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Abstract

We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling 

effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates 

at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze 

this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After 

deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control 

quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling 

dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation 

electrodes mitigated the rotor’s drift rate, showing the effectiveness of the newly proposed control electrodes. 
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1. Introduction

Gyroscopes and accelerometers are used widely, depending 

on their performance, as inertial sensors. A conventional 

MEMS gyroscope is the most widely used inertial sensor 

because of its inexpensive price and reasonable performance. 

However, there are limitations to performance of conventional 

MEMS gyroscopes. To address this, many research studies 

have been conducted. Among these, the levitated multi-axis 

gyro-accelerometer (“levitated gyro”) appears to go beyond 

the limitations of conventional MEMS gyroscopes, with 

inherent performance advantages [1-3].

The levitated gyro can measure three axis accelerations (x, 

y, z) and two angular rates (x, y). By restoring displacement of 

the rotor generated by external acceleration, it is possible to 

measure the three axis accelerations. Also, using rebalancing 

of the torque of precession, two axis angular rates can be 

measured. For this purpose, the levitated gyro is usually 

operated in a vacuum. By increasing the rotating speed of 

a gyroscope, the precision and durability can also be much 

improved. For this reason, it is essential to control the 

displacement and high rotation velocity to operate a levitated 

gyro. However, the wobbling phenomenon occurs frequently 

when a body of revolution rotates at high angular velocity. This 

phenomenon is caused by the unbalanced mass distribution 

of the rotor. In case of the levitated gyro, it is an inevitable 

error factors during the manufacturing process. It is one of 

the risk factors threatening the stability and degrading sensor 

performance because a unit of the generated drift rate is 

equal to the output of angular velocity [3]. Thus, the wobbling 

effect needs to be further investigated to develop appropriate 

dynamic compensation.

Given this background, this paper presents the vertical 

dynamics control of an electrostatically levitated gyro 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	 *	Master Course Student
		  **	Professor Corresponding author : sksung@konkuk.ac.kr
		  ***	Professor
		 ****	Researcher



DOI:10.5139/IJASS.2014.15.3.293 294

Int’l J. of Aeronautical & Space Sci. 15(3), 293–301 (2014)

considering the wobbling effect and proposes an effective tilt 

stabilization method by newly introducing moment-control 

electrodes. 

First, an angular drift rate model for the rotating rotor was 

developed with the assumption of point load initial mass 

unbalance. Then, for analyzing the wobbling effect of the 

rotor, parameters of mass-unbalance were assumed and an 

equation of drift rate was derived by developing the rotor’s 

dynamic equation. In particular, a multi-variable capacitance 

model was developed to combine the derived drift angle with 

the previous vertical control model of a levitated gyroscope. 

The multi-variable capacitance model enabled formulating 

and designing a moment compensation algorithm in the tilt 

dynamics. Finally, a simulation study of the designed vertical 

dynamics control was done, considering the wobbling effect, 

which demonstrated that the proposed moment control 

strategy effectively mitigated the drift error of the tilt angle.

2. Basic principle and modeling

2.1 Operational principle

The basic principle was to detect the induced angle 

generated by the rotational moment of the electrically 

levitated rotor. An electrostatic force between the proof mass 

disk and electrodes generates vertical levitation and rotation 

of the rotor. While three axis accelerations are measured in 

controlling the displacement from the nominal point, two 

axis angular rates are measured with the precession angle, 

due to the rotor’s induced torque.

Figure 1 shows the rotor and electrodes structure of 

the levitated gyro. The precession angle 
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Figure 1. Structure and working principle. 

 

Figure 1 shows the rotor and electrodes structure of the levitated gyro. The precession angle 

(x) in sensing axis is caused by the induced torque as a vector product between the external 

angular rate (y) and spinning rate (Ωz). Typically, the precession is detected by the variation 

in capacitance generated by displacement of the rotor from sensing electrodes. Using 

restoring force as a control value, measurement and control are done at the same time. 

Equation (1) represents the moment equation to measure the external angular rate. 

 x z y zM I           (1) 

where the moment (Mx) generated by external angular rate (y) is computed by the moment 

of inertia (Iz) and the spinning rate (Ωz) of the rotor. In (1), it is observed that the resolution of 

sensor is increased by spinning rate of the rotor. Usually, the spinning rate is expected to be 

about 10,000 rpm for a tactical-grade gyroscope in a MEMS device. 

 

2.2 Vertical dynamics modeling 

Fundamentally, a levitated gyro assumes a suspended rotating proof mass for its operation. 

