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Abstract

This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, 

named Jury’s stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-

average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability 

parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from 

Jury’s criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and 

supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased 

in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction 

of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. 

Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the 

prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible 

application of the system stability approach to flight test will be finally discussed.
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1. Introduction

Flutter boundary prediction during wind tunnel and flight 

tests is one of the most important, but very difficult tasks 

imposed in the process of development of a new airplane 

(Bisplinghoff, et al., 1955; Fung, 1955). Flutter boundary 

prediction methods in which only measured wing response 

signals are analyzed can be classified into two categories: 

A.	 Damping approach based on measurement of the 

damping coefficient of flutter mode,

B.	 System stability approach based on the estimation of 

stability of an aeroelastic system.

The category B is further classified into two 

subcategories:

B1)	 Flutter margin for continuous-time systems 

(FMCS) (Poirel et al., 2005; Price and Lee, 1993; 

Zimmerman and Weissenburger, 1964) based on 

Routh’s stability test, 

B2)	 Jury’s stability criterion defined in the discrete-

time domain (Matsuzaki and Ando, 1981; 

Matsuzaki and Torii, 1990), and the flutter margin 

for discrete-time systems (FMDS) (Bae et al., 2005; 

Torii and Matsuzaki, 1999, 2001) founded on the 

Jury criterion.

The first category A is very traditional, and it is still very 

popular in practical applications in spite of its intrinsic 

difficulties. As clearly seen in Fig. 1 of an experimental study 

(Irwin and Guyett, 1968) published late in the 1960’s, the 

damping coefficient of the flutter mode often reveals two 

problems in a critical speed-range very close to the flutter 

boundary:

a) Rapid change in its value, that is, suddenly decreasing 
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and becoming zero, as seen both in analyses and experiments 

of the so-called explosive fl utter,

b) Large scattering of its measured values in experiments. 

As for the second diffi  culty b), a more-recent survey 

(Koenig, 1995) on the results of 16 diff erent fl utter tests 

pointed out that there was a scatter of about 30% in the 

damping coeffi  cient while only 3% in the corresponding 

frequency. 

To compensate the fi rst diffi  culty a), a criterion for a two-

mode system which was characterized by a gradual change, 

named fl utter margin (FMCS-2), was proposed (Zimmerman 

and Weissenburger, 1964). FMCS-2 is based on Routh’s 

stability test in the continuous-time domain, and is expressed 

with measured frequencies and damping coeffi  cients of the 

fi rst two modes. Th erefore, FMCS-2 also spreads widely due 

to the second problem b) mentioned above. To account 

for uncertainty caused by the scattering, two stochastic 

approaches (Poirel et al., 2005) were introduced in estimating 

FMCS-2. Th e stochastic analysis, However, the stochastic 

analysis cannot improve the accuracy itself in the prediction 

of the critical boundary. An extended criterion for a three-

mode fl utter (FMCS-3) was also proposed (Price and Lee, 

1993). 

Hereafter, we will focus on Subcategory B2, that is, the 

fl utter boundary prediction based on the stability criteria 

defi ned in the discrete-time domain, because digital 

techniques have enormously developed for the last two 

decades. Th erefore, we may now apply easily the modern 

estimation and identifi cation methods to data analysis of 

measured responses to estimate fl utter characteristics in a 

subcritical range. In other words, it is possible that the fl utter 

margin, modal frequencies and damping coeffi  cients are 

estimated accurately from certain duration of the response 

even contaminated with inevitable noises, including 

mechanical and electric ones.

Th e present overview is a revised version of the author’s 

paper (Matsuzaki, 2011b), which was up-dated from the 

original (Matsuzaki, 2011a) by referring to a couple of recent 

publications and including the Section 5. 

