
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: May 13, 2014  Revised : September  14, 2014  Accepted: September 15, 2014

302 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 15(3), 302–308 (2014)
DOI:10.5139/IJASS.2014.15.3.302 

Role of Distribution Function in Vibration Related Error of Strapdown 
INS in Random Vibration Test    

A. Abdoli*
Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

S. H. Taghavi**
Faculty of Computer and Electrical Engineering, Shahid Rajaee University, Tehran, Iran

Abstract

In this paper, a detailed investigation of the random vibration test is presented for strapdown inertial navigation systems 

(INS). The effect of the random vibration test has been studied from the point of view of navigation performance. The role of 

distribution functions and RMS value is represented to determine a feasible method to reject or reduce vibration related error 

in position and velocity estimation in inertial navigation. According to a survey conducted by the authors, this is the first time 

that the effect of the distribution function in vibration related error has been investigated in random vibration testing of INS. 

Recorded data of navigation grade INS is used in offline static navigation to examine the effect of different characteristics of 

random vibration tests on navigation error. 
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1. Introduction

An inertial navigation system is a set of instruments that 

can be used to determine the position and velocity of a vehicle 

solely through inertial measurements. Currently prevalent 

inertial instruments are accelerometers and gyroscopes. The 

position and velocity of a moving object can be characterized 

by the specific arrangements of inertial sensors assembly 

(ISA), as well as by analysis of inertial navigation equations 

in the navigation computer. ISA is a structure containing 

multiple inertial sensors in a fixed orientation relative to one 

another [1].

Stable platform and strapdown are two types of navigation 

systems. In a stable platform system, the inertial sensors are 

isolated from the rotations of the moving object so that they 

can be maintained at a specific orientation relative to the earth 

or an inertial space. In this system, computations of velocity 

and position are relatively simple and better performance 

is expected from gyroscopes as they should measure very 

small angular rates. Gyroscopes in a strapdown INS measure 

the full rotation rates of a moving object and keep track of 

the instantaneous orientation of accelerometers in order 

to accurately integrate the accelerations into evaluations of 

velocity and position. More high-tech gyroscopes are therefore 

necessary in a strapdown INS. Strapdown navigation requires 

the use of complex computations, and this technology has 

been made possible by the development of faster and smaller 

digital processors.

During all-inertial navigation, the inertial sensors are the 

only instruments used for calculating linear and angular 

motion. As there is no correction by external sources, 

navigation error is bound to increase exponentially over time. 

Therefore in all-inertial navigation, accurate position and 

velocity measurements can only be determined using precise 

INS. Although accurate sensors and precise calibration are 

essential, reliance on these factors is not sufficient.

INS is generally required to operate in an extensive variety 

of environments. Therefore, it is imperative to evaluate how 
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well the INS works under conditions that simulate the 

environment in which the INS needs to navigate. There 

are a series of routine tests that INS should pass in order 

to evaluate mechanical strength or electrical rigidity of 

equipment and sensors. It is also important to investigate 

how these tests that simulate in-flight situations may affect 

navigation performance. In other words, an INS needs to be 

tested for robustness in relative environmental conditions to 

determine how they influence the navigation performance. 

High and low temperature, vacuum, shock and vibration 

are the main environmental conditions that require testing. 

Among these tests, the random vibration test has a significant 

destructive effect on navigation performance, compared to 

other tests.

Calibration of INS is conducted by means of an accurate 

two or three axis turn-table. The table places the INS in 

different positions and rotates it at various angular rates 

to stimulate the accelerometers and gyroscopes of INS by 

forces such as the earth’s rotation, gravity and finally, the 

rotation of the turn-table. By using a chamber or variable 

temperature stabilization, thermal calibration is possible. As 

vibratory calibration is impossible, assessing the robustness 

of inertial sensors and other issues such as bias drift and 

vibration rectification errors are essential to determine 

the vibration related error [2]. First of all, it is necessary to 

explain why a random vibration test is required, and how it 

should be conducted. 

During environmental testing of INS, it is easier to 

determine its sensitivity by executing static navigation. 

For random vibration tests, INS is mounted on the 

electromagnetic shaker and outputs are stored in a computer 

via serial port. The recorded data will be used in offline static 

navigation to investigate the effect of random vibration [3].