For this, a dynamic equation is established about the vertical motion (usually denoted by the 

z-axis) of the rotor[1]. 
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z dmz bz kz f f             (2) 

where m is the mass, b the damping coefficient, k the spring constant, fz the electrostatic force, 

fd the external force, and z the displacement. Considering the electrostatic control voltage, the 

electrostatic force is calculated as  
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where VB is the bias voltage, UC the control voltage, and dz the nominal point. Thus (2) can be 

depicted by the following equation, including the external acceleration of gravity.
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In equation (4), the spring constant equals zero because the levitated gyro operates in a 

suspended state and the dynamic equation is established considering only gravity, with no 

additional external acceleration. 

 

3. Analysis of the wobbling dynamics from mass unbalance 

3.1 Drift rate characteristics 

The wobbling phenomenon in a levitation gyroscope is a periodic fluctuation of rotational 

proofmass from a nominal spinning plane. It is a characteristic motion when the spinning 

mass has a non-uniform mass distribution around the rotating disk or ring, which is amplified 

significantly at high spinning velocities. For analyzing the wobbling effect, an equation of the 

drift rate is developed using initial tilt angles and parameters that cause mass-unbalance [2]. 
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3. ��Analysis of the wobbling dynamics from 
mass unbalance

3.1 Drift rate characteristics

The wobbling phenomenon in a levitation gyroscope is a 

periodic fluctuation of rotational proofmass from a nominal 

spinning plane. It is a characteristic motion when the 

spinning mass has a non-uniform mass distribution around 

the rotating disk or ring, which is amplified significantly at 

high spinning velocities. For analyzing the wobbling effect, 

an equation of the drift rate is developed using initial tilt 

angles and parameters that cause mass-unbalance [2].

Figure 2 shows the coordinate frames for equation 

development, where (O-XoYoZo) is the inertial reference 

frame, (O-XYZ) the angular momentum frame, and 

(O-XeYeZe) the body frame. The angular momentum frame is 

rotated with α about the Zo-axis and with β about the Xo-axis 

from the inertial reference frame. The body frame is rotated 
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about the X-axis, and finally φ from the angular momentum frame. Drift rate is derived by 

relating angular momentum and moment generated by the mass-unbalance through the 

frames. First, assume a mass-unbalance is placed on the Xe-axis of the body frame with a 

point load mass and distance from the center point. Then, comparing the angular momentum 

derivative transformed in the inertial reference frame with the moment from body to inertial 

frame provides the equivalent equation.  

Let γ1, γ2, γ3 be transforming components via the Euler angle from the inertial reference 

frame to the angular reference frame, as follows: 
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where me and ee represents mass and distance from the center point as parameters of mass-

unbalance, respectively. Using rotational transformation in (5), it can be rearranged in the 

inertial reference frame. Through equations (5) – (7), moment and angular momentum are 

expressed in the inertial reference frame. Thus, by comparing angular momentum derivative 

and moment from body frame,   and   can be computed as follows. 
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Consequently, through developing the equation, drift rates about Xo, Yo axis can be 

described as follows. 
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In (14) and (15), β0 and 0 are initial tilt angles caused by the rotational components about 

the X-axis. ψ and φ are the angular rate before and after horizontal rotation is applied, where 

for simplicity a constant rotational velocity νt and μt can be assumed during short intervals, 

respectively. 

 

3.2 Wobbling effect analysis using system parameters 

To analyze the drift rate, motion generated by mass-unbalance is considered with real 

physical parameters. Point load mass unbalance and distance from center point are set up and 

drift rate is calculated through the moment generated by mass-unbalance. 

 

Table 1. Parameters for inducing the drift rate. 

Rotational velocity (μ) 10,000 rpm 

Mass of mass-unbalance (me) 5.830 ×10-7 kg (0.8%) 

Distance of mass-unbalance (ee) 562.5 μm (37.5%) 

Initial tilt angle 0.03415° 

 

(13)

Consequently, through developing the equation, drift 
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Figure 2. Frames for inducing the drift rate. 

 

Figure 2 shows the coordinate frames for equation development, where (O-XoYoZo) is the 

inertial reference frame, (O-XYZ) the angular momentum frame, and (O-XeYeZe) the body 
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are the angular rate before and after horizontal rotation 

is applied, where for simplicity a constant rotational 

velocity vt and μt can be assumed during short intervals, 

respectively.

3.2 �Wobbling effect analysis using system param-
eters

To analyze the drift rate, motion generated by mass-

unbalance is considered with real physical parameters. 

Point load mass unbalance and distance from center point 

are set up and drift rate is calculated through the moment 

generated by mass-unbalance.

In Table 1, essential parameters are listed. Rotational 

velocity, mass of mass-unbalance, and distance of mass-

unbalance are presented numerically. Rotational velocity 

is set up considering current technical levels in developing 

a levitated gyro structure and parameters about mass-

unbalance are set up considering the errors generated 

through manufacturing processes.

