NFTSM)

1. Introduction

To deal with the threat of near space air-breathing 

hypersonic vehicles (NSHV) [1-2], guidance law design 

for NSI is the most important technology in near space 

interception systems. The traditional engagement geometry 

for intercepting high speed targets (NSHV) is typically head-

on, with very large closing speed. Therefore, the detection 

precision of a target based on an infrared seeker is usually 

degraded by aerodynamic heating. To solve this problem, a 

novel head pursuit engagement geometry, which positions 

the interceptor ahead of the target on its flight trajectory, has 

been reported [3-5]. Compared with the head-on geometry, 

the interceptor can fly in the same direction as the target, and 

then the closing speed can be significantly reduced, with low 

energy requirement.

Cooperative attack of multiple missiles has been regarded 

as an effective interception strategy to deal with the threat 

of NSHV [6-13]. As a typical cooperative attack scenario, it 

means that multiple missiles are required to hit the target 

as simultaneously as possible. Therefore, it is difficult for the 

NSHV to defend against a group of interceptors at the same 

time, even though each interceptor has the same guidance 

performance as the conventional one. An impact-time-

control guidance (ITCG) law [7] is used to guide multiple 

missiles to simultaneously hit a stationary target at a 

desirable impact time. As an extension of study [7], a novel 

guidance law to control both impact time and impact angle 

is also proposed in [8], which can be applied for an efficient 

salvo attack of anti-ship missiles. Based on the work of [9], 

Zhao proposed a cooperative guidance law of a two-level 

hierarchical architecture [10], in which both centralized and 
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distributed coordination algorithms are derived, based on 

the impact-time-control guidance law. A time-constrained 

cooperative guidance scheme is also developed in [11-

12], based on the leader-follower method. However, these 

studies only consider a stationary or low-speed target, 

and the target maneuvers are neglected. To the best of the 

authors’ knowledge, only a few results have considered a 

high-speed or maneuvering target intercepted by multiple 

missiles [13].

To deal with the influence of target maneuver in the 

guidance system, some advanced guidance methods have 

been applied, such as the sliding mode guidance (SMG) 

law [14], and nonlinear H∞ guidance law [15]. However, the 

above methods dealt with the influence of target maneuver 

at the price of sacrificing normal guidance performance. For 

example, SMG [14] has strong robustness against system 

disturbance and parameter uncertainty by designing higher 

control gain, but chattering phenomenon caused by the 

discontinuous control law and frequent switching near the 

sliding surface is inevitable. Therefore, an active disturbance 

rejection method is imperative to achieve higher guidance 

performance, for the cooperative interception of multiple 

NSIs.

Disturbance observer-based control (DOBC) provides 

an active approach to deal with system disturbances, and 

improve its robustness (see e.g., [16-19] and the references 

therein, for a survey of recent development). Initially, it 

is assumed that there is no system disturbance, or the 

disturbance is measurable, and a baseline controller is 

designed; subsequently, a properly disturbance observer 

is developed to estimate the system disturbance, and the 

feed-forward compensation term based on the disturbance 

estimated value is given, to counteract the influence of 

disturbances. Most of the robust control methods, such 

as H∞ control [15], are worst case based design, and the 

disturbance attenuation ability is obtained at the price of 

degrading normal control performance. However, the DOBC 

design method can retain normal control performance in 

the absence of system disturbance, and completely remove 

the effect of the disturbance from the guidance system, as 

long as the designed disturbance observer can estimate the 

disturbance.

Based on the aforementioned analysis, this paper will 

deal with the cooperative guidance law design problem for 

multiple NSIs, based on the FTDO. Based on the cooperative 

guidance model, the cooperative guidance law design is 

divided into two stages. Firstly, the normal acceleration 

command is developed, based on the STA and disturbance 

estimated value. Furthermore, the acceleration command 

along the LOS is also designed based on the NFTSM, to make 

all the NSIs simultaneously hit the target. Finally, simulation 

results show the effectiveness of the proposed cooperative 

guidance scheme.

