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Abstract

A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic 

performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal 

contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and 

reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, 

the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. 

Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal 

number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip 

shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the 

acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise 

was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Key words:  High speed train, Pantograph contact strip, Design optimization, Wind tunnel experiment, Aerodynamic 

performance, Acoustic noise source. 

1. Introduction

In Korea, new KTX-Double Deck project was developed 

which runs through the long tunnel under-ground with the 

speed of 300km/h. And the high speed train named HEMU-

430X is being developed with maximum speed of 430km/h 

and operation speed of 370km/h. As the speed of the train 

exceeds over 300km/h, aerodynamic problems such as sudden 

drag increase, severe acoustic noise, pressure variations and 

instability occur. Aerodynamic issues in high speed train are 

almost the same as those in aircraft. This is a good example 

that high technologies in aerospace engineering apply to 

other engineering field. 

Among aerodynamic problems in high speed train, the 

strong noise from a pantograph system limits the operating 

speed.[1, 2] A pantograph system which is installed on the 

roof of a high speed train is an important device that collects 

electric current from overhead lines. A general pantograph 

system, which has a complex configuration, is consisted 

of a contact strip, arm, frame and under-body (electrical 

insulator) as it is shown in Fig 1. Especially, a contact strip 

is the major contributor of aerodynamic noise and drag in 

a pantograph system because it is exposed directly to high 

speed external flow. Moreover, it determines the lift force, 
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which is closely related to the electric current collecting 

performance between a catenary line and a contact strip. 

The aerodynamic performance of the pantograph system has 

been investigated and aerospace engineering technology 

apply to the pantograph system: In Japan, M. Ikeda et 

al. had studied a numerical optimization of the cross-

sectional contact strip shape for low noise and designed a 

new pantograph system.[3-5] In Europe, C. Noger et al. had 

investigated acoustical noise of pantograph recess for TGV.

[6] T. Dassen et al. had studied the noise of a high speed train 

pantograph.[7] In Korea, research of applying aerospace 

engineering technology like airfoil and spoiler to pantograph 

system was performed for HEMU-430X. With the increase 

of train speed, the acoustic noise problem has become 

important issue. Recently, a new pantograph system suitable 

for the operational speed of 370km/h has been required for 

decreasing noise level by 5~10 dB.

In regard to the acoustic noise of the contact strip, a dipole 

source is caused by an unsteady pressure fluctuation and due 

to the train speed less than Mach number of 0.3 proportional 

to the train speed by a power of 6.[8]

In regard to the robustness of the contact strip, the current 

collecting performance can be estimated by lift fluctuation 

and 
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2. Design and optimization of contact strip

A new Korean high speed train named HEMU-430X is being 

developed for maximum speed of 430km/h and operation 

speed of 370km/h. Accordingly, high speed pantograph for 

lower noise and contact force is being developed. 

Generally, a contact strip cross-section of high speed train 

pantograph is in rectangular shape. A rectangular shape 

has a higher drag and a larger amplitude of lift fluctuation 

because of the vortex in the rear field. If a rectangular shape 

is changed to a streamlined shape, drag and amplitude of 

lift fluctuation can be remarkably reduced. [3] And acoustic 

noise due to a vortex can also be reduced.

2.1 Design condition

The operation speed of HEMU-430X is 370km/h. Acoustic 

noise and drag are expected to increase  significantly as the 

operation speed increases from 300km/h which is the speed 

of KTX(Korean Train eXpress) to 370km/h. Therefore, a high 

priority is to design a new contact strip producing minimum 

acoustic noise and drag for the normal close knee condition 

as it is shown in Fig. 2. The open knee condition, which is an 

20 

Model Reynolds number Mean cl Mean cd

Rectangular shaped contact strip 
25000 0.002 1.427 

50000 0.002 1.426 

Circular shaped contact strip 
25000 0.002 1.103 

50000 0.002 1.107 

The final optimized contact strip 
25000 0.001 0.152 

50000 0.002 0.155 

 

 

 

  Table 6. Amplitudes of cl and cd fluctuations 

Amplitude of cl Amplitude of cd 

Rectangular shaped contact strip 0.7(-0%) 0.025 

Circular shaped contact strip 0.55(-22%) 0.011 

Final optimized contact strip 0.09(-87%) 0.002 

 

 
 

 
Fig 1. Pantograph for HEMU-430X and optimized Contact strip shape 

 

Fig. 1. Pantograph for HEMU-430X and optimized Contact strip shape
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emergency condition, was not considered because the train 

speed was much lower than the operation speed of the close 

knee condition.