According to accessible telemetry data of flying objects, 

it is obvious that there is a high frequency, low amplitude 

variation in sensor output. Among all the possible sources 

that may be responsible for this effect, random vibration 

is the most likely. Environmental situations as well as 

the mechanical characteristics of flying objects such as 

turbulence and mass variation, motor or turbine operation, 

sudden decrement in mass, changes in fuel flow or air 

pressure variation can vibrate the structure and INS . 

Therefore, it is necessary to inspect the robustness of a 

calibrated INS relative to vibration in cases of mechanical 

behavior and increments in navigation error; the latter is 

addressed in the scope of this study. In other words, a random 

vibration test is required to simulate the vibration behavior 

of the environment in order to evaluate vibration related 

error and quality of sensor isolation, with the restrictions of 

laboratory testing taken into consideration.

In the following section, the random vibration test and its 

principles are discussed. Afterward, there is an investigation 

of output signals in the presence of random vibration with 

different approaches, and analytical reasoning is presented 

for the proposed claims. In the last section, an experimental 

test and analysis is performed for two navigation grade 

strapdown INS blocks to confirm the methodical analysis.

2. Random Vibration Test

As mentioned before, an assembled and sealed INS block 

should pass particular environmental tests. This paper is 

focused on the random vibration test, which is a severe test 

and may cause lasting damage to sensors or electronics 

equipment so it is usually the last set of tests performed [4]. 

The purpose of this test is to investigate the resonant and 

frequency responses of mounted sensors.

2.1 Test Equipment

Vibrating INS with particular characterizations requires a 

specific device. A controllable shaker enables the application 

of various forms of vibratory motions to an INS. A linear 

shaker is used in these tests for its ability to apply vibration 

to the INS on each side of a single axis. It is important that 

the table and fixture be level, because any misalignment in 

the axis of the table, fixture, or sensor mounting will cause a 

nonzero output, even in a static condition. This minor output 

is increased by the effect of vibration, and could be a major 

source of error.

Even the most precise linear shakers have their own 

problems. Such problems are usually caused by structural 

resonances and large cross-axis vibration levels in addition 

to angular vibration inputs and offsets [5]. In this study, the 

vibration testing system applied is the i-series from IMV, 

which can apply vertical vibration in the “X” axis, and has 

extra slip configuration for applying vibration in the “Y” and 

“Z” axes of INS. Apart from a precise shaker, the fixture is also 

important. The structure of the fixture may vary according 

to requirements, but all of them share some common 

characteristics. Fixture resonance and cross coupling effects 

are the most important considerations that can affect 

vibration behavior, and they do so by boosting it. An optimal 

fixture is the one with the lowest natural frequency at about 

50% higher than the highest required forcing frequency 

[6]. Also, the structure, stiffness and material of the fixture 

should all be well engineered. The applied fixture should 

have a satisfactory quality of manufacturing and an accurate 

design, which perfectly matches the requirements.
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2.2 Test Specifications

Random vibration is a test required for industrial and 

military manufacturers of electronic equipment, because 

random vibration is more closely related to the actual 

environment in which the electronic equipment must 

operate. When electronic equipment is subjected to a 

random vibration test over a frequency bandwidth of 2 Hz to 2 

KHz, all of the structural resonances of the electronic system 

within the same bandwidth will be excited at once. This is 

different from sinusoidal vibration, in which excitation is 

executed individually over a bandwidth. Random vibration 

curves are mostly expressed in white noise curves [6], as 

shown in Fig. 1. This figure shows the actual input curve that 

the INS will experience in this study. The curve is expressed 

in G2/Hz along the vertical axis and the frequency is plotted 

along the horizontal axis. G2/Hz is the unit of power spectral 

density, P, and is defined as,
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Eq. (2) is independent of the curve shape; however, 

as random vibration input curves are plotted in log-log 

coordinates, slopped sections of the curve should be 

calculated according to Eq. (3) [6].
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channels should be attributed to the effect of the earth’s gravity, and was applied to the positive 
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The right side of Eq. (5) represents probability per unit of 

X, for the ratio of instantaneous acceleration (X) to the RMS 

acceleration (σ). The instantaneous acceleration will pass 

the 1σ value, which is equal to RMS value, in 31.7% of the 

test period. It will pass the 2σ value, which is twice the RMS 

value, in 4.6% of the test period. It will pass the 3σ value, 

which is three times the amount of RMS value, in only 0.27% 

of the test period. Although higher acceleration levels of 4σ 

and 5σ, which are respectively equal to 24.4 and 30.5 g, can 

sometimes be expected in a defined test, they are usually 

ignored because the test equipment has 3σ clippers built 

into its control systems. More information about random 
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vibration test is presented in [8-9].