Briefly, the rest of this paper is organized as follows. 

Section 2 introduces the cooperative guidance model for 

multiple NSIs. Section 3 presents the cooperative guidance 

law based on the STA and NFTSM. Section 4 gives the 

simulation results for the multiple NSIs guidance system. 

Finally, Section 5 draws a brief conclusion.

2.   Problem formulation of cooperative inter-
ception

Figure 1 shows the interceptor-target engagement 

geometry of head pursuit, where M and T represent the mass 

center of the interceptor and target, respectively. In contrast 

with the conventional guidance configuration, the target is 

located behind the slower NSI. The kinematical equations of 

the interceptor-target motion can be described as follows:
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where, r  is the relative distance between the interceptor and target, q  denotes the angle between 

the LOS and the inertial reference line, and ma  and ta  are the interceptor and target accelerations. 

By introducing the variables rV r   and qV rq  , we can obtain: 
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where, sin( )r m mu a q    and cos( )q m mu a q    denote the accelerations of the NSI in the 

LOS coordinate system, respectively. 

Figure 2 shows the many-to-one engagement geometry with n  interceptors. Although the initial 
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where, sin( )ri mi i miu a q    and cos( )qi mi i miu a q   .
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Remark 1. Since the variation of the closing velocity is relatively small, and the initial closing 

velocity is smaller than zero, the acceleration command riu  along the LOS is usually set to zero, 
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in order to control the impact time and implement the 

cooperative interception, the acceleration command uri 
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In this paper, the normal acceleration command 

uqi will be given based on the STA and FTDO, and the 

detailed process can be seen in the next section. Based 

on reference [20], the impact time control problem can be 

transformed into the tracking problem of the interceptor-

target relative distance. Firstly, a designated interceptor-
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where, sin( )ri mi i miu a q    and cos( )qi mi i miu a q   .

Based on the above analysis, the cooperative guidance process can be divided into two stages. In 

order to ensure the convergence of relative distance, i.e., the individual interception can be 

guaranteed, the normal acceleration command qiu  is firstly designed; and then the acceleration 

command riu  along the LOS is given, to guarantee that all the NSIs simultaneously hit the target. 

Remark 1. Since the variation of the closing velocity is relatively small, and the initial closing 

velocity is smaller than zero, the acceleration command riu  along the LOS is usually set to zero, 
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Therefore, the variables 1( )iV t  and 3ix  will converge to zero in finite time. 

Remark 3. The STA is one of the powerful second order continuous sliding mode control 

algorithms, which is usually used for systems of relative degree 1. It can generate the continuous 

control law that drives the sliding mode manifold and its derivative to zero in finite time, in the 

presence of external disturbance. This algorithm has received much attention, since it was used to 

design robust exact differentiators and observers [22]. 

3.3 Acceleration design along the LOS 

In this section, we propose a design method for the acceleration command riu  along the LOS, 

which can guarantee that all the NSIs simultaneously hit the target. 

Lemma 1. [23] Consider the nonlinear system described by ( )x f x  ( (0) 0f  , nx R ). 

Suppose that there exists a smooth positive function ( )V x  (defined on nU R ), and ( )V x 

( )cV x  is a negative semi-defined function on nU R  for (0,1)   and 0c  . Then, the 

origin is a finite time stable equilibrium, and the settling time satisfies 1 1
0 0( ) [ (1 )] ( )T x c V x   

for all 0x , in some open neighborhood of the origin. 

