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Abstract

This paper addresses minimum-fuel, two-dimensional trajectory optimization for a soft lunar landing from a parking orbit to 

a desired landing site. The landing site is usually not considered when performing trajectory optimization so that the landing 

problem can be handled. However, for precise trajectories for landing at a desired site to be designed, the landing site has to be 

considered as the terminal constraint. To convert the trajectory optimization problem into a parameter optimization problem, 

a pseudospectral method was used, and C code for feasible sequential quadratic programming was used as a numerical solver. 

To check the reliability of the results obtained, a feasibility check was performed.
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1. Introduction

The Soviet Lunar 2 first succeeded in touching the lunar 

surface in 1959, and then the USA’s Apollo 11 made the first 

successful manned lunar landing in 1969. Both countries had 

performed many lunar exploration missions in the Apollo 

era, but the competition for lunar exploration decreased 

after Apollo 17. Since 2000, many countries have again begun 

programs that will enable them to develop the Moon. Japan, 

China, and India successfully launched the Selene, the 

Change’E, and the Chandrayaan-1, respectively, for lunar 

exploration. There are several reasons to develop the Moon. 

Helium-3, which is used in nuclear fusion and could be an 

energy source in the future, is abundant on the Moon, and the 

existence of water has recently been confirmed by the impact 

of NASA’s Lunar Crater Observation and Sensing Satellite 

(LCROSS). In addition, the Moon can be an advance base for 

reaching other planets. Water will be especially helpful when 

the lunar base is constructed. Therefore, we need research on 

lunar exploration so that energy sources can be obtained and 

the Moon utilized in the development of the other planets. 

The design of precise trajectories to land at the desired site 

is very important to making lunar exploration possible, and 

designs for minimum-fuel, optimal landing trajectories are 

also needed for spacecraft heavily laden with experimental 

equipment, as well as to facilitate return of the craft in the 

event of mission failure. In this paper, trajectory optimization 

problems are treated so that precise and minimum-fuel 

landing trajectory, considering the desired landing site, can 

be designed.

Although many studies of lunar landing were conducted 

in the Apollo era, the computing power needed to 

handle the complicated problems was limited, and many 

assumptions were needed to obtain solutions. Recently, 

not only has computing power increased to the point where 

the optimization problem can consider many constraints 

for practical applications and can therefore be solved, but 

several numerical methods have also been developed to 

obtain accurate solutions. Ramanan and Lal (2005) presented 

several strategies for soft landings from a lunar parking orbit. 

Tu et al. (2007) have shown how rapid trajectory optimization 

can be performed for a soft lunar landing using a direct 

collocation method. Hawkins (2005) treated the trajectory 

optimization, including the altitude dynamics of the lander, 

in order to consider the vertical landing. Most of the above 

studies assumed a transfer orbit phase as a Hohmann transfer 

** PhD Candidate
** Professor, Corresponding author
** E-mail: mjtahk@fdcl.kaist.ac.kr    Tel:+82-42-350-3718    Fax:+82-42-350-3710

Received: March 27, 2010   Accepted: September 16, 2011



289

Bong-Gyun Park    Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site

http://ijass.org

or did not consider a landing site. The main contribution of 

this paper is to generate optimal trajectories from a parking 

orbit to a specific landing point.

The trajectory optimization problems can be regarded 

as optimal control problems. To approximate the state 

and control variables, and the dynamics, a Legendre 

pseudospectral (PS) method, developed by Fahroo and Ross 

(2001), was used. In addition, a PS knotting method (Ross 

and Fahroo, 2004) was applied to handle the multiphase 

problem because the lunar landing consists of three phases: 

a de-orbit burn, a transfer orbit phase, and a powered descent 

phase. After converting the trajectory optimization problem 

into a finite nonlinear programming (NLP) problem, C code 

for feasible sequential quadratic programming (CFSQP) 

(Lawrence et al., 1997) was employed to obtain the optimal 

solutions.

This paper is organized as follows. The two-dimensional 

dynamic model is presented in the rotating frame, and the 

numerical method for the trajectory optimization is reviewed 

next. The numerical results are discussed, followed by the 

conclusion.