Rotational velocity of the rotor is 
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Consequently, through developing the equation, drift rates about Xo, Yo axis can be 

described as follows. 
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In (14) and (15), β0 and 0 are initial tilt angles caused by the rotational components about 

the X-axis. ψ and φ are the angular rate before and after horizontal rotation is applied, where 

for simplicity a constant rotational velocity νt and μt can be assumed during short intervals, 

respectively. 

 

3.2 Wobbling effect analysis using system parameters 

To analyze the drift rate, motion generated by mass-unbalance is considered with real 

physical parameters. Point load mass unbalance and distance from center point are set up and 

drift rate is calculated through the moment generated by mass-unbalance. 
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Rotational velocity (μ) 10,000 rpm 

Mass of mass-unbalance (me) 5.830 ×10-7 kg (0.8%) 

Distance of mass-unbalance (ee) 562.5 μm (37.5%) 

Initial tilt angle 0.03415° 
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Figure 3. Simulation (COMSOL) result of generated tilt angle. 

 

In Fig. 3, the tilt angle is computed by point load during the free falling time, 0.0039 s 

practically. As a result, the tilt angle is about 0.0161°, considering vertical displacement at the 

end of the rotor (0.4216 μm) and the radius of the rotor, 1500 μm. It is appropriate that result 

from COMSOL is slightly smaller than the analytical calculation because friction and model 

uncertainty are neglected in the analytical computation. Finally, the drift rate in the time 

domain is calculated by applying the parameters of the real rotor and unbalance effects. 
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rotor dynamics with mass unbalance is simulated accurately. 

Fig. 3 shows the tilt angle where the initial unbalance is 

applied using the parameters in Table 1.

In Fig. 3, the tilt angle is computed by point load during 

the free falling time, 0.0039 s practically. As a result, the tilt 

angle is about 0.0161°, considering vertical displacement 

at the end of the rotor (0.4216 μm) and the radius of the 

rotor, 1500 μm. It is appropriate that result from COMSOL 

is slightly smaller than the analytical calculation because 

friction and model uncertainty are neglected in the analytical 

computation. Finally, the drift rate in the time domain is 

calculated by applying the parameters of the real rotor and 

unbalance effects.

The drift rate in the time domain is provided in Fig. 4, 

where a sine wave with a 0.006 s period, that amounts to 

10,000 rpm, is observed. The drift rate is proportional to the 

mass unbalance ratio, as observed in the right panel in Fig. 4, 

which shows non-negligible magnitude of °/s for 0.1% mass 

irregularity. 

Next, the initial tilt angle affecting drift rate is analyzed. 

With the small angle conditions on tilt angle, it is described as 
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where the second term in the right hand side is more dominant that the first term in (20). 

4. Wobbling and multi-variable capacitance model 

4.1 Multi variable capacitance model 

In this section, we describe the detailed detection of the rotor’s motion, as affected by the 

drift rate with a wobbling effect. The periodic drift rate of the rotor inevitably generates a tilt 

angle. This effect on the capacitance model changes the electrostatic force. In equation (21), 

the basic equation for electrostatic force through a capacitor is shown: 
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unbalance ratio, as observed in the right panel in Fig. 4, which shows non-negligible 

magnitude of °/s for 0.1% mass irregularity.  

 

Next, the initial tilt angle affecting drift rate is analyzed. With the small angle conditions on 

tilt angle, it is described as  
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where the second term in the right hand side is more dominant that the first term in (20). 
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4.1 Multi variable capacitance model 

In this section, we describe the detailed detection of the rotor’s motion, as affected by the 

drift rate with a wobbling effect. The periodic drift rate of the rotor inevitably generates a tilt 

angle. This effect on the capacitance model changes the electrostatic force. In equation (21), 
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In an ideal vertical levitation model, modeling is 

established using only the displacement as a variable and 

the other factors as constants. However, considering tilt 

angle, area is determined by tilt angles, so expression of area 
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Equation (24) can be further represented as a multi variable capacitance model as shown: 
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The expression is developed by using a Taylor series and an exponential function to 

obtained a final expression including only a first derivative term of , θ. Tilt angles are too 

small, so higher derivative terms of , θ are effectively ignored. Using the above result, 

equation (26) represents the overall vertical dynamics control model. 
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where Rfbo, Rfbi are the outer radius and inner radius of the driving electrode, respectively. 

Equation (26) shows the force equation with a ‘plus’ sign for , θ in the first quadrant. 

Equally, expression in the other quadrants can be determined by alternately changing the sign 

of the tilt angles. The established multi-variable capacitance model is used for the analysis of 

nominal vertical rebalance control and additional moment compensation for performance 

enhancement. 

 

4.2 Wobbling effects on vertical rebalance control 

This section discusses the wobbling effect due to mass unbalance in the vertical rebalancing 

control of the rotor. For this, nominal displacement control is designed and feedback control 

simulation is applied to the vertical dynamic model, considering both single and multi-
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where C1t represents capacitance in the first quarter electrode. A local displacement generated 

by tilt angle of the rotor is obtained as  
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where Rfbo, Rfbi are the outer radius and inner radius of the driving electrode, respectively. 