2.2 Design objective

As mentioned, the existing rectangular shaped contact 

strip has a higher drag and higher unsteady pressure 

fluctuation as well due to a vortex. On the other hand, in the 

case of a streamlined contact strip, when the angle of attack 

is small, drag and pressure fluctuation is quite small and the 

flow around the streamlined shape is almost steady. Thus, 

in the case of the contact strip shape, cd can be achieved the 

design objective because the acoustic noise of the contact 

strip could be reduced simultaneously when the drag and 

pressure fluctuation (Strouhal number) is decreased. [9-11] 

The current collecting performance is influenced by 

the lift fluctuation of the contact strip itself when there 

are no disturbances. For a streamlined contact strip 

shape, the reduction of cd means the decrease of the 

pressure drag and consequently, it causes the decrease 

of the pressure fluctuation (lift fluctuation). Thus, the 

reduction of cd of contact strip may lead to a stable current 

collecting performance. On the other hand, when there 

are disturbances, the current collecting performance is 

affected by the changes of lift force as the variations of the 

angle of attack (
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2.3 Design variables
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optimization since it is possible to create a variety of shapes 

with less variation. [12]  
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are as follows;

For selecting the initial sampling points, the Latin 

Hypercube method is used and 30 sampling points are 

selected and distributed uniformly in the design space. The 

example grid shapes of the sampling points are shown in Fig 5.

The grid system is the structured O type with the far 

boundary located at as far as 20 times of contact strip length 

(a1+a2) from the contact strip. The free-stream velocity is 

370km/h, and the angle of attack (α), is set as -10 ~ 10 degrees 

to investigate the robustness of the designed results.

Based on the calculations, a response surface model was 

constructed via the Kriging model. The GA optimization 

was performed with the RS (Response Surface) to find the 

minimum of cd and 

3 
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values may miss the global optimum points because the 

predicted points by the Kriging model contain uncertainty. 
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Table 1. Summary of design optimization
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Table 1. Summary of design optimization 

Contents 

Design condition V∞=370km/h, Angle of attack: -10~10[deg.] 

Design Variables a1, a2, n, m 

Constraint Lift of contact strip is less than 200N 

Objective function cd ,  

 

Table 2. Final optimized shape of Contact strip 

 a1 a2 n m remark 

Final Optimization 1.75 X 10-2 3.36 X 10-2 3.5 1.5 Fig. 6(Right)

 

Table 3. Comparison of cd and  of the optimized contact strip 

cd (Experiment.) Max. of  at α = -10~10deg. 

Optimized 
contact strip 0.148 (0.155) 0.070 

 

Table 4. Strouhal number of contact strip models 

Experimental models Reynolds number Strouhal number Reference 

Rectangular shaped 

contact strip 

25000 0.143 
0.14 

50000 0.142 

Circular shaped 

contact strip 

25000 0.206 
0.2 

50000 0.191 

Final optimized 

contact strip 

25000 N/A 
- 

50000 N/A 

 

 

 
 
 

Table 5. Mean cl and cd 
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Grid 21 

Fig 5. The example grid shapes of sampling points 
 
 

 

Fig 6. Palette set(Left) and the optimized shape(final optimization, Right) 
 
 

 

Fig. 5. The example grid shapes of sampling points
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Thus, we calculated the EI values and added additional 

sampling points to the initial points. We iterated this process 

three times.

The final optimized shape was selected on a palette set, 

as it is shown in the left of Fig 6. This palette set shows 

that the two objective functions conflict with each other. 

Here, cd and cl were non-dimensionalized by height of each 

shape. The final optimized shape was selected from the 

point which has the smallest values of cd and |
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becomes stable.  
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against flow disturbances, the aerodynamic shape of the contact strip is optimized by minimization of 

cd and .  