2. Two-Dimensional Dynamic Model

2.1 Lunar environment

The atmosphere of the moon is extremely thin, so the drag 

that affects the lunar lander is not taken into account, and 

the moon is assumed to be a perfect sphere. Because the 

Moon’s rotation affects the lander’s motion in the rotating 

frame, the Moon’s angular velocity ω  has to be considered, 

and its value is 2.6632 × 10-6 rad/s. The lunar radius mr  and 

the standard gravitational parameter mµ  are 1,737.4 km and 

4,902.78 km3/s2, respectively. The prime meridian of the 

moon is the vertical line of the center that is seen from the 

Earth, and the latitude is zero at the Moon’s equator plane.

2.2 Equations of motion

In this paper, it is assumed that the landing site is located 

in the equatorial vicinity of the Moon. Thus, the lander’s 

motion can be treated as two dimensional. To derive 

equations of motion, the Moon-centered inertia (MCI) 

frame and the Moon-centered Moon-fixed (MCMF) frame 

are needed to represent the relative motion with respect to 

the rotating frame. If the lander is assumed as a point mass, 

the equations of the motion in the polar coordinates are 

derived as follows:

(1)

(2)

(3)

(4)

(5)

Here, r is the radial position, θ is the center angle, vr is the 

vertical velocity, vθ is the horizontal velocity, g0 (= 0.00981 

km/s2) is the Earth’s gravity, Isp is the specific impulse, and 

β is the thrust direction angle. The thrust is calculated by 

the maximum thrust Tmax multiplied by the throttle k, which 

ranges between 0 and 1.

3. Optimization Method

The trajectory optimization problem can be formulated 

as an optimal control problem. For solving optimal control 

problems, there are two major categories: indirect methods 

and direct methods. In the indirect method, the necessary 

conditions are used to obtain the optimal solutions, so a 

complicated calculation is needed. However, the direct 

method obtains the optimal solutions, minimizing directly 

the performance index, so the direct method is more useful 

for a complicated problem because it does not use the 

necessary conditions (Betts, 1998). In this paper, the direct 

method is used to handle the lunar landing problems.

A Legendre PS method (Fahroo and Ross, 2001), which has 

been widely used to solve practical optimal control problems, 

has been applied to approximate sate variables and control 

Fig. 1. �Lunar landing geometry (X, Y : Moon-centered inertia frame, x, 
y : Moon-centered Moon-fixed frame).
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variables, and to state differential equations at nodes called 

Legendre-Gauss-Lobatto (LGL) points. The lunar landing 

problem is a multiphase problem because the lander lands 

on the lunar surface through a de-orbit burn, a transfer orbit 

phase, and a powered descent phase from a parking orbit. 

Thus, a PS knotting method (Ross and Fahroo, 2004) has 

also been applied to perform the trajectory optimization 

considering all phases of the lunar landing.

After the optimal control problem was converted into the 

finite NLP problem using the PS method, CFSQP, developed 

by Lawrence et al. (1997) at the University of Maryland, was 

used to obtain optimal solutions. CFSQP is a numerical 

solver using a SQP algorithm. 

3.1 Legendre PS method

Collocation methods usually use piecewise-continuous 

functions to approximate the state and control variables on 

the arbitrary subintervals. However, the Legendre PS method 

uses globally interpolating Lagrange polynomials as trial 

functions for approximating the state and control variables at 

the LGL points. The LGL points are the zeros of the derivative 

of the Legendre polynomial LN except for the end points (t0 = 

−1, tf = 1), and they lie in the interval [−1, 1], so the following 

transformation is needed to express the problem in the LGL 

time domain (t∈[t0, tN] = [−1, 1]):

(6)

The continuous variables are approximated by N-th order 

Lagrange polynomials øl (t).