2. Discrete-Time Approach

In the discrete-time domain, the advanced counterpart 

of Routh-Hurwitz’s stability criterion (Fung, 1955) in the 

continuous-time case is Jury’s stability criterion being 

developed from the one fi rst established by Schur-Cohn (Jury, 

1964). Like the Routh-Hurwitz condition, Jury’s criterion 

is defi ned in terms of the coeffi  cients of the characteristic 

equation of the system, as will be described later. Needless 

to say, once characteristic coeffi  cients are estimated from 

sampled measured data, not only stability but also the 

dynamic characteristics of the system, such as the modal 

frequencies and damping coeffi  cients, can be evaluated at 

the same time.

Early in 1980’s, the present author and his coworker 

(Matsuzaki and Ando, 1981) proposed an innovative 

approach for predicting the fl utter boundary based on Jury’s 

stability criterion together with an autoregressive moving-

average (AR-MA) representation for sampled random 

responses. Applying it to a fl utter test of a cantilever wing 

model performed in a transonic wind tunnel, they showed 

that the Jury criterion was much more eff ective in predicting 

the fl utter boundary than the damping coeffi  cient of the 

fl utter mode. Th is criterion was also successively applied to 

the prediction of divergence boundary of a forward-swept 

wing tested in a supersonic wind tunnel (Matsuzaki and 

Ando, 1984). Two decades later, a new stability parameter 

for a two-mode fl utter, named “fl utter margin for discrete-

time systems” (FMDS-2) (Torii and Matsuzaki, 1999, 2001), 

was derived from the Jury criterion. Th e new parameter is 

mathematically equivalent to FMCS-2 in the continuous-

time case, provided that the sampling period is suffi  ciently 

short (Torii, 2002; Torii and Matsuzaki, 2001). FMDS-2 was 

recently extended to FMDS-3 for a three-mode fl utter (Torii 

and Matsuzaki, 2011). An extension of FMDS-2 to a multi-

mode fl utter (FMDS-N) (Bae et al., 2005) was also proposed 

to apply with success to a wind tunnel test of a wing with a 

fl ap. However, FMDS-N in the case of the two-mode does not 

agree with the original FMDS-2, as pointed out in Matsuzaki 

(2005). Recent numerical studies (Hallissy and Cesnik, 2011; 

McNamara and Friedmann, 2007) showed that FMDS-N did 

not work well as a predictor of fl utter onset for multi-mode 

wing systems. 

2.1 Discrete-time series representation

Th e AR-MA process for a sampled signal of random 

responses, Jury’s stability criterion and three versions of 

FMDS, i.e., FMDS-2, FMDS-3, and FMDS-N, will be briefl y 

summarized. 

It is assumed that the stationary response, y(t), of a wing 

fl ying at a fi xed speed in an atmosphere with a Gaussian-

type turbulence of a given variance, is sampled at a constant 

interval T to produce a sequence of random variables, {y(kT), 

or simply written, y(k); k=1, 2, …, N}. Th e stationary random 

sequence is assumed by an AR-MA model (Goodwin and 

Sin, 1984) as

(1)
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where α0=1 and α2M≠0. Th e order 2M, AR coeffi  cients {αm} 

and MA coeffi  cients {βm}  with m=1, …, 2M, are an unknown 

integer and real numbers to be estimated from the sampled 

data, {y(k)}. A sequence, {e(k); k=1, …, N-1} represents noise 

inputs to the system, that is, a Gaussian independent random 

sequence with zero mean and an unknown variance σ2. 

Application of the z-transform (Jury, 1964) to the left-hand 

side of Eq. (1) yields the characteristic equation:

(2)

where (3)

and zm
*(m = 1, 2, ... , M) stands for a complex conjugate of 

zm. It is obvious that M represents the number of the modes 

consisting of the aeroelastic system. Th e eigenfrequencies, 

ωi, and the damping coeffi  cients, ηi, of the i-th mode are 

respectively given as 

(4)

(5)

Jury’s criterion (Jury, 1964) is defi ned by

(6.1)

(6.2)

(6.3)

where Xi and Yi are i x i determinants whose elements are 

one of the AR coeffi  cients or zero. Th e dynamic and the static 

instability, namely, fl utter and divergence of the system with 

M degrees of freedom is respectively given by 

(7)