Define the following sliding mode manifold [24] for the system (5): 

where, 
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Calculate the derivative of 2iV  along the trajectory of the system (12). We then have: 

2i i iV s s 

2 1 21
2 1 2 2 2 1| | [ | | sgn( ) | | sgn( ) ]i i i

i i i i i i i i i i ix s k s s k s s e        

2 1 21 1 1
2 1 2 2 2 1| | [ | | | | ]i i i

i i i i i i i i ix k s k s e s          

2 1 21 1 1
2 1 2 2 2 1| | [ | | | | | | | |]i i i

i i i i i i i i ix k s k s s e                                              (37) 

Therefore, (37) can be rewritten as the following two forms: 

2 1 21 1
2 2 1 2 2 2 1| | [ | | | |( | | | |)]i i i
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2 2 1 2 2 1 2| | [ | |( | | | |) | | ]i i i

i i i i i i i i i iV x s k s e k s                                           (39) 

For (38), if 2
2 2 2| | 0i

i i i i ik s      , we have: 

2 11 1
2 2 1| | | |i i

i i i iV x k s   

1 1 11 ( 1)/2 ( 1)/2
1 1 2| | 2i i i

i i i ik s k V                                                    (40) 

where, 2 1
1 2 1| | i

i i ik x k  .

According to Lemma 1, the settling time can be calculated as: 
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Calculate the derivative of Vi2 along the trajectory of the 

system (12). We then have:
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Substitute (24) into (34). This yields: 
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2 1
2 2 2
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2 1 21
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where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .
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2
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2 11 1
2 2 1| | | |i i

i i i iV x k s   

1 1 11 ( 1)/2 ( 1)/2
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Therefore, (37) can be rewritten as the following two 

forms:
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Substitute (24) into (34). This yields: 

1 21 1 2
2 1 1 1 2 2 2 2| | | | [ / tan( )]i i

i i i i i i i i i qi i ri i i ts x x x x V r u d q           
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ˆ| | [ tan( ) tan( )]i
i i i i i t i i tx d q d q      
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2 1 2| | [ | | sgn( ) | | sgn( )]i i i

i i i i i i ix k s s k s s   

2 1 21
2 1 2 2 2 1| | [ | | sgn( ) | | sgn( ) ]i i i

i i i i i i i i i ix k s s k s s e                                     (35) 

where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .
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2
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2 1 21 1
2 2 1 2 2 2 1| | [ | | | |( | | | |)]i i i
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Substitute (24) into (34). This yields: 
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where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .
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2 1 21
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where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .

Consider the following Lyapunov function: 

2
2 0.5i iV s                                                                    (36) 
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i i i i i i i i ix k s k s s e                                              (37) 
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2 1 21 1
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2 2 1 2 2 1 2| | [ | |( | | | |) | | ]i i i

i i i i i i i i i iV x s k s e k s                                           (39) 

For (38), if 2
2 2 2| | 0i

i i i i ik s      , we have: 
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2 2 1| | | |i i

i i i iV x k s   
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where, 
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2 1 2 2 2 1| | [ | | sgn( ) | | sgn( ) ]i i i

i i i i i i i i i ix k s s k s s e                                     (35) 

where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .

Consider the following Lyapunov function: 

2
2 0.5i iV s                                                                    (36) 
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2 1 21 1 1
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2 1 21 1
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1 1 11 ( 1)/2 ( 1)/2
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where, 1 1 tan( )i i i te e q   . Based on (8), it is also assumed that 1| |i ie   , and 0i  .

Consider the following Lyapunov function: 

2
2 0.5i iV s                                                                    (36) 

Calculate the derivative of 2iV  along the trajectory of the system (12). We then have: 
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2 1 21 1 1
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2 2 1 2 2 1 2| | [ | |( | | | |) | | ]i i i
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1 1 11 ( 1)/2 ( 1)/2
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i.e., the sliding mode manifold (22) will converge to the 

following region in finite time Ti1:
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i.e., the sliding mode manifold (22) will converge to the following region in finite time 1iT :
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For (39), if 1
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According to Lemma 1, the settling time can also be calculated as: 

2

2

(1 )/2

2 ( 1)/2
2

(0)
2 (1 ) / 2

i

i

i
i

i

VT


 






                                                       (44) 

i.e., the sliding mode manifold (22) will converge to the following region in finite time 2iT :

11/

2 2

1

| |
i

i i i
i

i

s
k


   

  
 


                                                            (45) 

Based on (42) and (45), we can show that the sliding mode manifold (22) will converge to the 

region (25) in finite time. 
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Taking xi2=0 into consideration and |si|>Δi, we have:
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From (47), we can obtain that the sliding mode manifold 

(22) will not stay in the region xi2=0, and |si|>Δi, xi2=0 will not 

hinder the reachability of the region (25). The sliding mode 

manifold (22) will converge to the region (25) in finite time. 
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The proof is completed.

