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Abstract

Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It 

uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive 

target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder 

was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging 

approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging 

method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal 

Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island 

Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the 

optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is 

feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed 

to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress 

and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.
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Nomenclature

r1 Radius of beginning and end cross section

r2 Radius of middle cross section

p Inner pressure of airbeam

m Mass of airbeam

σv Maximum Von Mises stress of airbeam

u Deflection of roller

f Applied force from roller

l Length of airbeam

1. Introduction

Inflatable fabric structures have been utilized in a variety 

of fields ranging from spacecraft antenna [1], solar sail [2], 

airship [3] to hovercraft [4] due to the high performance of 

lightweight, high level of reliability, easy-deployed, low cost, 

etc. With the requirement of rapid makeshift bridge in case 

of the pavement damage from disaster or war, here comes a 

kind of tensairity girder for light vehicles is proposed because 

of its distinct features of easy-built, portable and even housed 
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by an SUV.

A load bearing behavior of asymmetric spindle and 

cylinder shaped tensairity was studied experimentally under 

variant loads and compared to FEA [5,6,7]. The regularities of 

property of spindle shaped tensairity girder was investigated 

by changing the parameters including initial inner pressure, 

member cross section, membrane stiffness span-diameter 

ratio etc.[8]. The performance and sensibility of High altitude 

and long endurance airship was studied revealing the effects 

on the capability of airship payload, size and area required 

of solar cell with consideration of pressure difference, 

temperature difference, helium purity, seasons, operation 

altitude, wind speed etc.[3]. Also, the Variable Complexity 

Modeling (VCM) method was implemented in the 

optimization problem of the composite wing, in which the 

optima of the current surrogate model was used to update 

the sample points to decrease the weight of the wing [9].

As the researches above only focused on the load 

bearing behavior of tensairity girder and the VCM method 

for aircraft, this study builds an optimization architecture 

for the tensairity girder using the VCM method [10-13] to 

improve the validity of tensairity girder, which combines 

the surrogate approximate model with the nonlinear 

finite element analysis. The Kriging method [11,14,15] and 

adaptive sampling method [9] are used to build the surrogate 

model. The MIGA [16,17] is used to seek the global optima 

and the SQP method [18] is to find the local optimal during 

the optimization procedure.

2. Architecture of optimization

Equation Chapter (Next) Section 1

The purpose of the conceptual design optimization 

problem of the tensairity girder is to minimize the mass 

of the airbeam while minimizing the deflection of the 

airbeam. Therefore, this optimization problem is a multi-

objective problem. In this paper, the multi-objective is 

scaled and weighted as Eq.(1) using the factors in Table 1 

to take advantage of developed theory of single objective 

optimization.
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In Eq.(1),  w i  is the weighting factor and  s i

is the scalar factor. These two factors are initial value 

of each response variable [19].

Table 1 Scalar and weighting factor for the multi-objective optimization problem 

Parameter Objective Scalar factor Weighting factor 
m minimize 10.0 0.5 
u minimize 0.05 0.5 

In the conceptual design optimization problem of 

the tensairity girder, the design variables are the 

radius of the edge section r1, the radius of the middle 

section r2 and the inner pressure p. Refer to related 

conclusions and experiments, the range of variables 

is as  

Table 2. The median value in the range is taken as 

initial value for optimization loop.

(1)

In Eq.(1), w(i) is the weighting factor and s(i) is the scalar 

factor. These two factors are initial value of each response 

variable [19]. 
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Table 2 Range of variables 

Design variables Lower bound Initial value Upper bound 
r1[m] 0.150 0.245 0.340 
r2[m] 0.350 0.425 0.500 
p[Pa] 30000 45000 60000 

Accordingly, the mathematical description of the 

conceptual design optimization problem of the 

tensairity girder can be formulated as Eq.(2) and 

Eq.(3).
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In response to the difficult in significant 

computational expense occurred in the high fidelity 

FEA during conventional optimization loop, the 

VCM method takes advantage of refined and 

computationally expensive model together with 

rational and computationally inexpensive model [11], 

namely, surrogate model. The VCM method runs an 

efficient way in computational complexity reduction 

but keeping analysis precision. While operating on 

computationally inexpensive model, the VCM 

method adjusts its precision by calling 

computationally expensive model periodically. 