(8)

Th e fl utter margin for a two-, three-, or multi-mode 

system (FMDS-2 [Torii and Matsuzaki, 2001], FMDS-3 

[Torii and Matsuzaki, 2011], or FMDS-N [Bae et al., 2005]) is 

respectively expressed as 

(9)

(10)

(11)

From Eqs. (9) and (10), we have a unifi ed formula (FMDS-M 

for M = 2 and 3):

only for M=2 and 3. (12)

It is proved (Torii, 2002; Torii and Matsuzaki, 2001) by 

using the Tustin transform that FMDS-2 is mathematically 

equivalent to FMCS-2 in the continuous-time domain, 

provided that the sampling period T is suffi  ciently short. 

FMDS-N defi ned by Eq. (11) in the case of M = 2 does not 

agree with FMDS-2 given by Eq. (9). 

3. Applications to Flutter Test Data 

3.1 Stationary process test

Th e fi rst application of Jury’s stability criterion to a 

fl utter test was made by using a cantilever wing model, as 

shown in Fig. 1a, tested at Mach number 1.17 in a transonic 

blow-down type wind tunnel (Matsuzaki and Ando, 1981). 

During the test, at each blow the dynamic pressure was kept 

constant for about ten seconds and to measure the response 

of the wing randomly excited by natural fl ow turbulences. 

Th e response at each blow was stationary, because its mean 

value and standard deviation remained essentially the same 

with time, more accurately its covariance was the same. 

Th e measurement was repeated by increasing the dynamic 

pressure stepwise. As the fl utter criterion, the parameter 

F−(3)=0, obtained by setting M=2 in Eq. (7), was applied to 

measured data which had been band-passed to contain 

contributions mainly from the fi rst two modes. In Fig. 1b, 

evaluated values of F−(3) are shown by solid circles against 

the dynamic pressure, Q, between about 0.5 and 0.9 kg/cm2. 

Th e fl utter boundary was predicted to be about Q= 0.95 kg/

cm2 by fi tting a straight line to the solid circles given only 

between about 0.5 and 0.8 kg/cm2, and by extrapolating 

the fi tted line to cross a point on the horizontal coordinate, 

which was close to the experimental value (QF = 0.97 kg/

cm2) given by a cross on the coordinate. In Figs. 1c and d, the 

modal frequencies, f1 and f2, and the damping coeffi  cients 

of the fi rst two modes, η1 and η2, calculated respectively by 

using Eqs. (4) and (5) are plotted by circles and triangles at 
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the same pressures as for F−(3) shown in Fig. 1b. It is clearly 

very difficult to predict the boundary simply by using the 

damping coefficients, as seen in Fig. 1d.

Figures 2b-e show numerical results obtained by applying 

the approach based on FMDS-M to experimental data of a 

wing model shown in Fig. 2a, which were measured at M = 

2.51 at a supersonic wind tunnel. FMDS-2 and FMDS-3 were, 

respectively, applied to sampled sequences obtained by 

band-passing the measured data so as to contain mainly the 

responses due to the first two modes (Torii and Matsuzaki, 

2001) and due to the first three (Torii and Matsuzaki, 2011). 

In Figs. 2b and d, estimated values of FMDS-2 and FMDS-3 

are plotted by solid circles in the pressure range up to q = 

100 kPa, with the measured flutter boundary, qF = 113.5 kPa, 

shown by a cross on the horizontal coordinate. A dotted and 

a solid straight line are fitted to the circles shown below q = 

100 kPa and extended to cross the horizontal coordinate at a 

point representing an estimated boundary, q̃F, located very 

close to the cross on the coordinate. The calculated damping 

coefficients, η1 and η2, are also given up to q = 100 kPa in Fig. 