Remark 5. In practical interception, the normal 

acceleration command uqi is mainly provided by the 

aerodynamic force, i.e., the aerodynamic fins. If the 

aerodynamic force of the NSI is large enough, a high angle of 

attack can be obtained, and then the acceleration command 

uri along the LOS can also be provided by the aerodynamic 

fins. Otherwise, it is assumed that the angle between the LOS 

direction and the axial direction of the NSI is small, and then 

the acceleration command uri can be provided by the motors 

on the head and tail of the body [13].

Remark 6. During the implementation, the acceleration 

of the NSI is bounded according to the following saturation 

function:

17 

also be provided by the aerodynamic fins. Otherwise, it is assumed that the angle between the LOS 

direction and the axial direction of the NSI is small, and then the acceleration command riu  can be 

provided by the motors on the head and tail of the body [13]. 

Remark 6. During the implementation, the acceleration of the NSI is bounded according to the 

following saturation function: 

max max

max

sgn( ) if | |
if | |

ri ri ri ri
ri

ri ri ri

u u u u
u

u u u


  
                                             (55) 

max max

max

sgn( ) if | |

if | |
qi qi qi qi

qi
qi qi qi

u u u u
u

u u u
  

                                            (56) 

where, maxriu  and maxqiu  are the maximum values of the corresponding acceleration. 

4. Simulation results

To illustrate the effectiveness of the proposed cooperative guidance law, we present in this section 

some numerical simulations for the multiple NSIs . We consider a three-to-one interception scenario, 

i.e., three NSIs are used to intercept a moving target. The initial conditions of the NSI and target in 

inertial coordinate system are shown in Table 1. 

Table 1. Initial conditions of the NSI and target 

Parameter Value Parameter Value 

0tx 0m 0,1mx 5908.8m

0ty 0m 0,1my m1041.8

0tV 1700m/s 0,1mV 1500m/s

0t 0 
0,1m 5 

0,2mx 5379.4 m 0,3mx 5416.4 m

0,2my 470.6 m 0,3my 955.1m

0,2mV 1500m/s 0,3mV 1500m/s

0,2m 4 
0,3m 4 

The parameters of the FTDO (6) are given as follows: 

0 20i  , 1 1.5i  , 2 1.1i  , 0 2 0.1i i   , 1 0.3i  ,

0.5iq  , 8ip  , 100iL  , {1, 2,3}i .

(55)
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where, urimax and uqimax are the maximum values of the 

corresponding acceleration.

4. Simulation results

To illustrate the effectiveness of the proposed cooperative 
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guidance law, we present in this section some numerical 

simulations for the multiple NSIs . We consider a three-

to-one interception scenario, i.e., three NSIs are used to 

intercept a moving target. The initial conditions of the NSI 

and target in inertial coordinate system are shown in Table 1.

The parameters of the FTDO (6) are given as follows:
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The parameters of the normal acceleration command (9) are selected as follows: 

3 1i  , 4 0.1i  , 3 3.5ik  , 4 21ik  , {1, 2,3}i .

The parameters of the designated relative distance are given as follows: 

224m/sdV  , 27sdT  .

In general, the knowledge and experience of experts (including control engineers, operators,

 etc.) is employed to determine the designated impact time. 

Furthermore, the parameters of the acceleration command (24) along the LOS are also chosen as 

follows:

1 1i  , 2 3i  , 1 1.3i  , 2 1.2i  , 1 1ik  ,

2 2ik  , 1 1.1i  , 2 0.6i  , {1, 2,3}i .