The framework of VCM optimization process 

contains three parts: global to local optima seeking 

based on surrogate model, nonlinear FEA and update 

of sample points. The framework mainly operates 

approximate analysis based on surrogate model 

during the iteration of optimization, while the 

sample space of surrogate model is updated by FEA 

simultaneously in which the design variables are 

obtained by global to local optima seeking 

aforementioned. The surrogate model in the loop has 

been modified up to convergence.  

For algorithms in the optimization framework, 

MIGA is employed to global optimization, which 

inherits genetic algorithm (GA) and improves it. 

Normally, GA fits well into engineering solution 

where discontinuities and multimodality may exit, 

because GA does not utilize derivative information 

[14]. Additionally, MIGA overcomes the premature 

of traditional GA and accelerates the process of 

convergence [16]. 

Accordingly, SQP is employed to local 

optimization. SQP fits the nonlinear problem with 

constraints well, because it’s based on gradient 

optimization and has a hand at the exploration 

(2)
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model, nonlinear FEA and update of sample points. The 

framework mainly operates approximate analysis based 

on surrogate model during the iteration of optimization, 

while the sample space of surrogate model is updated 

by FEA simultaneously in which the design variables are 

obtained by global to local optima seeking aforementioned. 

The surrogate model in the loop has been modified up to 

convergence. 

For algorithms in the optimization framework, MIGA 

is employed to global optimization, which inherits 

genetic algorithm (GA) and improves it. Normally, GA 

fits well into engineering solution where discontinuities 

and multimodality may exit, because GA does not utilize 

derivative information [14]. Additionally, MIGA overcomes 

the premature of traditional GA and accelerates the process 

of convergence [16].

Accordingly, SQP is employed to local optimization. SQP 

fits the nonlinear problem with constraints well, because 

it’s based on gradient optimization and has a hand at the 

exploration around initial design point. However, the 

drawback of SQP is the strong dependence on initial design 

point leading to converge to local optima early. So, in the 

frame of optimization, MIGA gives initial global optima to 

SQP as initial design point for getting real global optima that 

would solve the problem more efficiently [10,11].

In the architecture, the sample spaces of surrogate 

model in global optimization and local optimization are 

based on Optimal Latin Hypercube DOE. The process of 

the architecture is as below. Firstly, global optimization 

algorithm traverses the design space and outlines the 

sensitive area rapidly. Secondly, local optimization 

algorithm targets this area and searches it accurately to 

find out an initial optima. Then, design variables of the 

initial optima are sent to nonlinear FEA for getting precise 

optimal response values. At last, the design variables and 

the precise response values of initial optima above are 

added to sample space return to perform the optimization 

loop, the stop criteria of the loop is that each relative error 

of the adjacent scaled multi-objective and the two response 

values is less than 10e-4.

The iSIGHT framework and the flow chart of the 

optimization problem is illustrated as Fig. 1 and Fig. 2 

respectively.

2.1 Initial sampling 

The initial sample space contains 50 sample points of 

which variables are arrayed by Optimal Latin Hypercube 

DOE and responses are produced by FEA accordingly. Here, 

three design variables are input, three responses are output 

as well. The framework of DOE is as Fig. 3.

 

2.2 Surrogate model build

2.2.1 Creation: Kriging method 

Kriging is a useful interpolation method for irregular 

data, it works excellently in unbiased estimation of regional 
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2.2 Surrogate model build 

2.2.1 Creation: Kriging method  

Kriging is a useful interpolation method for 

irregular data, it works excellently in unbiased 

estimation of regional variable. In Kriging method, 

response y(x) is the sample function of stochastic 

process Y(x), based on reasonable assumption, the 

stochastic process contains regressive part and sto-

chastic part. 

k
T

j j
j=1

Y(x)= β f (x)+ Z(x)= F (x)β+ Z(x)  (4) 

As Eq.(4), regressive part as well as the first term 

is that the average of stochastic process is estimated 

by linear combination of k preliminary functions; 

stochastic part as well as the second term is that the 

values of observation points are estimated more 

accurately by approximation function through the 

quantization of correlation between observation 

points and neighbour points. 

By its nature, the Kriging is an algebraic 

expression which provides smooth derivative 

information. [11] The Kriging method does 

interpolation in DOE sample space to establish a 

reliable surrogate model. Although expensive to 

build initially, the method uses minimal resources 

once implemented. As the implementation proved 

Fig. 2.  Flow chart of iSIGHT framework of optimization
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sample space, then the optimization process works on the 

initial surrogate model and generates the initial optima 

that will be added to the sample space return. So, next 

optimization process can work on an updated surrogate 

model, which will be more accurate in the repeat of the 

loop in Fig. 1. The flow chart of sample space updating is 

illustrated as Fig. 4.