Following the introduction, in section 2, design optimization process and the method for selecting 

the final optimization shape are described. The values of cd and the fluctuation of cl are compared 

between the rectangular shaped contact strip and the final optimized contact strip. In section 3, 

experimental setup and condition are introduced for flow visualization, Strouhal number and 

aerodynamic force measurements. And, the final optimized contact strip shape is validated. Finally in 

section 4, concluding remarks are drawn. 

 

2. Design and optimization of contact strip 

A new Korean high speed train named HEMU-430X is being developed for maximum speed of 

430km/h and operation speed of 370km/h. Accordingly, high speed pantograph for lower noise and 

| was decreased by about 42%. Amplitude of 

lift decreased from 0.695 to 0.085 by about 87%.

3. Wind tunnel tests for validation

3.1 Experimental models for contact strip shape

To validate the optimized contact strip shape and to 

compare aerodynamic performances, experimental models 

of a rectangular shaped contact strip, a circular shaped 

contact strip and the optimized contact strip shape were 

selected. Generally, a typical contact strip is in rectangular 

and circular shapes, as it is shown in Fig 8. Each model has 

the same height of 25mm. The chord length of the rectangular 

shaped contact strip, the circular shaped contact strip and 

optimized contact strip were 35mm, 25mm, and 65mm. And 

their spans were 500mm. End plates were clearly installed 

to avoid three dimensional effects. The models were made 

by wood with accuracy of 1/100 using CNC(Computerized 

Numerical Control). 

3.2 Experimental setup and condition

Wind tunnel tests were conducted in Seoul National 

University (SNU) and Korea Air Force Academy (KAFA) 

under the same experimental condition. Aerodynamic force 

and Strouhal number were measured in the wind tunnel 

of SNU. And Flow visualization was conducted with PIV 

(Particle Image Velocimetry) in the wind tunnel of KAFA. 

The wind tunnel of Seoul National University has the test 
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speed is 75m/s with turbulent intensity of less than 0.2%. The 

wind tunnel of the Korea Air Force Academy has test section 

of 0.9m (H)×0.9m(W)×2m(L) in size; its maximum speed is 
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3.3 Flow visualization

Flow visualization was performed with PIV. The PIV system 

used for present study was made by the TSI Company: the 

CCD camera has the maximum frames per second of 30, pixel 

resolution of 1K × 1K, dynamic range of 8 bit and sampling 

rate fixed to 15 Hz. For seeding, a particle generator driven 

by pneumatic power evaporates the olive oil and seeds it to 

the collector of the wind tunnel. The experimental Reynolds 

number was about 50,000.
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3.4 Strouhal number measurement

A hot wire probe (KANOMAX Constant Temperature 

Anemometer) was used to measure the Strouhal number. The 

measuring position was 2D (diameters) after the experimental 

models. The measurement frequency was 10 kHz for 2 minutes. 

Strouhal number is given by St=

8 
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frequency, D: diameter, U: freestream velocity). Experimental Reynolds numbers ranged from about 

25,000~50,000. The frequency for the calculation of the Strouhal number was acquired by Fast 

Fourier Transform. 
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cell, as it is shown in Fig 9. The two-axis load cell was made by CAS Korea, and its accuracy was 

±0.05%. Experimental Reynolds numbers were in the range of about 25,000~50,000 and the sampling 

frequency was 1 kHz. Aerodynamic data were acquired by averaging during 30 seconds. The blockage 

ratio of experimental models was less than 3%. 
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shaped contact strip and the circular shaped structure. The optimized contact strip shape does not 

show separations or vortex. PIV experiments also show seemingly steady flow around the optimized 

contact strip. To confirm the results of PIV, the Strouhal number of each experimental model was 

measured by a hot wire anemometer. Measured Strouhal numbers by HWA are shown in table 4. They 

are very close to the typical value.[16, 17] The optimized contact strip shape did not have a Strouhal 
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Fig 9. Force measurement set up 
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contact strip shape has a more stable flow than those of 

both the rectangular shaped contact strip and the circular 

shaped structure. The optimized contact strip shape does 

not show separations or vortex. PIV experiments also 

show seemingly steady flow around the optimized contact 

strip. To confirm the results of PIV, the Strouhal number 

of each experimental model was measured by a hot wire 

anemometer. Measured Strouhal numbers by HWA are 

shown in table 4. They are very close to the typical value.