The maximum acceleration of the NHSV (X-43 and X-51A) is about 2~4 g, and the following four 

interception conditions are selected to test the effectiveness of the proposed cooperative guidance 

algorithm: 

Case 1: No maneuvering target, 20m/sta  ;

Case 2: Step maneuvering target, 210m/sta  ;

Case 3: Sinusoidal maneuvering target, 230sin( ) m/sta t ;

Case 4: The interceptors are launched at the same place with a time interval 0.5 s, and the target 

acceleration is also 230sin( ) m/sta t .

The simulation step is 0.001s . It is assumed that the blind area of the seeker is 150 m , i.e., the 

guidance system will stop working, when the interceptor-target relative distance satisfies 50 m1ir  ,

and the outputs of the actuators will keep the current values. 

Simulation results using the proposed cooperative guidance law based on the FTDO (denoted by 

CG+FTDO) are firstly presented for the guidance system of multiple NSIs. Then, the SMG is also 

studied for the simulation comparisons, which does not take into account the impact time control. 

The SMG is given as follows: 

The parameters of the designated relative distance are 

given as follows:
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area of the seeker is 150m, i.e., the guidance system will 

stop working, when the interceptor-target relative distance 
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the current values.

Simulation results using the proposed cooperative 

guidance law based on the FTDO (denoted by CG+FTDO) 

are firstly presented for the guidance system of multiple 

NSIs. Then, the SMG is also studied for the simulation 

comparisons, which does not take into account the impact 

time control.
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sgn( )qi i i i iu N rq q                                                             (55) 

where, 6iN   and 200  .

Figure 3 shows the motion trajectory of the three interceptors and target based on the SMG for Case 

1. It can be observed that each interceptor has a small miss distance, but the discrepancies in the 

impact time are large. From Figure 4(a) and Table 2, we can see that the proposed cooperative 

guidance law can drive the three interceptors to hit the target simultaneously at the desired impact 

time. Figures 4(b)~(e) show the curves of the relative distance, tangential velocity, and control inputs 

of the three interceptors for Case 1. Figures 5~10 and Table 2 show the simulation results for Cases 

2~4; the analysis processes of Cases 2~4 are similar, which are omitted here for brevity. 

Table 2. Simulation results for multiple NSIs 

Maneuver
type

Interceptor Interception
Time (s) 
/SMG

Miss
Distance (m)

/SMG

Interception
Time (s) 

/CG+FTDO

Miss
Distance (m) 
/CG+FTDO 

Case 1 
NSI 1 
NSI 2 
NSI 3 

26.747 
25.574 
25.203 

0.011 
0.040 
0.035 

27.000 
27.000 
27.000 

0.011 
0.012 
0.011 

Case 2 
NSI 1 
NSI 2 
NSI 3 

26.742 
24.360 
21.819 

0.086 
0.065 
0.138 

26.993 
27.994 
26.994 

0.052 
0.099 
0.025 

Case 3 
NSI 1 
NSI 2 
NSI 3 

26.774 
25.291 
24.162 

0.779 
1.882 
0.117 

26.996 
26.996 
26.996 

0.055 
0.032 
0.044 

Case 4 
NSI 1 
NSI 2 
NSI 3 

25.603 
21.999 
18.410 

2.029 
1.741 
1.078 

26.997 
26.998 
26.996 

0.204 
0.064 
0.076 

It is clear from Figures 3-10 and Table 2 that the proposed guidance law can provide better 

guidance performance. However, it must be pointed out that we should design the acceleration 

command riu  along the LOS, to implement the cooperative interception. 

5. Conclusion

In this paper, we have dealt with the cooperative interception problem for multiple NSIs with 

impact time control. The FTDO is introduced to estimate the system disturbance caused by target 

maneuvering, and the estimated values are employed as feed-forward compensations, to remove the 

influence of disturbances. Then, the cooperative guidance law design is divided into two stages. 