(7)

(8)

where for l = 0, 1, ..., N

It can be shown as the Kronecker delta function that

(9)

The state differential equations are transformed into the 

algebraic equations using the PS differentiation matrix D:

(10)

(11)

where

(12)

The performance index can be discretized using the 

Gauss-Lobatto integration rule:

(13)

where

and wk are the LGL weights given by

3.2 PS knotting method

To solve multiphase problems, many nodes are needed 

for accurate solutions to be obtained; this requires a great 

deal of computation time. In this case, using the PS knotting 

method, those problems can be solved efficiently with 

fewer nodes. The basic idea of the PS knotting methods is 

to divide the whole time interval into smaller subintervals 

when the time histories of the states and/or controls have 

large variations. Then, the double LGL points, called knots, 

are placed between the subintervals, and the Legendre PS 

method is applied to discretize each phase. There are two 

kinds of knots. A soft knot is one located at a place where 

the state values are continuous and the control values are 

discontinuous between the subintervals. A hard knot is one 

located where the state values are discontinuous between 

subintervals.
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4. Trajectory Optimization

4.1 Problem definition

A lunar landing consists of three phases: a de-orbit burn, 

a transfer orbit phase, and a powered descent phase. The de-

orbit burn enables the craft to enter the transfer orbit phase, 

which is an elliptical orbit (100 × 15 km), from a parking 

orbit; then the lander descends without thrust during the 

transfer orbit phase. The perilune height of 15 km is chosen 

to minimize fuel consumption and in consideration of the 

mountainous terrain of the Moon and possible guidance 

errors (Bennett and Price, 1964). The powered descent phase 

is initiated near the perilune when the engine turns on, and 

the lander’s velocity is totally decreased in order to enable 

the craft to land softly on the lunar surface.

In the parking orbit the initial mass m0, the specific 

impulse Isp, and the maximum thrust Tmax are 600 kg, 316 

seconds, and 1,700 N, respectively.

The state and control variables are defined as

(14)

(15)

The lander has to minimize fuel consumption if it is to carry 

a heavy payload of mission equipment for lunar explorations 

and to be able to return in the event that the mission cannot 

be completed. Thus, the performance index is defined so as 

to minimize the lander’s fuel consumption:

(16)

For the optimization results to be obtained officially, the 

NLP variables should be of a similar order of magnitude. 

Thus, it is necessary to normalize them using the following 

scaling factors:

(17)

Using the above scaling factors, time τ, specific impulse Isp, 

the Earth’s gravity g0, the Moon’s angular velocity ω, thrust 

Tmax, and the standard gravitational parameter of the Moon 

μm can be normalized.

The NLP variables, which are obtained from the 

optimization results, are

(18)

where i = 1, 2, 3 represent the de-orbit burn, the transfer 

orbit phase, and the powered descent phase, respectively. 

Constraints imposed when the optimization is performed 

consist of the dynamic, initial, terminal, and event constraints. 

From the equations of motion, the dynamic constraints are 

defined as 

(19)

where

and DT
(i) is defined as

(20)

Fig. 2. Lunar landing phases from the parking orbit.
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The initial altitude is 100 km from the lunar surface. The 

initial vertical velocity is zero in the parking orbit, and the 

horizontal velocity, which is the velocity relative to the MCMF 

frame, is calculated by the difference between the circular 

velocity (vc = μm / r ) and the velocity (ωr(τ0)) caused by the 

Moon’s rotation. The center angle is one of the parameters 

that represent the lander’s location. Thus, the initial center 

angle should be found from the optimization result because 

the optimal trajectory to land at the designated landing 

point is changed as the initial location of the lander changes. 

Therefore, the total initial constraints are

(21)

The terminal altitude is the surface of the Moon, and 

the terminal velocities are determined for soft landing. The 

landing site is determined by the terminal center angle 

because the downrange is calculated by multiplying the lunar 

radius and the change in center angle. The terminal center 

angle is 250 deg and arbitrarily determined as the desired 

landing site. Hence, the terminal constraints are given by

(22)

To connect the state or control information between each 

phase, the knotting constraints are needed as follows:

(23)

where x(1), x(2), and x(3) denote the first, second, and third 

phase state variables, respectively, and the subscript means 

the N-th variable. In addition, the time constraints are 

imposed as follows:

(24)

The terminal constraint of the de-orbit burn is needed in 

order to enter the transfer orbit phase [3]. 

(25)

where vr|abs and vθ|abs are the absolute velocity. In Eq. (25), 

rp is the perilune height, and the shape of the transfer orbit 

is determined by rp at the terminal time of the de-orbit burn, 

which means that if rp is 15 km, the de-orbit burn forms the 

100 × 15 km transfer orbit phase.