Therefore, the two main specifications for a random 

vibration test are RMS value and distribution function. 

Hereafter, the effect of both factors will be examined.

In industrial laboratories, random vibration test profiles 

typically have higher acceleration levels than values in the 

real world environment. For example, an input level of 6.0 g 

RMS is applied for one minute to replicate the same amount 

of damage that can be expected from 1.5 g RMS over a week 

in the real world environment. These commitments belong to 

the qualification tests that challenge the physical strength of 

sensors and electrical equipment. Investigating the vibration 

related error in navigation requires a simpler profile. Several 

test profiles are addressed in [10-12].

3. Effect of Random Vibration

Random vibration, by excitation of nonlinear terms 

and drifting in the sensor’s bias, invalidates calibration 

coefficients and imposes a great error in navigation that 

increases over time. In [13-14] compensation of drift for fibre 

optic gyroscopes (FOG) was examined. In [15] the wavelets 

technique was applied to detect and extract vibration 

disturbance from inertial measurement units. In this study, 

the random vibration test will be examined in terms of 

navigation error (vibration related error).

Figures 2 and 3 show the effects of random vibration on the 

accelerometer and gyroscope output pulses in the “X” axis, 

while vibration is applied in the INS “X” axle. Comparison 

between the vibration signal and the vibration-free static 

signal, as well as a frequency spectrum analysis, confirms 

that random vibration entirely changes the characteristics of 

output signals. This presents the question of which properties 

of the random vibration test influence navigation error? 

RMS value and distribution function are two main 

characteristics that define a random vibration test. To 

investigate the effect of the distribution function, two tests 

must be applied with equal RMS values and different PDFs. 

This is possible by customizing the shaker’s controller 

program. The standard deviation of the shaker’s Gaussian 

distribution function, σ in Eq. (5), was reduced in order 

to produce the second PDF. This change affects both 

the magnitude and scattering of instantaneous outputs. 

Changing the distribution function in the shaker’s controller 

should not change the mean value of output pulses. Since 

there is no access to the shaker output signal, the output 

of accelerometer X was recorded in order to investigate the 

effect of σ variation (Fig. 4). The PDF of different outputs 

in Fig. 4 was estimated using the distribution fitting tool of 

Matlab, and results are shown in Fig. 5. Estimated mean and 

standard deviation were very close to the values applied, by 

considering the influence of electrical equipment. According 

to Figs. 4 and 5, a lower σ eliminated the probability of higher 

instantaneous acceleration by limiting the scattering span.

Using a distribution function with limited scattering span 

reduces the magnitude of output pulses, while the average 

(mean) value of pulses  remains unaffected. 

An analytical survey helps to understand the role of the 

distribution function in the random vibration test. The 

navigation  equation has the general form of Eq. (6) [4]. 
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Fig. 4. Effect of random vibration with original and second PDFs in positive channel of accelerometer X 
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Figs. 2 and 3 show the effects of random vibration on the accelerometer and gyroscope output 

pulses in the “X” axis, while vibration is applied in the INS “X” axle. Comparison between the 

vibration signal and the vibration-free static signal, as well as a frequency spectrum analysis, confirms 

that random vibration entirely changes the characteristics of output signals. This presents the question 

of which properties of the random vibration test influence navigation error?
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test. To investigate the effect of the distribution function, two tests must be applied with equal RMS 

values and different PDFs. This is possible by customizing the shaker’s controller program. The 

standard deviation of the shaker’s Gaussian distribution function, � in Eq. (5), was reduced in order 

to produce the second PDF. This change affects both the magnitude and scattering of instantaneous 

outputs. Changing the distribution function in the shaker’s controller should not change the mean 

value of output pulses. Since there is no access to the shaker output signal, the output of accelerometer 

X was recorded in order to investigate the effect of � variation (Fig. 4). The PDF of different outputs 

in Fig. 4 was estimated using the distribution fitting tool of Matlab, and results are shown in Fig. 5. 