3. Model for optimization

In the model, the wheel of vehicle is simulated by the 

roller to hit the tensairity girder as Fig. 5. And the parameters 

of tensairity girder are as Table 3. r1, r2 and p are the design 

variables of the optimization problem, which is illustrated in 

Fig. 6, and the values in Table 3 are the initial ones during 

optimization process. The rest parameters in Table 3 are the 

fix ones regarding some papers and results of experiments 

related [5-8].

The model of the airbeam is carried out in ABAQUS/

Standard version 13.0. The girder is suspended from 

ground by restriction on the head point, end point and 

the symmetrical plane. The middle main part of tensairity 

girder is modeled with a 4-node quadrilateral membrane 

with reduced integration and hourglass control (M3D4R), a 

3-node triangular membrane (M3D3) is for the head and end 

part. The loading of the structure in the FEA process is done 

in three step: (1) pre-inflation of the airbeam with a lower 
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The initial sample space contains 50 sample 
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2.2 Surrogate model build 

2.2.1 Creation: Kriging method  

Kriging is a useful interpolation method for 

irregular data, it works excellently in unbiased 

estimation of regional variable. In Kriging method, 

response y(x) is the sample function of stochastic 

process Y(x), based on reasonable assumption, the 

stochastic process contains regressive part and sto-

chastic part. 
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j j
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quantization of correlation between observation 
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By its nature, the Kriging is an algebraic 

expression which provides smooth derivative 

information. [11] The Kriging method does 

interpolation in DOE sample space to establish a 

reliable surrogate model. Although expensive to 

build initially, the method uses minimal resources 

once implemented. As the implementation proved 
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the surrogate model is an efficient and appropriate 

substitute for FEA as it reduces CPU time 

dramatically.  

2.2.2 Update: adaptive sampling method  

The initial surrogate model is built based on initial 

sample space, then the optimization process works 

on the initial surrogate model and generates the 

initial optima that will be added to the sample space 

return. So, next optimization process can work on an 

updated surrogate model, which will be more 

accurate in the repeat of the loop in Fig. 1. The flow 

chart of sample space updating is illustrated as Fig. 

4. 
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3. Model for optimization 

In the model, the wheel of vehicle is simulated by 

the roller to hit the tensairity girder as Fig. 5. And the 

parameters of tensairity girder are as Table 3. r1, r2 

and p are the design variables of the optimization 

problem, which is illustrated in Fig. 6, and the values 

in Table 3 are the initial ones during optimization 

process. The rest parameters in Table 3 are the fix 

ones regarding some papers and results of 

experiments related [5-8]. 

The model of the airbeam is carried out in 

ABAQUS/Standard version 13.0. The girder is 

suspended from ground by restriction on the head 

point, end point and the symmetrical plane. The 

middle main part of tensairity girder is modeled with 

a 4-node quadrilateral membrane with reduced 

integration and hourglass control (M3D4R), a 

3-node triangular membrane (M3D3) is for the head 

and end part. The loading of the structure in the FEA 

process is done in three step: (1) pre-inflation of the 

airbeam with a lower inner pressure; (2) full inflation 

of the airbeam; (3) loading the force from roller with 

the finite sliding formulation of surface to surface 

contact.

Table 3 Parameters of airbeam 

Parameters Value  
r1[m] 0.245 
r2[m] 0.425 
l[m] 5

p[Pa] 45000 
f[N] 600 

Young's modulus[GPa] 1 
Poisson's ratio 0.45 

density[Kg/m3] 1400 
failure load σb [MPa] 71 

safety factor n 1.5 
allowable stress σ=σb /n

[MPa] 50 

Fig. 4.  The flow chart of sample space updating
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4. Results and comparison

The loop ran 46 iterations to meet the convergence 

criteria. As Table 4 and Fig. 7, the results give an outstanding 

optimization of 46% decrease in m, 34% decrease in σv and 

80% decrease in u dramatically. The outline of optimization 

is illustrated as Fig. 8, compared to upper and lower bound. 

Fig. 9 and Fig. 10 show the Von Mises stress and deflection 

contour of the tensairity girder in the optimal design variable 

under ultimate load produced by ABAQUS. 