Equation (26) shows the force equation with a ‘plus’ sign for , θ in the first quadrant. 

Equally, expression in the other quadrants can be determined by alternately changing the sign 
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enhancement. 
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where C1t represents capacitance in the first quarter electrode. A local displacement generated 

by tilt angle of the rotor is obtained as  

 

  cos sink                (23) 

 

Through these equations, a multi-variable capacitance model is established, considering tilt 

angles.  

Fig. 5. ��Inner and outer radii of rotor and angular component.
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Equation (24) can be further represented as a multi variable capacitance model as shown: 
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The expression is developed by using a Taylor series and an exponential function to 

obtained a final expression including only a first derivative term of , θ. Tilt angles are too 

small, so higher derivative terms of , θ are effectively ignored. Using the above result, 

equation (26) represents the overall vertical dynamics control model. 
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variable capacitance cases. First, for designing a nominal controller, the non-linear equation 

is linearized as  

z v cmz bz k z k U             (27) 

where coefficients are obtained by partial differential terms of variable z and UC.  
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(28) 

Applying the physical parameters, it can be determined that kz = 4.7667 and kv = 1.1859×10-5 

because VB = 1.2058V, A = 624784.2×10-12 m2, and the initial gap 0 3z m . With the 

linearized dynamic model, a simple PID controller is designed with control gain Kp, Ki, and 

Kd of 0.6×106, 1.0×108, and 1.0×103, respectively, providing a sufficient stability margin. 

Additionally, for practical application, the nominal rebalancing control needs to be combined 

with feed-forward control for initial excitation that drives the proof mass into the nominal 

dynamic equilibrium point. Then, a combined simulation is performed to verify the transient 

response for both linear and non-linear dynamics models. Fig. 6 demonstrates the sequential 

control strategy and transient response of the PID controller, based on the linearized model, 

successfully stabilizes the nonlinear dynamics model.  
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Figure 6. Simulation result to assess the performance of the controller. 
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where coefficients are obtained by partial differential terms 

of variable z and UC. 
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. With 

the linearized dynamic model, a simple PID controller is 

designed with control gain Kp, Ki, and Kd of 0.6×106, 1.0×108, 

and 1.0×103, respectively, providing a sufficient stability 

margin. Additionally, for practical application, the nominal 

rebalancing control needs to be combined with feed-forward 

control for initial excitation that drives the proof mass into 

the nominal dynamic equilibrium point. Then, a combined 

simulation is performed to verify the transient response 

for both linear and non-linear dynamics models. Fig. 6 

demonstrates the sequential control strategy and transient 

response of the PID controller, based on the linearized model, 

successfully stabilizes the nonlinear dynamics model. 

In Fig. 6, the right panel proposes the sequential control for 

initial excitation to an equivalent position, then application of 

the designed rebalance control for a full non linear dynamic 

model. For the initial levitation, it is designed such that only 

the upper driving electrodes are used to induce upward 

forces to suspend the rotor and then the rebalance controller 

is switched to operate around the nominal equivalent point. 

The right panel in Fig. 6 demonstrates initial excitation at t = 

1 s from z=-2μm and immediately applies rebalance control 

at around t=1.008s with a successful convergence to the 

nominal position (i.e., z=0μm). The integration time in the 

numerical simulation is 10-5s.

Under the same feedback control scenario, wobbling 

dynamics is considered to estimate the drift rate of the 

spinning rotor. AS in the simulation, initial mass unbalance, 

and tilt angle are applied in the disturbance form at t = 1.1 

s (Fig. 7). Simultaneously, during rebalance control, the 

electrostatic force in each quadrant electrode is perturbed to 

disturb the spinning rotor’s vertical displacement. It can be 

observed that amplitude of drift is ~2.65×10-2μm.

5. �Wo�bbling mitigation design with a mo-
ment compensator

In the previous section, it was demonstrated that even 

though the average dynamics converges to the nominal 

position of levitation, a larger mass unbalance will cause 

unstable drift motion during gyroscope operation. 
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In Fig. 6, the right panel proposes the sequential control for initial excitation to an equivalent 

position, then application of the designed rebalance control for a full non-linear dynamic 

model. For the initial levitation, it is designed such that only the upper driving electrodes are 

used to induce upward forces to suspend the rotor and then the rebalance controller is 

switched to operate around the nominal equivalent point. The right panel in Fig. 6 

demonstrates initial excitation at t = 1 s from z = -2 μm and immediately applies rebalance 

control at around t = 1.008 s with a successful convergence to the nominal position (i.e., z = 0 

μm). The integration time in the numerical simulation is 10-5 s. 
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Figure 7. Displacement of mass-unbalance rotor. 