(57)

where, 
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time. Figures 4(b)~(e) show the curves of the relative distance, tangential velocity, and control inputs 

of the three interceptors for Case 1. Figures 5~10 and Table 2 show the simulation results for Cases 

2~4; the analysis processes of Cases 2~4 are similar, which are omitted here for brevity. 

Table 2. Simulation results for multiple NSIs 

Maneuver
type

Interceptor Interception
Time (s) 
/SMG

Miss
Distance (m)

/SMG

Interception
Time (s) 

/CG+FTDO

Miss
Distance (m) 
/CG+FTDO 

Case 1 
NSI 1 
NSI 2 
NSI 3 

26.747 
25.574 
25.203 

0.011 
0.040 
0.035 

27.000 
27.000 
27.000 

0.011 
0.012 
0.011 

Case 2 
NSI 1 
NSI 2 
NSI 3 

26.742 
24.360 
21.819 

0.086 
0.065 
0.138 

26.993 
27.994 
26.994 

0.052 
0.099 
0.025 

Case 3 
NSI 1 
NSI 2 
NSI 3 

26.774 
25.291 
24.162 

0.779 
1.882 
0.117 

26.996 
26.996 
26.996 

0.055 
0.032 
0.044 

Case 4 
NSI 1 
NSI 2 
NSI 3 

25.603 
21.999 
18.410 

2.029 
1.741 
1.078 

26.997 
26.998 
26.996 

0.204 
0.064 
0.076 

It is clear from Figures 3-10 and Table 2 that the proposed guidance law can provide better 

guidance performance. However, it must be pointed out that we should design the acceleration 

command riu  along the LOS, to implement the cooperative interception. 

5. Conclusion

In this paper, we have dealt with the cooperative interception problem for multiple NSIs with 

impact time control. The FTDO is introduced to estimate the system disturbance caused by target 

maneuvering, and the estimated values are employed as feed-forward compensations, to remove the 

influence of disturbances. Then, the cooperative guidance law design is divided into two stages. 

.

Figure 3 shows the motion trajectory of the three 

interceptors and target based on the SMG for Case 1. It can 

be observed that each interceptor has a small miss distance, 

but the discrepancies in the impact time are large. From Fig. 

4(a) and Table 2, we can see that the proposed cooperative 

guidance law can drive the three interceptors to hit the target 

simultaneously at the desired impact time. Fig. 4(b)~(e) 

show the curves of the relative distance, tangential velocity, 

and control inputs of the three interceptors for Case 1. Fig. 

5~10 and Table 2 show the simulation results for Cases 2~4; 

Table 1. Initial conditions of the NSI and target
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also be provided by the aerodynamic fins. Otherwise, it is assumed that the angle between the LOS 

direction and the axial direction of the NSI is small, and then the acceleration command riu  can be 

provided by the motors on the head and tail of the body [13]. 

Remark 6. During the implementation, the acceleration of the NSI is bounded according to the 

following saturation function: 

max max

max

sgn( ) if | |
if | |

ri ri ri ri
ri

ri ri ri

u u u u
u

u u u


  
                                             (55) 

max max

max

sgn( ) if | |

if | |
qi qi qi qi

qi
qi qi qi

u u u u
u

u u u
  

                                            (56) 

where, maxriu  and maxqiu  are the maximum values of the corresponding acceleration. 

4. Simulation results

To illustrate the effectiveness of the proposed cooperative guidance law, we present in this section 

some numerical simulations for the multiple NSIs . We consider a three-to-one interception scenario, 

i.e., three NSIs are used to intercept a moving target. The initial conditions of the NSI and target in 

inertial coordinate system are shown in Table 1. 

Table 1. Initial conditions of the NSI and target 

Parameter Value Parameter Value 

0tx 0m 0,1mx 5908.8m

0ty 0m 0,1my m1041.8

0tV 1700m/s 0,1mV 1500m/s

0t 0 
0,1m 5 

0,2mx 5379.4 m 0,3mx 5416.4 m

0,2my 470.6 m 0,3my 955.1m

0,2mV 1500m/s 0,3mV 1500m/s

0,2m 4 
0,3m 4 

The parameters of the FTDO (6) are given as follows: 

0 20i  , 1 1.5i  , 2 1.1i  , 0 2 0.1i i   , 1 0.3i  ,

0.5iq  , 8ip  , 100iL  , {1, 2,3}i .