2c and η1, η2 and η3 in Fig. 2e. In these figures, again, it is not 

possible to predict the boundary shown by the cross by using 

the estimated damping coefficients. It is clear that FMDS-M 

for M = 2 and 3 is effective in predicting the flutter boundary 
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Fig. 1. Flutter boundary prediction of a wing tested in a transonic wind-tunnel:  (a) wing model, (b) Estimated 
(3)F −  vs. Q , (c) estimated modal frequencies vs. Q , (d) estimated damping coefficients vs. Q  

(a cross on the coordinate: measured boundary, FQ = 0.97 kg/cm2). From Matsuzaki and Ando 
(1981). Reprinted with permission of AIAA. 
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quencies vs. Q, (d) estimated damping coefficients vs. Q (a cross on the coordinate: measured boundary, QF = 0.97 kg/cm2). From Matsuzaki 
and Ando (1981). Reprinted with permission of AIAA.
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 8 

below q  = 100 kPa and extended to cross the horizontal coordinate at a point representing an estimated 

boundary, 
F

q , located very close to the cross on the coordinate. The calculated damping coefficients, 1η and 

2η , are also given up to q  = 100 kPa in Fig. 2c and 1η , 2η  and 3η  in Fig. 2e. In these figures, again, it is 

not possible to predict the boundary shown by the cross by using the estimated damping coefficients. It is clear 

that FMDS-M for M = 2 and 3 is effective in predicting the flutter boundary from a low dynamic pressure range. 

The effectiveness of the flutter margins was also analytically confirmed by using the so-called two-dimensional 

simple wing without and with a flap, that is, with two and three degrees of freedom, respectively.  
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Fig. 2. �Flutter boundary prediction of a wing tested in a supersonic wind-tunnel: (a) wing model, (b) estimated FMDS-2 vs. q, (c) estimated two 
damping coefficients vs. q. From Torii and Matsuzaki (2001); (d) estimated FMDS-3 vs. q, (e) estimated three damping coefficients vs. q. From 
Torii and Matsuzaki (2011); (a cross on the coordinate: measured flutter boundary, qF= 113.5 kPa). Reprinted with permission of AIAA.
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from a low dynamic pressure range. The effectiveness of the 

flutter margins was also analytically confirmed by using 

the so-called two-dimensional simple wing without and 

with a flap, that is, with two and three degrees of freedom, 

respectively. 

As for a four-mode system (M = 4) of a cantilevered wing 

with a flap (Bae et al., 2005), the extended parameter FN 

defined by Eq. (11) was used to predict its flutter boundary in 

a test. Figure 3 shows a comparison between the application 

of FN during the test and the flutter analysis by the U-g 

method. FN decreases linearly to find the boundary at 832 

Pa. In the U-g diagram, there are two curves of g which cross 

the horizontal coordinate. With a small amount of structural 

damping, for example, g = 0.02 being taken into account in 

this figure, the critical point given by the fourth mode at 717 

Pa would shift at about 1,000 Pa. However, the other crossing 

point at about 800 Pa due to the second mode would move 

to around 830 Pa to give the flutter boundary. Hence, 

agreement among the U-g approach, the prediction by FN 

and the experimental value of the boundary was good. 

3.2 Nonstationary process test

To determine the flutter boundary in a single test, the 

dynamic pressure was often increased at a fixed rate until it 

arrived at its critical value (Matsuzaki and Ando, 1985; Torii 

and Matsuzaki, 1997, 2002). Figures 4a and b illustrate time 

histories of the dynamic pressure which increased from 76 to 

117 kPa and the signal of a strain gage glued on the surface 

near the root of the same wing as used for the stationary test 

and shown in Fig. 2a. The standard deviation of the response 

signal increased gradually with time, and the wing suddenly 

started to flutter at qF= 113.5 kPa (Torii and Matsuzaki, 2002), 

as mentioned in Section 3.1. For the prediction of the flutter 

boundary, sequential data sampled from the strain signal 

shown in Fig. 4b were assumed in a nonstationary AR-MA 

process, and its coefficients were evaluated through the 
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use of recursive maximum likelihood estimation technique 