 

Under the same feedback control scenario, wobbling dynamics is considered to estimate the 

drift rate of the spinning rotor. AS in the simulation, initial mass unbalance, and tilt angle are 

applied in the disturbance form at t = 1.1 s (Fig. 7). Simultaneously, during rebalance control, 

the electrostatic force in each quadrant electrode is perturbed to disturb the spinning rotor’s 

vertical displacement. It can be observed that amplitude of drift is ~2.65×10-2μm. 
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Fig. 7. ��Displacement of mass-unbalance rotor.
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Furthermore, the inherent angular drift rate can introduce 

characteristic sensor performance degradation, such as bias 

error. Simple vertical dynamics control cannot control the 

induced drift rate. To resolve the angular drift rate, novel 

electrodes for vertically asymmetric and unidirectional 

moment control using electrostatic forces are newly 

suggested in this section.

The main factor causing drift rate is the non-negligible 

third-order force term in the vertical dynamic equation in 

(26). In the case of the model considering tilt angles, the 

signs of 
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Equation (24) can be further represented as a multi variable capacitance model as shown: 
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The expression is developed by using a Taylor series and an exponential function to 

obtained a final expression including only a first derivative term of , θ. Tilt angles are too 

small, so higher derivative terms of , θ are effectively ignored. Using the above result, 

equation (26) represents the overall vertical dynamics control model. 
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where Rfbo, Rfbi are the outer radius and inner radius of the driving electrode, respectively. 

Equation (26) shows the force equation with a ‘plus’ sign for , θ in the first quadrant. 

Equally, expression in the other quadrants can be determined by alternately changing the sign 

of the tilt angles. The established multi-variable capacitance model is used for the analysis of 

nominal vertical rebalance control and additional moment compensation for performance 

enhancement. 
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In the previous section, it was demonstrated that even though the average dynamics 

converges to the nominal position of levitation, a larger mass unbalance will cause unstable 

drift motion during gyroscope operation. Furthermore, the inherent angular drift rate can 

introduce characteristic sensor performance degradation, such as bias error. Simple vertical 

dynamics control cannot control the induced drift rate. To resolve the angular drift rate, novel 

electrodes for vertically asymmetric and unidirectional moment control using electrostatic 

forces are newly suggested in this section. 

The main factor causing drift rate is the non-negligible third-order force term in the vertical 

dynamic equation in (26). In the case of the model considering tilt angles, the signs of , θ 

are commutatively applied with (first quadrant (+ , +θ), third quadrant (- , -θ)) to the 

electrode placed diagonally. Using this characteristic, a complementary moment can be 

calculated. Thus, the correction electrode is designed to reduce the moment, considering the 

size and applied voltages of the sub-electrodes. 

 

 

Figure 8. One quadrant sub-electrode layout and cross sectional view of quadrants 1-3. 

 

In Fig. 8, the left figure shows a layout of sub-electrodes with existing driving and detection 

electrodes. The right panel in Fig. 8 shows moments generated by driving and the newly 

designed sub-electrodes. As is known from the figure, sub-electrodes are located on the 

bottom side only and generates moment to reduce the error factor with UC. ΔM1 and '
1M  

 third quadrant 

 
16 

In the previous section, it was demonstrated that even though the average dynamics 

converges to the nominal position of levitation, a larger mass unbalance will cause unstable 

drift motion during gyroscope operation. Furthermore, the inherent angular drift rate can 

introduce characteristic sensor performance degradation, such as bias error. Simple vertical 

dynamics control cannot control the induced drift rate. To resolve the angular drift rate, novel 

electrodes for vertically asymmetric and unidirectional moment control using electrostatic 

forces are newly suggested in this section. 

The main factor causing drift rate is the non-negligible third-order force term in the vertical 

dynamic equation in (26). In the case of the model considering tilt angles, the signs of , θ 

are commutatively applied with (first quadrant (+ , +θ), third quadrant (- , -θ)) to the 

electrode placed diagonally. Using this characteristic, a complementary moment can be 

calculated. Thus, the correction electrode is designed to reduce the moment, considering the 

size and applied voltages of the sub-electrodes. 

 

 

Figure 8. One quadrant sub-electrode layout and cross sectional view of quadrants 1-3. 

 

In Fig. 8, the left figure shows a layout of sub-electrodes with existing driving and detection 
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 to the electrode placed 

diagonally. Using this characteristic, a complementary 

moment can be calculated. Thus, the correction electrode 

is designed to reduce the moment, considering the size and 

applied voltages of the sub-electrodes.

In Fig. 8, the left figure shows a layout of sub-electrodes 

with existing driving and detection electrodes. The right panel 

in Fig. 8 shows moments generated by driving and the newly 

designed sub-electrodes. As is known from the figure, sub-

electrodes are located on the bottom side only and generates 

moment to reduce the error factor with UC. ΔM1 and ΔM'1  

denote the moment generated by the driving electrodes and 

the moment generated by the sub-electrodes, respectively. 