The constraint on the termination of the transfer orbit 

phase is also needed to start the powered descent phase.

(26)

If the inequality constraint of Eq. (26) has a much lower 

value, the landing problem can be either infeasible or overly 

constrained.

A throttle bound is defined to avoid restarting of the engine 

during the powered descent phase:

(27)

4. 2 Numerical results

In Fig. 3, the total number of the LGL points is 60, and 

each phase has LGL points of 20. Although the transfer orbit 

phase has longer duration than the other two phases, setting 

the LGL point to 20 in the transfer orbit phase is allowable 

because the control variables are not computed during free-

fall descent, and only the integration is only performed. 

A feasibility check is performed in order to verify the 

optimization results. Feasibility means that the control 

and path constraints, the boundary conditions, and the 

dynamics constraints are satisfied (Josselyn and Ross, 2003). 

Feasibility can be checked by verification of whether the 

time histories of the states obtained by the propagation using 

the controls obtained from the optimization results match 

the state values obtained from the optimization at the LGL 

points. To propagate the states from the initial conditions, 

the control values obtained from the optimization at the LGL 

points need to be interpolated. Thus, the cubic interpolation 

scheme is used to interpolate the control values, and fourth-

order Runge-Kutta method is used to propagate the states 

from the initial conditions. Table 1 shows the terminal 

Fig. 3. Legendre-Gauss-Lobatto (LGL) points allocated in each phase.
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propagation errors of each state. In Hawkins (2005), the 

terminal propagation error of the altitude is about 100 

meters when all landing phases from the parking orbit are 

considered, so it is deduced that the results obtained in this 

paper are good solutions. If more LGL points are used, more 

accurate solutions can be obtained, and there will be fewer 

propagation errors.

Table 1. Terminal propagation errors

Figures 4 through 11 show the trajectory optimization 

results, and the circles and the solid lines represent the 

optimized and propagated values, respectively. Figure 4 

represents the two-dimensional trajectory from the optimized 

initial location (69.29 deg) to the desired landing (250.0 deg) 

site. The lander travels downrange 5,479.8 km from the initial 

location, and a total flight time of 3,655.3 seconds is taken for 

the landing at the desired site. Figures 5 and 6 show the time 

histories of the altitude and the center angle. The duration of 

the de-orbit burn, the transfer orbit phase, and the powered 

descent phase are 6.90 seconds, 3,028.5 seconds, and 619.98 

seconds, respectively. The velocity profiles are shown in Figs. 

7 and 8, and the terminal constraints are satisfied for a soft 

landing. Figure 9 represents the lander’s mass profile, and 

the fuel consumption of the de-orbit burn and the powered 

descent phase are 3.768 kg and 260.69 kg, respectively. In Fig. 

10, the lander’s engine turns on at the altitude of 17.009 km 
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Fig. 4. Two-dimensional optimal trajectory. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

Time (m)

A
lti

tu
de

 (k
m

)

 
Fig. 5. Altitude vs. time. 
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Fig. 6. Center angle vs. time. 
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Fig. 7. Vertical vs. time. 
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Fig. 8. Horizontal velocity vs. time. 
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Fig. 7. Vertical vs. time. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

1800

Time (sec)

H
or

iz
on

ta
l V

el
oc

ity
 (m

/s
)

 
Fig. 8. Horizontal velocity vs. time. 

 

Fig. 5. Altitude vs. time.

 

 

be interpolated. Thus, the cubic interpolation scheme is 

used to interpolate the control values, and fourth-order 

Runge-Kutta method is used to propagate the states from 

the initial conditions. Table 1 shows the terminal 

propagation errors of each state. In Hawkins (2005), the 

terminal propagation error of the altitude is about 100 

meters when all landing phases from the parking orbit are 

considered, so it is deduced that the results obtained in 

this paper are good solutions. If more LGL points are 

used, more accurate solutions can be obtained, and there 

will be fewer propagation errors. 
 