Estimated mean and standard deviation were very close to the values applied, by considering the 

influence of electrical equipment. According to Figs. 4 and 5, a lower � eliminated the probability of 

higher instantaneous acceleration by limiting the scattering span. 

Using a distribution function with limited scattering span reduces the magnitude of output pulses, 

while the average (mean) value of pulses remains unaffected.  

An analytical survey helps to understand the role of the distribution function in the random 

vibration test. The navigation equation has the general form of Eq. (6) [4].  

  �
�� �� � � � �� � ��� � ��                                                                                                                                ��� 

where �� is the vehicle’s speed with respect to the earth, � represents the specific acceleration force 

to which the navigation system is subjected, �� is the local gravity vector and ��� is the turn rate of 

the earth’s frame with respect to the inertial frame. This equation may be expressed in inertial, tangent 

or any other desired frame. Eq. (7) is a discrete form of Eq. (6), 

  ����� � ������ � ���� � �� � ��� � �����                                                                                                        ��� 

where ��� is measurement of the sensor in the desired frame. Because measurements provided by the 

strapdown sensors are in the body frame, pre-multiplication by the proper direction cosine matrix 

(DCM), is required (Eq. 8).  

  ��� � �����                                                                                                                                                              �8�
In Eq. (8), ��� is the DCM of the body frame to the desired frame and �� is the compensated 
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output of the sensor, and may be achieved by Eq. (9), 
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where �� is the instantaneous output of either accelerometer or gyroscope, and is available only as a 

summation of pulses in the specific period (�� � ��). � and � are the scale factor and the bias of the 

respective sensor. � is a combination of other terms including misalignment errors. 

The random vibration directly influences the ��, and according to Eqs. (6) to (9), it also affects the 

navigation results. Changes in the distribution function of the random vibration affects ��. However, 

integration of �� over a specific period of time reduces the effects of distribution function variations. 

As a result, although the instantaneous output of inertial sensors depends on the PDF of random 

vibration, the integration decreases the effect of this factor. 

4. Experimental Test

A random vibration test with the profile shown in Fig. 1 was implemented with original and second 

PDFs. Data was recorded for about 65 seconds during random vibration (Fig 4). Power spectral 

density (PSD) describes how the variance of the data is distributed over the frequency components 

into which the data may be decomposed. PSD estimates for different PDFs in Fig. 4 are illustrated in 

Fig. 6. This figure shows that the vibration PDF influences the power of the signals used in static 

navigation. A numerical analysis of the signals in Fig. 4 is listed in Table 1. According to Table 1, 

mean and RMS values are approximately unchanged, while standard deviation decreased significantly. 

Using a sliding window with desired length to sum up the signals in Fig. 4, all with different PDFs, 

reveals that the integration results are very close to each other. It is the same as � ��
��

��  in Eq. (9). The 

window length is equal to the integration period. On the other hand, variation in RMS value obviously 

affects ��, and subsequently, ��.

(9)

where fp is the instantaneous output of either accelerometer 

or gyroscope, and is available only as a summation of pulses 

in the specific period (t2-t1). A and b are the scale factor and 

the bias of the respective sensor. K is a combination of other 

terms including misalignment errors.
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Figs. 2 and 3 show the effects of random vibration on the accelerometer and gyroscope output 

pulses in the “X” axis, while vibration is applied in the INS “X” axle. Comparison between the 

vibration signal and the vibration-free static signal, as well as a frequency spectrum analysis, confirms 

that random vibration entirely changes the characteristics of output signals. This presents the question 

of which properties of the random vibration test influence navigation error?

RMS value and distribution function are two main characteristics that define a random vibration 
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0 5000 10000 15000
10

15

20

25

30

35
Before Vibration (static)

O
ut

pu
t P

ul
se

0 0.5 1

0

20

40

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

0 2000 4000 6000
0

50

100

150
During Random Vibration

Time (ms)

O
ut

pu
t P

ul
se

0 0.5 1

20

30

40

50

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (d

B
)

Fig. 3. Effect of random vibration test with profile similar 
to Fig. 1 on positive channel of gyroscope X

Fig. 4. Effect of random vibration with original and second PDFs in positive channel of accelerometer X 
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Fig. 7 displays the comprehensive diagram for the testing procedure, as well as the discussed signals. 