NUc denotes the newly proposed compensation electrodes. 

Next, the principle to correct the error factor will be 

introduced by developing the equation. Moment generated 

by upper driving electrodes at the (I III) quadrant pair is 

calculated with equation (29).
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The first term, which is not affected by tilt angles, is cancelled and only the second term 

remains. Thus, the moment generated by all driving electrodes in the (I-III) quadrant is 

calculated as follows. 
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In (30), all the moment generated by upper and lower driving electrodes is developed. On 

each side, force are calculated and converted into moment, assuming point load radius Rc1. In 

equation (31), equation (30) is rearranged, considering the small displacement, z0 >> z. 
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When displacement is controlled, displacement z has very small values. Considering that 
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moment generated by all driving electrodes in the (I III) 
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The first term, which is not affected by tilt angles, is cancelled and only the second term 

remains. Thus, the moment generated by all driving electrodes in the (I-III) quadrant is 

calculated as follows. 
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In (30), all the moment generated by upper and lower driving electrodes is developed. On 
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In (30), all the moment generated by upper and lower driving electrodes is developed. On 

each side, force are calculated and converted into moment, assuming point load radius Rc1. In 

equation (31), equation (30) is rearranged, considering the small displacement, z0 >> z. 
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In (30), all the moment generated by upper and lower driving electrodes is developed. On 

each side, force are calculated and converted into moment, assuming point load radius Rc1. In 

equation (31), equation (30) is rearranged, considering the small displacement, z0 >> z. 
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When displacement is controlled, displacement z has very small values. Considering that 

(31)

When displacement is controlled, displacement z has 

very small values. Considering that z0 is 3 μm as a nominal 

point, z at equilibrium vibrates at almost 1/110 of z0, having a 

max value of 2.65×10-2 μm. In a similar process, the moment 

generated by the compensator electrodes is developed as
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As is known from equations (31) and (32), moments generated by each electrode can be 

corrected using a proper scaling because they have mutually opposite signs. 

 
 

Figure 9. Applying the point load moment dynamics. 

 

Using the equations developed, the error factor of the drift rate can be reduced by using the 

moment of the new sub-electrodes. Fig. 9 shows that compensating moment is applied to 

mitigate the result of displacement in the first-third quadrant plane. Considering the 

characteristics of the moment, the point load has a minus sign in the first quadrant and a plus 

sign in the third quadrant. However, the dynamic model in the third quadrant has � and θ of 

opposite signs, and consequently the differential point load moment is generated as twice the 

single moment, . Note that the same compensation moment is derived for the other 

quadrant pairs, i.e., the second-fourth quadrant pair in the vertical drift mitigation structure. 

 

Moment generated by sub-electrodes  is relatively smaller than moment generated by 
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As is known from equations (31) and (32), moments 

generated by each electrode can be corrected using a proper 

scaling because they have mutually opposite signs.

Using the equations developed, the error factor of the 

drift rate can be reduced by using the moment of the new 

sub-electrodes. Fig. 9 shows that compensating moment is 

applied to mitigate the result of displacement in the first-

third quadrant plane. Considering the characteristics of 
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In the previous section, it was demonstrated that even though the average dynamics 

converges to the nominal position of levitation, a larger mass unbalance will cause unstable 

drift motion during gyroscope operation. Furthermore, the inherent angular drift rate can 

introduce characteristic sensor performance degradation, such as bias error. Simple vertical 

dynamics control cannot control the induced drift rate. To resolve the angular drift rate, novel 

electrodes for vertically asymmetric and unidirectional moment control using electrostatic 

forces are newly suggested in this section. 

The main factor causing drift rate is the non-negligible third-order force term in the vertical 

dynamic equation in (26). In the case of the model considering tilt angles, the signs of , θ 

are commutatively applied with (first quadrant (+ , +θ), third quadrant (- , -θ)) to the 

electrode placed diagonally. Using this characteristic, a complementary moment can be 

calculated. Thus, the correction electrode is designed to reduce the moment, considering the 

size and applied voltages of the sub-electrodes. 

 

 

Figure 8. One quadrant sub-electrode layout and cross sectional view of quadrants 1-3. 

 

In Fig. 8, the left figure shows a layout of sub-electrodes with existing driving and detection 

electrodes. The right panel in Fig. 8 shows moments generated by driving and the newly 

designed sub-electrodes. As is known from the figure, sub-electrodes are located on the 

bottom side only and generates moment to reduce the error factor with UC. ΔM1 and '
1M  

Fig. 8. One quadrant sub-electrode layout and cross sectional view of quadrants 1-3.
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the moment, the point load has a minus sign in the first 

quadrant and a plus sign in the third quadrant. However, 

the dynamic model in the third quadrant has 
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Equation (24) can be further represented as a multi variable capacitance model as shown: 
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The expression is developed by using a Taylor series and an exponential function to 

obtained a final expression including only a first derivative term of , θ. Tilt angles are too 

small, so higher derivative terms of , θ are effectively ignored. Using the above result, 

equation (26) represents the overall vertical dynamics control model. 
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where Rfbo, Rfbi are the outer radius and inner radius of the driving electrode, respectively. 