[16, 17] The optimized contact strip shape did not have a 

Strouhal number because the flow around the optimized 

contact strip was almost steady.

3.6.2  Force results for two dimensional contact strip 
shape

Mean lift and drag coefficients for the rectangular shaped 

contact strip, the circular shaped contact strip and the 

optimized contact strip shape are shown in table 5.

Lift and drag coefficients of the rectangular shaped contact 

strip, the circular shaped contact strip, and the optimized 

contact strip shape showed typical results in Reynolds 

number range of apprx. 25,000~50,000.[18~20] Among the 

experimental models, the optimized contact strip shape 

showed the smallest drag. 

The drag coefficients of the optimized contact strip were 

reduced about 89% and 87% from those of the rectangular 

shaped contact strip and the circular shaped contact strip 

respectively. Amplitudes of lift and drag fluctuations are 
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Fig 11. Flow around circular shape (Re=50,000) 
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Fig 11. Flow around circular shape (Re=50,000) 

 
 

Fig 12. Flow around the optimized shape (Re=50,000) 
  Fig. 12.  Flow around the optimized shape (Re=50,000)

Table 4. Strouhal number of contact strip models

19 

Table 1. Summary of design optimization 

Contents 

Design condition V∞=370km/h, Angle of attack: -10~10[deg.] 

Design Variables a1, a2, n, m 

Constraint Lift of contact strip is less than 200N 

Objective function cd ,  

 

Table 2. Final optimized shape of Contact strip 

 a1 a2 n m remark 

Final Optimization 1.75 X 10-2 3.36 X 10-2 3.5 1.5 Fig. 6(Right)

 

Table 3. Comparison of cd and  of the optimized contact strip 

cd (Experiment.) Max. of  at α = -10~10deg. 

Optimized 
contact strip 0.148 (0.155) 0.070 

 

Table 4. Strouhal number of contact strip models 

Experimental models Reynolds number Strouhal number Reference 

Rectangular shaped 

contact strip 

25000 0.143 
0.14 

50000 0.142 

Circular shaped 

contact strip 

25000 0.206 
0.2 

50000 0.191 

Final optimized 

contact strip 

25000 N/A 
- 

50000 N/A 

 

 

 
 
 

Table 5. Mean cl and cd 



DOI: http://dx.doi.org/10.5139/IJASS.2016.17.3.285 292

Int’l J. of Aeronautical & Space Sci. 17(3), 285–295 (2016)

shown in table 6. The optimized contact strip shape showed 

87% reduction in amplitude of lift fluctuation from that of 

the rectangular shaped contact strip, which meant that the 

pressure fluctuation has decreased in the optimized contact 

strip.

In the real operational condition of HEMU-430X, the 

Reynolds number of the flow around the contact strip is 

about 4×105. For this Reynolds number, the circular shape 

may give different aerodynamic characteristics compared 

to those for the Reynolds number of 4×105 because of the 

turbulent effect. Over the critical Reynolds number for 

turbulent flow, the flow separation point moves toward the 

rear because of the increase of the flow momentum near 

the surface. Thus, the drag coefficient is expected to be 

smaller in a real condition. On the other hand, in the cases 

of the rectangular contact strip and a streamlined contact 

strip, although the Reynolds number increases from 50,000 

to 4×105, the drag coefficient of the rectangular shape 

changes little because the separation point does not move 

and a vortex is still generated in high Reynolds number 

regions. Also, the drag coefficient of the streamlined 

contact strip is almost constant even in high Reynolds 

number regions, unlike to that of the rectangular shape.[21] 

Therefore, it is reasonable that the results of the general 

rectangular contact strip and the optimized contact strip at 

the Reynolds number of 50,000 would still remain valid in 

the real condition.

The strength of a noise source on a contact strip surface 

can be estimated by the pressure fluctuation on the contact 

strip surface.
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where, SPL (dBZ) is the un-weighted SPL and Pref. is 2×10-5. 