Table 2. Simulation results for multiple NSIs
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sgn( )qi i i i iu N rq q                                                             (55) 

where, 6iN   and 200  .

Figure 3 shows the motion trajectory of the three interceptors and target based on the SMG for Case 

1. It can be observed that each interceptor has a small miss distance, but the discrepancies in the 

impact time are large. From Figure 4(a) and Table 2, we can see that the proposed cooperative 

guidance law can drive the three interceptors to hit the target simultaneously at the desired impact 

time. Figures 4(b)~(e) show the curves of the relative distance, tangential velocity, and control inputs 

of the three interceptors for Case 1. Figures 5~10 and Table 2 show the simulation results for Cases 

2~4; the analysis processes of Cases 2~4 are similar, which are omitted here for brevity. 

Table 2. Simulation results for multiple NSIs 

Maneuver
type

Interceptor Interception
Time (s) 
/SMG

Miss
Distance (m)

/SMG

Interception
Time (s) 

/CG+FTDO

Miss
Distance (m) 
/CG+FTDO 

Case 1 
NSI 1 
NSI 2 
NSI 3 

26.747 
25.574 
25.203 

0.011 
0.040 
0.035 

27.000 
27.000 
27.000 

0.011 
0.012 
0.011 

Case 2 
NSI 1 
NSI 2 
NSI 3 

26.742 
24.360 
21.819 

0.086 
0.065 
0.138 

26.993 
27.994 
26.994 

0.052 
0.099 
0.025 

Case 3 
NSI 1 
NSI 2 
NSI 3 

26.774 
25.291 
24.162 

0.779 
1.882 
0.117 

26.996 
26.996 
26.996 

0.055 
0.032 
0.044 

Case 4 
NSI 1 
NSI 2 
NSI 3 

25.603 
21.999 
18.410 

2.029 
1.741 
1.078 

26.997 
26.998 
26.996 

0.204 
0.064 
0.076 

It is clear from Figures 3-10 and Table 2 that the proposed guidance law can provide better 

guidance performance. However, it must be pointed out that we should design the acceleration 

command riu  along the LOS, to implement the cooperative interception. 

5. Conclusion

In this paper, we have dealt with the cooperative interception problem for multiple NSIs with 

impact time control. The FTDO is introduced to estimate the system disturbance caused by target 

maneuvering, and the estimated values are employed as feed-forward compensations, to remove the 

influence of disturbances. Then, the cooperative guidance law design is divided into two stages. 
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the analysis processes of Cases 2~4 are similar, which are 

omitted here for brevity.

It is clear from Fig. 3-10 and Table 2 that the proposed 

guidance law can provide better guidance performance. 

However, it must be pointed out that we should design the 

acceleration command uri along the LOS, to implement the 

cooperative interception.

5. Conclusion

In this paper, we have dealt with the cooperative 

interception problem for multiple NSIs with impact time 

control. The FTDO is introduced to estimate the system 

disturbance caused by target maneuvering, and the estimated 

values are employed as feed-forward compensations, to 

remove the influence of disturbances. Then, the cooperative 

guidance law design is divided into two stages. Firstly, the 

normal acceleration command is developed, to guarantee 

that the tangential velocity of each NSI converges to zero. 

Secondly, the acceleration command along the LOS is 

designed, to ensure that all the NSIs simultaneously hit 

the target. Finally, numerical simulation results on the NSI 

illustrate the effectiveness and advantage of the proposed 

cooperative guidance scheme.
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Fig. 5.  Interceptor-target trajectory by SMG for Case 2
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Fig. 9. Interceptor-target trajectory by SMG 
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