Equation (26) shows the force equation with a ‘plus’ sign for , θ in the first quadrant. 

Equally, expression in the other quadrants can be determined by alternately changing the sign 

of the tilt angles. The established multi-variable capacitance model is used for the analysis of 

nominal vertical rebalance control and additional moment compensation for performance 

enhancement. 

 

4.2 Wobbling effects on vertical rebalance control 

This section discusses the wobbling effect due to mass unbalance in the vertical rebalancing 

control of the rotor. For this, nominal displacement control is designed and feedback control 

simulation is applied to the vertical dynamic model, considering both single and multi-

 and 
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where Rfbo, Rfbi are the outer radius and inner radius of the driving electrode, respectively. 
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nominal vertical rebalance control and additional moment compensation for performance 
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4.2 Wobbling effects on vertical rebalance control 

This section discusses the wobbling effect due to mass unbalance in the vertical rebalancing 

control of the rotor. For this, nominal displacement control is designed and feedback control 

simulation is applied to the vertical dynamic model, considering both single and multi-

 of 

opposite signs, and consequently the differential point load 

moment is generated as twice the single moment, Δm'1. Note 

that the same compensation moment is derived for the other 

quadrant pairs, i.e., the second-fourth quadrant pair in the 

vertical drift mitigation structure.

Moment generated by sub-electrodes(Δm'1) is relatively 

smaller than moment generated by driving electrodes(Δm1). 

As observed from (31) and (32), moment generated by 

sub-electrodes is smaller than that from driving electrodes 

because coefficient of moment of driving electrodes have 

4VB and the inner and outer radius from the center point 

are larger than those of compensating electrodes. Because 

of this, compensator electrode should have large area or 

high voltage should be applied. If area of compensator 

electrode is allocated too small, applied voltage may be 

not be acceptable, thus a proper design of area is essential. 

Considering various constraints on manufacturing and 

scaling factor for control purpose, compensator electrode 

are designed as in table 2. 

6. ��Simulation of d�isplacement control and 
analysis results

A simulation study was performed to validate the 

performance of the designed drift rate compensator in a 

levitation gyroscope. As noted, the moment generated by the 

compensator electrodes is specifically smaller than that of 

driving electrodes due to short moment radius and smaller 

electrode area. A simple scaling compensation is suggested 

for drift mitigation, where a background rebalance control 

using a PID controller stabilizes the nominal suspended 

status.

Figure 10 shows the displacement control results by 

changing the compensator’s gain with 0, 8.5, and 8.9. 

The box with the dotted line is the error factor before 

compensation and box with the solid line is the error factor 

after compensation. As can be seen from the figure, as the 

scaling constant becomes larger, the amplitude of the error 

factor becomes smaller, until a compensator’s stability 

margin is reached. If the compensation gain is above 9, 

moment generated by the compensator electrodes does not 

guarantee initial convergence during the transient period 

(i.e., after the compensator is on at 1.22 s) and thus cannot 

satisfy drift mitigation. The excessive scaling gain becomes 

a trade-off between a fast convergence speed of the drift rate 

and steady state oscillation error. In Fig. 10, it can be seen 

that the steady state error is small enough, with a rising time 

less than 0.1 s, which is satisfactory, considering MEMS 

levitation gyroscope performance.

Figure 11 shows the tilt angle transient about the Y-axis 

with a scaling gain of 8.9. The result corresponds with goal of 

Table 2. Size parameter of sub-electrodes
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driving electrodes . As observed from (31) and (32), moment generated by sub-electrodes is 

smaller than that from driving electrodes because coefficient of moment of driving electrodes have 

4VB and the inner and outer radius from the center point are larger than those of compensating 

electrodes. Because of this, compensator electrode should have large area or high voltage should be 

applied. If area of compensator electrode is allocated too small, applied voltage may be not be 

acceptable, thus a proper design of area is essential. Considering various constraints on manufacturing 

and scaling factor for control purpose, compensator electrode are designed as in table 2.  