(RMLE) (Ljung, 1987), since they were time-dependent. In 

Fig. 4c, recursively estimated values of FMDS-2 are plotted 

by a wavy solid curve against the dynamic pressure up to 

the flutter point given by a solid square on the horizontal 

coordinate. The fluctuation of the estimated values was 

sufficiently small except for a low pressure range, say, below 

85 kPa, where the estimation was not well converged around 

the true values because RMLE had started with a set of initial 

values arbitrarily selected. In the nonstationary case, FMDS-

2 was again almost linearly decreased over the range up to qF 

= 113.5 kPa except below 85 kPa. For comparison, numerical 

values of FMDS-2 of the stationary test, like those shown in 

Fig. 2b, are also given by solid circles, which lie mostly on 

the curve. Before the wing model was broken during the 

nonstationary test, the stationary test was first performed to 

measure the stationary responses 

4. Numerical Simulations

To exploit and confirm analytically the feasibility of the 

system stability method, the author and his co-researcher 

performed numerical simulations by using the two-

dimensional simple wing with only two degrees of freedom 

in an incompressible flow, or by introducing a panel system 

supported with a distributed spring and exposed to a 

supersonic flow. In these studies, the generalized theory of 

unsteady aerodynamic forces (Edwards, 1977) was used to 

generate responses of the wing and the panel in an arbitrary 

motion caused by random air turbulences.

4.1 Nonstationary process analysis

Like in Section 3.2, nonstationary responses of the two-

dimensional simple wing, shown in Fig. 5a, exposed to 

a turbulent flow whose dynamic pressure increased at a 

fixed rate, were represented by the AR-MA process, and its 

coefficients were evaluated by using RMLE. The evaluation 

of the response was repeated fifty times by using a different 

sequence of flow turbulence. Figure 5b shows the mean 

and standard deviation of evaluated values of FMDS-2, 

respectively, by a solid line and a small I-shaped column 

against the dimensionless pressure, q/qF, from 0.8 to 1.02 

(Torii and Matsuzaki, 2002), although the evaluation was 

made from q/qF = 0, where qF stands for the flutter boundary. 

A dotted line, named “True value”, represents FMDS-2 of a 

flutter analysis, being redrawn from a part of the curve shown, 

for instance, in Fig. 4 of Torii and Matsuzaki (2001), where 

FMDS-2 decreased in a linear manner from q/qF = 0 to 1.0. 

FMDS-2 may, therefore, provide a good tool to predict the 

flutter boundary for the nonstationary process, too, because 

its mean value changed nearly in a linear manner. It is noted 

that, because of a dynamic effect due to the nonstationary 

process, the flutter boundary shifted to 1.02 from 1.0 of the 

true value obtained in the flutter analysis, as shown in Fig. 

5b.

4.2 Morphing aircraft

The recent development of morphing aircraft technology 

has now presented a new-type of technical problems. Among 

them, aeroelastic instability is one of the most challenging 
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issues (Lee and Weisshaar, 2005; Tang and Dowell, 2008). 

In an ordinary airplane the flight speed is the most visible 

variable to the instability. In other words, the higher the 

flight speed is, the more critical the stability becomes. On 

the other hand, as for the morphing wing, we may consider 

that, even though the flight speed is kept fixed, the wing 

will onset flutter in the process of morphing in which the 

structural adaptation happens to lead to a “coalescence” of 

the frequencies of aeroelastic modes of the wing. In other 

words, the morphing technology presents a new type of 

nonstationary process. Accurate measurement of modal 

damping coefficients is considered to be harder in such 

nonstationary situations. Applicability of the nonstationary 

approach, mentioned in Sections 3.2 and 4.1, to a simple 

morphing wing was studied (Matsuzaki and Torii, 2005, 2006, 

2007) by assuming that the stiffness of the wing shown in 

Fig. 5a was representatively given by the natural frequencies 

of the heaving and the pitching motion, ωgh and ωgα, and 

that the morphing mechanism was influential only on the 

stiffness, namely, the two natural frequencies of the wing. 

In a numerical simulation of morphing, only ωgh increased 

continuously at a constant rate with ωgα being fixed.