Signals with different PDFs in Fig. 4 will be used for offline static navigation to demonstrate 

sensitivity to the distribution function. The navigation procedure is identical to real flight navigation.  

Table 1. Numerical comparison between outputs with original and second distribution function 

Mean Standard dev. RMS Value  
Pos. Channel 

RMS Value  
Neg. Channel 

Original PDF 1200.786 298.367 4.372 3.376 

Second PDF 1200.802 218.763 4.313 3.306 

Strapdown INS was calibrated before the vibration test, using an error model identical to that 

proposed in [16]. By using calibration coefficients, the compensated outputs of accelerometers ( )

and gyroscopes ( ) will be calculated. After compensation of the earth's angular velocity, 

measures will be used to update the quaternions using fourth-order algorithm as presented in [17]. The 

 measures will be used to update the position and velocity of the vehicle in a tangential frame. 

Fig. 6. Covariance power spectral density estimate for signals with original and second distribution function of Fig. 4
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shows that the vibration PDF influences the power of the 

signals used in static navigation. A numerical analysis of 

the signals in Fig. 4 is listed in Table 1. According to Table 1, 

mean and RMS values are approximately unchanged, while 

standard deviation decreased significantly.

Using a sliding window with desired length to sum up 

the signals in Fig. 4, all with different PDFs, reveals that 

the integration results are very close to each other. It is the 

same as 
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output of the sensor, and may be achieved by Eq. (9), 
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into which the data may be decomposed. PSD estimates for different PDFs in Fig. 4 are illustrated in 

Fig. 6. This figure shows that the vibration PDF influences the power of the signals used in static 

navigation. A numerical analysis of the signals in Fig. 4 is listed in Table 1. According to Table 1, 

mean and RMS values are approximately unchanged, while standard deviation decreased significantly. 

Using a sliding window with desired length to sum up the signals in Fig. 4, all with different PDFs, 

reveals that the integration results are very close to each other. It is the same as � ��
��

��  in Eq. (9). The 

window length is equal to the integration period. On the other hand, variation in RMS value obviously 

affects ��, and subsequently, ��.

 in Eq. (9). The window length is equal to the 

integration period. On the other hand, variation in RMS 

value obviously affects fp, and subsequently, ve. 

Figure 7 displays the comprehensive diagram for the 

testing procedure, as well as the discussed signals. Signals 

with different PDFs in Fig. 4 will be used for offline static 

navigation to demonstrate sensitivity to the distribution 

function. The navigation procedure is identical to real flight 

navigation. 

Strapdown INS was calibrated before the vibration test, 

using an error model identical to that proposed in [16]. By 

using calibration coefficients, the compensated outputs of 

accelerometers (dv) and gyroscopes (dt) will be calculated. 

After compensation of the earth’s angular velocity, dt 

measures will be used to update the quaternions using 

fourth-order algorithm as presented in [17]. The dv measures 

will be used to update the position and velocity of the vehicle 

in a tangential frame.

The INS experienced 300 seconds of vibration-free 

condition, and data recorded during this period is used for 

coarse alignment. Navigation started right at the beginning 

of vibration and stopped after 75 seconds. Fig. 8 shows 

position and velocity radial errors. Equality in navigation 

errors is the result of significant change in vibration PDFs. 

The INS was examined under different random vibration 

tests, with different RMS values and equal PDFs. The 
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The INS experienced 300 seconds of vibration-free condition, and data recorded during this period 

is used for coarse alignment. Navigation started right at the beginning of vibration and stopped after 

75 seconds. Fig. 8 shows position and velocity radial errors. Equality in navigation errors is the result 

of significant change in vibration PDFs. The INS was examined under different random vibration tests, 

with different RMS values and equal PDFs. The numerical comparisons for this new test are 

summarized in Table 2. The same navigation procedure was applied and the results are illustrated in 

Fig. 9. 

Table 2. Numerical comparison between characteristics of outputs and static navigation with different RMS values 

Mean Standard de
v. 

RMS Value  
Pos. Channel 

RMS Value  
Neg. Channel 

Radial Position 
Error (meter) 

6.0 g RMS 1200.786 298.367 4.372 3.376 793.4 

3.2 g RMS 441.204 116.552 1.609 0.636 22.8 

Remarkable improvement in position and velocity error are achieved by decrements in RMS value. 

Similar tests with different distribution function were performed and the results were similar.  