 

 

Table 2. Size parameter of sub-electrodes 

 Previous model Proposed model 

zF (Driving 

Electrode) 

fboR  2990 μm fboR  2990 μm 

fbiR  1510 μm fbiR  1510 μm 

'
zF (Sub Electrode)  

'
fboR  1500 μm 

'
fbiR  1000 μm 

 

6. Simulation of displacement control and analysis results 

A simulation study was performed to validate the performance of the designed drift rate 

compensator in a levitation gyroscope. As noted, the moment generated by the compensator 

electrodes is specifically smaller than that of driving electrodes due to short moment radius 

and smaller electrode area. A simple scaling compensation is suggested for drift mitigation, 

where a background rebalance control using a PID controller stabilizes the nominal 

suspended status. 
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Figure 10. Displacement result of simulation (compensation gain 0, 8.5, 8.9). 

 

Figure 10 shows the displacement control results by changing the compensator’s gain with 0, 

8.5, and 8.9. The box with the dotted line is the error factor before compensation and box 

with the solid line is the error factor after compensation. As can be seen from the figure, as 

the scaling constant becomes larger, the amplitude of the error factor becomes smaller, until a 

compensator’s stability margin is reached. If the compensation gain is above 9, moment 

generated by the compensator electrodes does not guarantee initial convergence during the 

transient period (i.e., after the compensator is on at 1.22 s) and thus cannot satisfy drift 

mitigation. The excessive scaling gain becomes a trade-off between a fast convergence speed 

of the drift rate and steady state oscillation error. In Fig. 10, it can be seen that the steady state 

error is small enough, with a rising time less than 0.1 s, which is satisfactory, considering 

MEMS levitation gyroscope performance. 

Fig. 10. ��Displacement result of simulation (compensation gain 0, 8.5, 
8.9).
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Figure 11. Y-axis tilt angle - result of simulation (compensation gain 8.9). 

 

Figure 11 shows the tilt angle transient about the Y-axis with a scaling gain of 8.9. The result 

corresponds with goal of this paper, to stabilize tilt angle drift. In the stable section, the 

amplitude from drift is 44.11 10 m . This shows that the sub-electrodes stabilize the 

displacement at ~1/64, compared with the existing amplitude of oscillation, 22.65 10 m . 

Similarly, in Fig. 11, the maximum tilt angle converges to 1.57×10-5°, which provides the 

proposed design to stabilize the tilt angle at ~1/66, compared with non-compensation result of 

10-3°. It can also be seen that the bias and control voltage for the proposed algorithm satisfy 

the typical requirement of analog electronics, showing its practical feasibility. Consequently, 

the proposed compensator design has the possibility of reducing the amplitude of drift error 

factors caused by inevitable mass unbalance in the levitated gyro. Also, by refining the size of 

area and applied voltage, further improvement in the amplitude mitigation with sufficient 

transience will be achieved. 

 

7. Conclusions 

In this paper, to realize levitated gyro performance under practical error factors, a vertical 

dynamic model was established and investigated, such that displacement converged within a 

Fig. 11. ��Y-axis tilt angle - result of simulation (compensation gain 8.9).
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this paper, to stabilize tilt angle drift. In the stable section, the 

amplitude from drift is 4.11×10-4μm. This shows that the sub-

electrodes stabilize the displacement at ~1/64, compared with 

the existing amplitude of oscillation, 2.65×10-2μm. Similarly, 

in Fig. 11, the maximum tilt angle converges to 1.57×10-5°, 

which provides the proposed design to stabilize the tilt angle 

at ~1/66, compared with non-compensation result of 10-3°. 

It can also be seen that the bias and control voltage for the 

proposed algorithm satisfy the typical requirement of analog 

electronics, showing its practical feasibility. Consequently, the 

proposed compensator design has the possibility of reducing 

the amplitude of drift error factors caused by inevitable mass 

unbalance in the levitated gyro. Also, by refining the size of area 

and applied voltage, further improvement in the amplitude 

mitigation with sufficient transience will be achieved.

7. Conclusions

In this paper, to realize levitated gyro performance 

under practical error factors, a vertical dynamic model 

was established and investigated, such that displacement 

converged within a suitable control voltage at the nominal 

point using a controller based on a linearized model. Also, a 

drift rate formula was developed under an assumption and 

initial values considering the mass-unbalance of the rotor. 

The drift effect with the displacement control was analyzed 

quantitatively for performance validation.

The unexpected motion of the wobbling effect occurs 

through high rotational velocity and can have a critical effect 

on the system. In case of a levitated gyro, a factor that threatens 

the stability of displacement should be analyzed and stabilized 

using correction or control, because control of displacement 

is the key to the accurate operation of the levitated gyro. In 

this paper, to solve the problem, we introduced the concept of 

sub-electrodes for compensation purposes. Having shown the 

usefulness of the designed model, a new method to increase 

the stability of displacement is proposed.

In future work, the drift rate of the rotor will be verified 

by performing experiments with a real rotor and results 

from theoretical calculations will be compared with real 

data quantitatively. Using these results, the suitability of the 

assumptions will be evaluated. Also, it will be verified that 

stability of displacement is increased by applying the sub-

electrodes.
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