5. Sensitivity analysis 

5.1 Single variable sensitivity analysis

Sensitivity analysis reveals the system sensitivity to the 

change of variables or parameters. It helps ascertain the 

influence on objective functions or constraint functions 

and the coupling between subsystems from the change of 

system variables or parameters. Also, the design of system, 

the direction of exploration, decision support are dependent 

on it [20]. 

Table 4. The comparison between optimized result and baseline
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Fig. 9 The stress contour of v

Fig. 10 The deflection contour of u

5. Sensitivity analysis  

5.1 Single variable sensitivity analysis 

Sensitivity analysis reveals the system sensitivity 

to the change of variables or parameters. It helps 

ascertain the influence on objective functions or 

constraint functions and the coupling between 

subsystems from the change of system variables or 

parameters. Also, the design of system, the direction 

of exploration, decision support are dependent on it 

[20].  

5.1.1 Mass of airbeam sensitivity analysis 

The mass of the airbeam is an important indicator 

because the portable and easy-built capacity are 

reliable on the lightweight. As Fig. 11, the mass of 

airbeam increases linearly with increase in the value 

of r1 nearly, keeping other variables constant in 

optimal values. For a 10mm increase in r1 results in 

approximately 1.7kg in airbeam mass. Similarly, it is 

found that the mass of airbeam increases linearly 

with increase in the value of r2 nearly, keeping other 

variables constant in optimal values. For example, 

100mm increases in r2 results in approximately 

1.9kg in airbeam mass. But the pressure does not 

affect the mass from the result. The tendency helps 

in the analysis.  

Fig. 11 Mass of airbeam sensitivity analysis 

5.1.2 Deflection of roller sensitivity analysis.  

Deflection is another important indicator of 

tensairity girder, u is an appropriate one in this 

model. As Fig. 12, u decreases with the increases in 

Fig. 9.  The stress contour of σv
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5.1.1 Mass of airbeam sensitivity analysis

The mass of the airbeam is an important indicator 

because the portable and easy-built capacity are reliable on 

the lightweight. As Fig. 11, the mass of airbeam increases 

linearly with increase in the value of r1 nearly, keeping other 

variables constant in optimal values. For a 10mm increase in 

r1 results in approximately 1.7kg in airbeam mass. Similarly, 

it is found that the mass of airbeam increases linearly with 

increase in the value of r2 nearly, keeping other variables 

constant in optimal values. For example, 100mm increases 

in r2 results in approximately 1.9kg in airbeam mass. But 

the pressure does not affect the mass from the result. The 

tendency helps in the analysis. 

5.1.2 Deflection of roller sensitivity analysis. 

Deflection is another important indicator of tensairity 

girder, u is an appropriate one in this model. As Fig. 12, u 

decreases with the increases in inner pressure of airbeam, 

keeping other variables constant in optimal values. In linear 

regression analysis, the fitting precision is up to 0.9857. For a 

10,000Pa increase in inner pressure results in about 3.5mm 

decrease in u. Also, u decreases nonlinearly with the increases 

in r1, keeping other variables constant in optimal values. 

In [150mm, 225mm], u decreases 3.25mm with a 50mm 

increase in r1, but the tendency is not obvious in [225mm, 

340mm]. And, u decreases linearly with the increases in r2 

partly, keeping other variables constant in optimal values. 

For a 50mm increase in r2 results in about 7.5mm decrease in 

u. The influence of r2 is more obvious than r1. 

5.1.3  Maximum Von Mises stress of airbeam sensitivity 
analysis

The third important indicator is the maximum σv of 

airbeam in this model. As Fig. 13, σv increases linearly with 

the increases in inner pressure, keeping other variables 

constant in optimal values. 

For example, σv increases about 5.6MPa with a 10,000Pa 

increase in inner pressure. In regression analysis, the fitting 

precision is up to 0.9999. As well, σv increases with the 

increases in r1, keeping other variables constant in optimal 

values. In [150mm, 250mm], the tendency is nonlinear. But 

in [250mm, 340mm], a 50mm increase in r1 results in about 

0.2MPa increase in σv. Moreover, σv increases linearly with the 

increases in r2, keeping other variables constant in optimal 

values. For example, σv increases about 2MPa with a 50mm 

increase in r2. In regression analysis, the fitting precision 

is up to 0.9999. Compared to r1, r2 has a significant impact 

on performance. That’s why the curvature has a significant 

influence on the area stress where the loads act upon. That’s 

a meaningful reference above.