In Fig. 6a, numerical results of the flutter analysis, that is, 

FMDS-2 and the damping coefficient of the critical mode, η2, 

are plotted against ωgh from 50.0 to 80.0 rad/sec, respectively 

by a solid and a chained line, while ωgα  was kept at 100 rad/

sec. As ωgh increased from ωgh = 50 rad/sec, FMDS decreased 

uniformly and became zero at ωgh.cr = 76.2 rad/sec. On the 

other hand, η2 remained almost unchanged up to about ωgh = 

69 rad/sec, and then started to decrease rapidly to zero at ωgh.

cr. Figure 6b illustrates numerical results of the nonstationary 

simulation analysis in the morphing process, in which ωgh 

increased at a constant rate of 0.5 rad/sec per second. The 

coefficients of the nonstationary AR-MA process were again 

estimated by RMLE. FMDS-2 decreased almost linearly in a 

range from above ωgh = 55 rad/sec and became zero at ωgh = 

76.5 rad/sec, which was higher than ωgh.cr due to the effect 

of the dynamic process. It was confirmed (Matsuzaki and 

Torii, 2012) that FMDS-2 was useful in predicting the flutter 

boundary, ωgh.cr, of the morphing wing from a sufficiently 

lower range of ωgh.

4.3 Multi-mode flutter system 

Airplane wings with auxiliary airfoils or additional 

attachments encounter often aeroelastic instabilities 

involved with a higher-order mode. A very flexible wing of a 

high-aspect ratio became critical also due to an involvement 

of a high-order mode (Hallissy and Cesnik, 2011). In order 

to develop systematically the flutter boundary prediction 

applicable to a multi-mode flutter, numerical simulation 

analyses (Matsuzaki, 2009, 2010) were performed by utilizing 

responses of a panel which was supported with a distributed 

spring and exposed to a supersonic flow, as shown in Fig. 7a. 

As is well-known, the onset of panel flutter does not usually 

lead to an immediate destruction of the panel structure, so 

that the prediction of the flutter boundary is less serious than 
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Fig. 6. Flutter analysis and numerical simulation during structural morphing: (a) flutter margin for discrete-time 
system (FMDS)-2 and 2nd mode damping vs. natural frequency, ωgh, of the heaving mode. From Matsuzaki and 
Torii (2006), (b) estimated FMDS-2 by recursive maximum likelihood estimation. From Matsuzaki and Torii 
(2007). Reprinted with permission of AIAA. 
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in wing flutter. The reason for using the panel system is that 

we may easily create an aeroelastic situation in which the two 

modes intentionally designated are coupled to induce flutter, 

and that the two-dimensional quasi-steady supersonic flow 

approximation is applicable as a generalized unsteady theory 

(Edwards, 1977) to generate the panel response caused by 

air turbulence. Furthermore, the responses of the panel 

obtained in a subcritical speed resembled very much those 

of a wing model often observed during a wind tunnel test, as 

will be seen later. For this multi-mode system, it is assumed 

that the value of an effective spring constant of the i-th mode, 

ki, is selectable arbitrarily, so that proper adjustment of the 

spring constants makes it possible to cause flutter due to an 

aeroelastic coupling between the two designated modes. As 

the first step, the four-mode system was analyzed, in which 

four different couplings between (Case I) the first and the 

second mode, (II) the second and the third, (III) the third and 

the fourth and (IV) the first and the fourth were examined. 

Results of flutter analysis on Case IV, that is, F−(7)−X7−Y7, the 

modal frequencies and the damping coefficients of the four 

modes are shown against the dynamic pressure, Q, in Figs. 

7b-d, respectively. The coupling between the first and the 

fourth mode is clearly seen in Fig. 7c. Jury’s parameter F−(7) 

decreased more or less in a uniform manner to become zero 

at the flutter boundary, QF = 4.9×10−4 kg/mm2. On the other 

hand, as shown in Fig. 7d, the damping coefficient of the first 

mode shown by a solid line kept its value very close to 0.01 

up to about Q = 4.8×10−4 kg/mm2 and with a slight increase in 
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Q it quickly became zero at QF.