Table 1. Terminal propagation errors 
 

State Error 

( ) ( )(3) (3)
opt f pro fr rτ τ−  10.915 M 

( ) ( )(3) (3)
opt f pro fθ τ θ τ−  0.002 deg 

( ) ( )(3) (3)
, ,r opt f r pro fv vτ τ−  0.1576 m/s 

( ) ( )(3) (3)
, ,opt f pro fv vθ θτ τ−  0.5792 m/s 

 
Figures 4 through 11 show the trajectory optimization 

results, and the circles and the solid lines represent the 
optimized and propagated values, respectively. Figure 4 
represents the two-dimensional trajectory from the 
optimized initial location (69.29 deg) to the desired 
landing (250.0 deg) site. The lander travels downrange 
5,479.8 km from the initial location, and a total flight 
time of 3,655.3 seconds is taken for the landing at the 
desired site. Figures 5 and 6 show the time histories of 
the altitude and the center angle. The duration of the de-
orbit burn, the transfer orbit phase, and the powered 
descent phase are 6.90 seconds, 3,028.5 seconds, and 
619.98 seconds, respectively. The velocity profiles are 
shown in Figs. 7 and 8, and the terminal constraints are 
satisfied for a soft landing. Figure 9 represents the 
lander’s mass profile, and the fuel consumption of the de-
orbit burn and the powered descent phase are 3.768 kg 
and 260.69 kg, respectively. In Fig. 10, the lander’s 
engine turns on at the altitude of 17.009 km when the 
powered descent phase is entered, and the throttle is full 
about 300 seconds after entering the powered descent 
phase. The time that the engine turns on can be controlled 
by changing the termination altitude of the transfer orbit 
phase in Eq. (26). In Fig. 11, the thrust direction is 
opposite to the lander’s motion in order to reduce the 
velocity and change almost linearly from -180 deg to -
151 deg during the powered descent phase. 

 

60 80 100 120 140 160 180 200 220 240 260
0

20

40

60

80

100

Center Angle (deg)

A
lti

tu
de

 (k
m

)

Desired
Landing Site
: 250 deg

Transfer Orbit Phase

De-Orbit
Burn

Powered Descent
Initiation

 
Fig. 4. Two-dimensional optimal trajectory. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

Time (m)

A
lti

tu
de

 (k
m

)

 
Fig. 5. Altitude vs. time. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
50

100

150

200

250

300

Time (sec)
C

en
te

r A
ng

le
 (d

eg
)

 
Fig. 6. Center angle vs. time. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-60

-50

-40

-30

-20

-10

0

Time (sec)

V
er

tic
al

 V
el

oc
ity

 (m
/s

)

 
Fig. 7. Vertical vs. time. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

1800

Time (sec)

H
or

iz
on

ta
l V

el
oc

ity
 (m

/s
)

 
Fig. 8. Horizontal velocity vs. time. 

 

Fig. 6. Center angle vs. time.

 

 

be interpolated. Thus, the cubic interpolation scheme is 

used to interpolate the control values, and fourth-order 

Runge-Kutta method is used to propagate the states from 

the initial conditions. Table 1 shows the terminal 

propagation errors of each state. In Hawkins (2005), the 

terminal propagation error of the altitude is about 100 

meters when all landing phases from the parking orbit are 

considered, so it is deduced that the results obtained in 

this paper are good solutions. If more LGL points are 
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when the powered descent phase is entered, and the throttle 

is full about 300 seconds after entering the powered descent 

phase. The time that the engine turns on can be controlled by 

changing the termination altitude of the transfer orbit phase 

in Eq. (26). In Fig. 11, the thrust direction is opposite to the 

lander’s motion in order to reduce the velocity and change 

almost linearly from -180 deg to -151 deg during the powered 

descent phase.

5. Conclusions

This paper is concerned with two-dimensional trajectory 

optimization for a soft lunar landing, at a desired landing site. 

To discretize the continuous trajectory optimization problem, 

the PS method was applied, and CFSQP was used to obtain 

the optimal solutions. The constraint on the terminal center 

angle was imposed to consider the desired landing site, and 

the initial center angle was obtained from the optimization 

results because the optimal trajectory can be changed as 

the initial location changes. All constraints on the states 

and controls are satisfied, and although propagation errors 

appear, they can be reduced if more LGL points are allocated 

at each phase. Through the trajectory optimization problem 

dealt with in this paper, it is expected that more precise 

lunar landing trajectories can be generated for future lunar 

exploration.
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Fig. 11. Thrust direction angle vs. time. 
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