5.2 Coupling sensitivity analysis. 

Because r1 and r2 are both structural parameters, the 

analysis is based upon them, keeping inner pressure of 

airbeam optimized value. A quadratic regression analysis is 

conducted to reveal the relationship between the 3 responses 

and variables r1, r2, with Response Surface Methodology 

(RSM) using polynomial to fit design space. 

As Fig. 14, there is the influence contribution rate to mass 

of airbeam, including first order, second order and coupling 

term in r1 and r2. As follows, -0.4802% is to the coupling term, 
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inner pressure of airbeam, keeping other variables 

constant in optimal values. In linear regression 

analysis, the fitting precision is up to 0.9857. For a 

10,000Pa increase in inner pressure results in about 

3.5mm decrease in u. Also, u decreases nonlinearly 

with the increases in r1, keeping other variables 

constant in optimal values. In [150mm, 225mm], u 

decreases 3.25mm with a 50mm increase in r1, but 

the tendency is not obvious in [225mm, 340mm]. 
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7.5mm decrease in u. The influence of r2 is more 
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pressure of airbeam optimized value. A quadratic 

regression analysis is conducted to reveal the 

relationship between the 3 responses and variables 

r1, r2, with Response Surface Methodology (RSM) 

using polynomial to fit design space.  

As Fig. 14, there is the influence contribution rate 

to mass of airbeam, including first order, second 

order and coupling term in r1 and r2. As follows, 

-0.4802% is to the coupling term, namely, the 

influence of r1 with r2 on mass of airbeam can be 

ignored. The fitted design space of mass is shown in 

Fig. 15. 

Fig. 14 Contribution rate in m(r1, r2)

Fig. 15 Fitted design space of m(r1, r2)

As Fig. 16, in the coupling sensitivity analysis of u, 

the rate of coupling term in r1 and r2 is -6.6705%, 

that can’t be ignored as it’s even bigger than the rate 

of second order in r1. The design space of u shows as 

Fig. 17.  

Fig. 16 Contribution rate in u(r1, r2)

Fig. 17 Fitted design space of u(r1, r2)

As Fig. 18, the rate of the couple term is 1.7022% 
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namely, the influence of r1 with r2 on mass of airbeam can be 

ignored. The fitted design space of mass is shown in Fig. 15.

As Fig. 16, in the coupling sensitivity analysis of u, the 

rate of coupling term in r1 and r2 is -6.6705%, that can’t be 

ignored as it’s even bigger than the rate of second order in r1. 

The design space of u shows as Fig. 17. 

As Fig. 18, the rate of the couple term is 1.7022% to σv of 

airbeam. It’s smaller but not ignorable, which in the same 

level with the second order in r1 and r2. The design space of    

σv shows as Fig. 19. 

Consequently, the influence caused by coupling term in 

r1 and r2 should be taken into consideration during tensairity 

girder design.

6. Conclusion

In term of tensairity girder design and optimization, 

a VCM optimization architecture based on nonlinear 

FEA and Kriging approximate method was constructed, 

which combined global optima explore with local optima 

seeking. A surrogate model based on Kriging method and 

updated by adaptive sampling method was built. In result, 

a high performance tensairity girder was produced by the 

optimization architecture. What’s more, the quantitative 

analysis of sensitivity reveals the trend of responses with 

variables. The optimization architecture gives a reasonable 

design and optimization case for portable tensairity girder, 

the result approves the feasibility as well. In future work, 

the tender cable twined around the airbeam and stiff upper 

chord can be added to compose a whole tensairity for 

analysis and optimization.
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Fig. 19 Fitted design space of v (r1, r2)

Consequently, the influence caused by coupling 

term in r1 and r2 should be taken into consideration 

during tensairity girder design. 

6. Conclusion 

In term of tensairity girder design and 

optimization, a VCM optimization architecture 

based on nonlinear FEA and Kriging approximate 

method was constructed, which combined global 

optima explore with local optima seeking. A 

surrogate model based on Kriging method and 

updated by adaptive sampling method was built. In 

result, a high performance tensairity girder was 

produced by the optimization architecture. What’s 

more, the quantitative analysis of sensitivity reveals 

the trend of responses with variables. The optimiza-

tion architecture gives a reasonable design and op-

timization case for portable tensairity girder, the 

result approves the feasibility as well. In future work, 

the tender cable twined around the airbeam and stiff 

upper chord can be added to compose a whole 

tensairity for analysis and optimization. 
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