Based on this preliminary analysis, numerical simulations 

on flutter boundary prediction of the aeroelastic system were 

performed by assuming that the dynamic pressure increased 

in a stepwise manner. Figures 8 show time histories of panel 

response (Case IV) of one second at four dynamic pressures, 

that is, a) Q = 1.0×10−4, b) Q = 3.0×10−4, c) Q = 4.0×10−4, d) Q = 

5.0×10−4 (kg/mm2). The responses shown in these figures are 

quite similar to those of wing models which we often observe 

during wind tunnel tests. As the critical pressure was QF = 

4.9×10−4 kg/mm2, the response diverged in an oscillatory 

manner in Fig. 8d. At ten dynamic pressures including these 

three Cases a) to c), F−(7) was evaluated. In Fig. 9, the mean 

and the standard deviation of F−(7) based on ten estimations 

at each dynamic pressure are given by a square and a pair 

of triangles. It is obvious that a simple extrapolation of a 

solid line connecting the squares will cross the horizontal 

coordinate at a point close to the boundary, QF, indicated 
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obvious that a simple extrapolation of a solid line connecting the squares will cross the horizontal coordinate at 

a point close to the boundary, FQ , indicated by an arrow. As for the remaining three cases, similar results were 
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Fig. 8. Wing responses and their power spectral densities for four-mode system: (a) Q = 1.0 x 10-4, b) Q = 3.0 x 
10-4, c) Q = 4.0 x 10-4, d) Q = 5.0 x 10-4. From Matsuzaki (2010). Reprinted with permission of AIAA. 
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by an arrow. As for the remaining three cases, similar results 

were obtained.

5. Discussion

Before discussing the matters related to the system stability 

approach, we note that the first application of the time-series 

representation of wing response was given by using the AR 

process in 1978 (Onoda, 1978), although the system stability 

was not taken into account in the analysis. A number of 

researchers used also the AR or the ARMA representation of 

wing responses in the 1980s and 90s, for example, Batill et al. 

(1992), Pak and Friedmann (1992), and Roy et al. (1986).

As discussed above, the flutter boundary prediction based 

on the system stability approach has great advantages due 

to advanced digital techniques, although the number of its 

applications is very small so far. For the present, it may serve 

as a complement to the damping method. This is because the 

latter approach has a very long history of practical applications 

and experiences, whereas the former needs to experience 

much more actual applications. Modern estimation methods 

supposedly allow us to eliminate much of noise effects from 

measured noise-contaminated data, and estimate sufficiently 

accurate system parameters. For this end, however, it is 

necessary to appropriately select initial input parameters 

for a computing program, such as the sampling period, T, 

the number of data, N, the upper and the lower limit of a 

band pass filter, fU an fL, etc., as well as specific parameters 

associated with the programs used. Some comparisons 

among estimated results of FMDS, modal frequencies, etc., 

obtained by changing input parameter values, were given, for 

instance, in Torii and Matsuzaki (1992, 1995, 2001). For the 

parameter calibration, the modal frequencies and damping 

coefficients directly measured in a test will also serve as 

useful references. The evaluation of Jury’s criterion, FMDS-M 

and FMDS-N is rather simple and easy, once the order 2M 

and the AR coefficients of the system have been estimated. 

In an actual application, it is recommended to evaluate all 

these criteria as well as the modal frequencies and damping 

coefficients given respectively by Eqs. (4) and (5).

Although Jury’s criterion, more specifically, F −(2M−1) 

given by Eq. (7), is applicable to an aeroelastic system 

with any degrees of freedom, an effort for extension of the 

effective FMDS-3 to a flutter margin for higher-mode systems 

is important, because multiple frequencies of uncoupled 

modes may exist very close to or between the frequencies of 

the coupled modes. In such a case, it is impossible to filter 

the sequence of measured data into one which contains only 

three modes including the coupled two.