The difference of source strength between the rectangular shape and the optimized shape is 
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where ΔPrect. and ΔPopt. are the pressure fluctuations on surface of the rectangular shaped contact 

strip and the optimized contact strip respectively. 

The amplitude of the pressure fluctuation of the optimized contact strip, ΔPopt., was about 13% of 

the rectangular contact strip because the pressure fluctuation is directly determined by lift fluctuation 

and viscous force does not affect lift fluctuation in the streamlined shape. Thus, acoustic noise source 

strength of the optimized contact strip may be reduced by 17.72dB from that of the rectangular shaped 

contact strip. 

In regard to current collecting performance, the lift amplitude of the optimized contact strip was 

about 29N when the operation speed of the train was 370km/h. The lift amplitude of the optimized 

contact strip was much smaller than the rectangular shaped contact strip and the circular shaped 

contact strip, so the optimized contact strip will show much more stable current collecting 

performance than the rectangular and circular shaped contact strips. 
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pantograph system, CFD on a three dimensional pantograph system is performed and also results from 

wind tunnel experiment [22] is referred. 
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Model Reynolds number Mean cl Mean cd
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Fig 1. Pantograph for HEMU-430X and optimized Contact strip shape 

 

Table 6. Amplitudes of cl and cd fluctuations 

20 

Model Reynolds number Mean cl Mean cd

Rectangular shaped contact strip 
25000 0.002 1.427 

50000 0.002 1.426 

Circular shaped contact strip 
25000 0.002 1.103 

50000 0.002 1.107 

The final optimized contact strip 
25000 0.001 0.152 

50000 0.002 0.155 

 

 

 

  Table 6. Amplitudes of cl and cd fluctuations 

Amplitude of cl Amplitude of cd 

Rectangular shaped contact strip 0.7(-0%) 0.025 

Circular shaped contact strip 0.55(-22%) 0.011 

Final optimized contact strip 0.09(-87%) 0.002 

 

 
 

 
Fig 1. Pantograph for HEMU-430X and optimized Contact strip shape 

 



293

Joo-Hyun Rho    Optimal Shape of Blunt Device for High Speed Vehicle

http://ijass.org

contact strips.

3.6.3  Application of contact strip shape to three dimen-
sional pantograph system.

To investigate the enhanced overall performance when 

the optimized contact strip is applied to a pantograph 

system, CFD on a three dimensional pantograph system is 

performed and also results from wind tunnel experiment 

[22] is referred.

For CFD study, full scale computational model of single 

arm and single head type pantograph in Fig. 15 was used. 

Velocity condition of the CFD was 45, 60 and 77m/s. For 

analyzing turbulent flow, LES (Large Eddy Simulation) is 

applied and the result of turbulent flow is analyzed by Ffowcs 

Williams-Hawkings (FW-H) acoustics model. As shown in 

Fig. 16, the flow field in the pantograph with the optimized 

contact strip is more stable than that of the pantograph with 

rectangular contact strip. The drag of the optimized contact 

strip pantograph system decreased by 26% and acoustic 

noise decreased by 2.0 dB.

In reference 22, one-quarter scale model of single arm and 

double head type pantograph in Fig. 13 was experimented. 

The experimental velocity conditions were 20, 40, 60 and 65 

m/s. The experimental Reynolds number based on the length 

between the front and rear of the panhead ranged from 

2.05x105 to 6.67x105. The drag of the optimized contact strip 

pantograph system decreased by 35% as shown in Fig.14 and 

lift fluctuation decreased by 28%. The acoustic noise source 

strength of the optimized system may be reduced by 2.85 dB 

from that with the rectangular shaped contact strip.[22]
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Because a double head type system has two heads, it is slightly more efficient than a single head 

type system. 

The drag and acoustic noise reduction of three dimensional experiment and CFD is even less than 

the reduction of contact strip itself, 17.72 dB because the arm of pantograph and the linkage also 

generate high level of acoustic noise. For realization of operating speed of 350 km/h, the overall level 

of acoustic noise has to be reduced by 5~10 dB. Accordingly, the arm and linkage design should be as 

well as the contact strip. 

 

4. Concluding Remarks 

The contact strip shape of a pantograph system for a high speed train was optimized and validated 

by wind tunnel tests to improve the aerodynamic performance and stability of a pantograph system. 