In a random vibration test, the vibration related error was related to only the RMS value, and 

interestingly not to vibration PDF, despite the fact that it affects the instantaneous outputs. 

Previous tests were performed by an INS equipped with three electro-mechanical accelerometers 

and two dynamically tuned gyroscopes (DTG). Different INS with similar accelerometers and three 
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Fig. 7 displays the comprehensive diagram for the testing procedure, as well as the discussed signals. 

Signals with different PDFs in Fig. 4 will be used for offline static navigation to demonstrate 

sensitivity to the distribution function. The navigation procedure is identical to real flight navigation.  

Table 1. Numerical comparison between outputs with original and second distribution function 

Mean Standard dev. RMS Value  
Pos. Channel 

RMS Value  
Neg. Channel 

Original PDF 1200.786 298.367 4.372 3.376 

Second PDF 1200.802 218.763 4.313 3.306 

Strapdown INS was calibrated before the vibration test, using an error model identical to that 

proposed in [16]. By using calibration coefficients, the compensated outputs of accelerometers ( )

and gyroscopes ( ) will be calculated. After compensation of the earth's angular velocity, 

measures will be used to update the quaternions using fourth-order algorithm as presented in [17]. The 

 measures will be used to update the position and velocity of the vehicle in a tangential frame. 

Fig. 6. Covariance power spectral density estimate for signals with original and second distribution function of Fig. 4
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The INS experienced 300 seconds of vibration-free condition, and data recorded during this period 

is used for coarse alignment. Navigation started right at the beginning of vibration and stopped after 

75 seconds. Fig. 8 shows position and velocity radial errors. Equality in navigation errors is the result 

of significant change in vibration PDFs. The INS was examined under different random vibration tests, 

with different RMS values and equal PDFs. The numerical comparisons for this new test are 

summarized in Table 2. The same navigation procedure was applied and the results are illustrated in 

Fig. 9. 

Table 2. Numerical comparison between characteristics of outputs and static navigation with different RMS values 

Mean Standard de
v. 

RMS Value  
Pos. Channel 

RMS Value  
Neg. Channel 

Radial Position 
Error (meter) 

6.0 g RMS 1200.786 298.367 4.372 3.376 793.4 

3.2 g RMS 441.204 116.552 1.609 0.636 22.8 

Remarkable improvement in position and velocity error are achieved by decrements in RMS value. 

Similar tests with different distribution function were performed and the results were similar.  

In a random vibration test, the vibration related error was related to only the RMS value, and 

interestingly not to vibration PDF, despite the fact that it affects the instantaneous outputs. 

Previous tests were performed by an INS equipped with three electro-mechanical accelerometers 

and two dynamically tuned gyroscopes (DTG). Different INS with similar accelerometers and three 
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numerical comparisons for this new test are summarized in 

Table 2. The same navigation procedure was applied and the 

results are illustrated in Fig. 9.

Remarkable improvement in position and velocity error 

are achieved by decrements in RMS value. Similar tests 

with different distribution function were performed and the 

results were similar. 

In a random vibration test, the vibration related error 

was related to only the RMS value, and interestingly not to 

vibration PDF, despite the fact that it affects the instantaneous 

outputs.

Previous tests were performed by an INS equipped 

with three electro-mechanical accelerometers and two 

dynamically tuned gyroscopes (DTG). Different INS with 

similar accelerometers and three FOGs were tested using a 

similar procedure. The test confirmed the previous results. 

The FOGs contain embedded processors to generate digital 

values, while former DTGs required external A/D converters. 

This experiment eliminated the effect of sensor-related 

behavior and generalized the proposed idea. 

5. Conclusions

The random vibration test is detailed in relation to INS 

evaluation. For the first time in a random vibration test of an 

INS, it has been shown that the magnitude of instantaneous 

outputs, which is closely related to the distribution function, 

has a minor effect on navigation error due to the integration 

of the sensor’s output. On the other hand, the RMS value 

of the random vibration test determines the major errors 

in position and velocity estimations. These claims were 

confirmed using analytical methods and experimental tests. 

Therefore, the most effective method to reduce vibration 

related error in strapdown inertial navigation is one that 

reduces RMS value sensed by inertial sensors. This could be 

applied in the form of a well-engineered damper with either 

mechanical or electrical implementation.
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