As is well-known, the damping approach is not so 

effective, particularly in the case of the so-called explosive 

flutter for which the critical damping coefficient starts to 

decrease quickly in a narrow range close to the boundary and 

becomes zero to induce a violent self-excited oscillation. An 

expert of an American aircraft-manufacturing company says 

that a half of dozen wing models are constructed for a wind 

tunnel test because they are often destructed by the onset 

of explosive flutter. Needless to say, direct measurement of 

the damping coefficients from a once-jerked and quickly-

damped oscillation is easily influenced by air turbulence 

because turbulent flows change their characteristics from 

one instant to another. On the other hand, by using modern 

digital techniques which developed remarkably over the 

last couple of decades, we may analyze stationary and 

nonstationary random responses measured for certain 

period, and extract more reliable values of the system 

parameters from measured data. 

As for a wind tunnel test, from our past experiences 

although very limited, it seems that an ordinary wind tunnel 

provides sufficiently effective turbulences for the system 

stability approach. If the flow is calm, then one may install a 

vortex generator in an upstream of the test section to create 

required flow turbulences. On the other hand, as for a flight 

test in an open atmosphere, no one can expect any turbulence 

which will continue with the same strength for a sufficiently 

long range and a long period. However, recent development 

of unmanned aircraft technology is so remarkable that we 

may think of introducing a turbulence-generating system 

composing of a unmanned aircraft(s) equipped with a vortex 

generator(s), and also controlling the system to maneuver at 

a fixed distance ahead of a tested airplane and to produce 

air turbulence satisfying requirements in a region where the 

tested airplane flies. Figure 10 illustrates a schematic picture 

of flight test in which a vortex-generating system and a tested 

airplane fly together at a supersonic speed. 
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a region where the tested airplane flies. Figure 10 illustrates a schematic picture of flight test in which a vortex-

generating system and a tested airplane fly together at a supersonic speed.  

 

Fig. 10. Flight flutter test in a supersonic range, using a turbulence-generating system: in side of a region which 
two Mach cones overlap, artificial turbulence satisfying requirements for flight test is developed and the tested 
airplane flies. 
 

6. Concluding Remarks 

This paper has presented an overview on the flutter boundary predictions based on the system stability 

approach for digitalized systems, that is, Jury’s stability criterion and flutter margin for discrete-time systems 

(FMDS-M and FMDS-N). The applications of the prediction method to a flutter system with multi-modes and to 

the nonstationary flutter test in which the dynamic pressure uniformly increased were mentioned. The extension 

of the nonstationary approach used for ordinary-type wings to the prediction of flutter of a morphing wing was 

reviewed, too. 

Difficulties encountered by the traditional damping method and the system stability approach were 

discussed. Regarding a future application of the system stability method to flight test in an open air, a 

conceptual idea of a turbulence-generating system composed of an unmanned aircraft(s) which flies at a fixed 

distance ahead of a tested airplane is proposed.  
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Fig. 10. �Flight flutter test in a supersonic range, using a turbulence-
generating system: in side of a region which two Mach cones 
overlap, artificial turbulence satisfying requirements for flight 
test is developed and the tested airplane flies.
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6. Concluding Remarks

This paper presented an overview on the flutter boundary 

predictions based on the system stability approach for 

digitalized systems, that is, Jury’s stability criterion and flutter 

margin for discrete-time systems (FMDS-M and FMDS-N). 

The applications of the prediction method to a flutter system 

with multi-modes and to the nonstationary flutter test in 

which the dynamic pressure uniformly increased were 

mentioned. The extension of the nonstationary approach 

used for ordinary-type wings to the prediction of flutter of a 

morphing wing was reviewed, too.

Difficulties encountered by the traditional damping 

method and the system stability approach were discussed. 

Regarding a future application of the system stability method 

to flight test in an open air, a conceptual idea of a turbulence-

generating system composed of an unmanned aircraft(s) 

which flies at a fixed distance ahead of a tested airplane was 

proposed. 
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