From the design optimization of the contact strip shape, the final optimized contact strip shape was 

acquired with various CFD methods. For optimizing a robust and lower drag contact strip, design 

optimizations were carried out rapidly and effectively with GA and EI. Finally, the optimized contact 

strip shape for lower acoustic noise and drag were selected in the palette set by minimizing both cd 
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Fig 16. Velocity contour of rectangular (left) and optimized(right) contact strip pantograph 

 Fig. 16. Velocity contour of rectangular (left) and optimized(right) contact strip pantograph
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slightly more efficient than a single head type system.

The drag and acoustic noise reduction of three dimensional 

experiment and CFD is even less than the reduction of 

contact strip itself, 17.72 dB because the arm of pantograph 

and the linkage also generate high level of acoustic noise. For 

realization of operating speed of 350 km/h, the overall level 

of acoustic noise has to be reduced by 5~10 dB. Accordingly, 

the arm and linkage design should be as well as the contact 

strip.

4. Concluding Remarks

The contact strip shape of a pantograph system for a high 

speed train was optimized and validated by wind tunnel 

tests to improve the aerodynamic performance and stability 

of a pantograph system.

From the design optimization of the contact strip shape, 

the final optimized contact strip shape was acquired with 

various CFD methods. For optimizing a robust and lower 

drag contact strip, design optimizations were carried out 

rapidly and effectively with GA and EI. Finally, the optimized 

contact strip shape for lower acoustic noise and drag were 

selected in the palette set by minimizing both cd and |

3 

engineering technology like airfoil and spoiler to pantograph system was performed for HEMU-430X. 

With the increase of train speed, the acoustic noise problem has become important issue. Recently, a 

new pantograph system suitable for the operational speed of 370km/h has been required for 

decreasing noise level by 5~10 dB. 

In regard to the acoustic noise of the contact strip, a dipole source is caused by an unsteady pressure 

fluctuation and due to the train speed less than Mach number of 0.3 proportional to the train speed by 

a power of 6.[8] 

In regard to the robustness of the contact strip, the current collecting performance can be estimated 

by lift fluctuation and . Under the constant speed condition without any disturbance, the amplitude 

of vertical force fluctuations of the contact strip needs to be small at a given angle of attack. In the 

constant speed condition with disturbances such as crosswind or gust, the vertical lift forces need to 

be small with the variations of angle of attack, ; this means that the current collecting performance 

becomes stable.  

In this research, to reduce acoustic noise and drag and to increase robustness of the contact strip 

against flow disturbances, the aerodynamic shape of the contact strip is optimized by minimization of 

cd and .  

Following the introduction, in section 2, design optimization process and the method for selecting 

the final optimization shape are described. The values of cd and the fluctuation of cl are compared 

between the rectangular shaped contact strip and the final optimized contact strip. In section 3, 

experimental setup and condition are introduced for flow visualization, Strouhal number and 

aerodynamic force measurements. And, the final optimized contact strip shape is validated. Finally in 

section 4, concluding remarks are drawn. 

 

2. Design and optimization of contact strip 

A new Korean high speed train named HEMU-430X is being developed for maximum speed of 

430km/h and operation speed of 370km/h. Accordingly, high speed pantograph for lower noise and 

|. 

In wind tunnel tests, PIV, aerodynamic forces and Strouhal 

number were measured to validate the optimized contact 

strip shape. From the test results, the optimized contact 

strip shape had the smallest drag with lower vertical lift 

force fluctuation than the rectangular shape and the circular 

shape. The flow around the optimized contact strip is almost 

steady without fluctuations. The optimized contact strip 

gave 89% less drag and 87% less amplitude of lift fluctuation 

than the rectangular shaped contact strip. We can expect 

the acoustic noise source strength on the optimized contact 

strip surface to decrease by about 17.72dB from that of the 

rectangular shape. When optimized contact strip shape is 

applied to the pantograph system, the drag and acoustic 

noise were reduced by 26% and and 2 dB respectively. It 

is evident to optimize the arm and linkage design as well 

as the contact strip in order to reduce the level of acoustic 

noise by 5~10 dB which is required for the realization of the 

operational speed of 350 km/h.
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