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Abstract

This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a 

propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade 

element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic 

relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller 

wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other 

aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage 

components and the related influence coefficients are computed, taking into account the propeller induced velocities by 

tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and 

other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous 

flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady 

flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight 

characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled 

model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are 

compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the 

two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.
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1. Introduction

Flight dynamics modeling for a propeller-driven airplane is 

not an easy task due to the complex flow environments caused 

by the rotating propeller. In addition, the propeller generates 

influential gyroscopic moments during maneuvering flights. 

Furthermore, the wakes trailed from each of the propeller 

blades generate considerable flow disturbances over the 

propeller as well as other aerodynamic surfaces [1]. In this 

paper, propeller modeling techniques are investigated in 

order to give due consideration to these propeller effects 

for building an accurate math model. For this purpose, the 

Level 2 rotor modeling technique, widely used for rotorcraft 

analyses [2, 3], and vortex theory [4, 5] are adopted to predict 

the aerodynamic forces and moments generated by the 

propeller and to consider the propeller wake effect on other 

aerodynamic surfaces. Also, the propeller wake theory is 

combined with the vortex lattice method (VLM) to obtain 

the induced flow field over the major lifting components 

including the main wing, the tail wing, fuselage, and control 

surfaces. The resultant induced velocity at the aerodynamic 

center of each striped element of the wing is used to compute 
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sectional air loads. These air loads are numerically integrated 

based on the strip theory by using 2-dimensional airfoil 

aerodynamic tables to ascertain the total air loads of each 

wing. The viscous drag can then be duly considered in each 

of the component models, including the propeller. Also, 

the compressibility effects over the propeller blades can be 

reflected by applying the blade element method (BEM).

In applying the present method, the mathematical model 

for flight dynamic analyses is generated for the propeller-

driven light airplane using a fixed setting for the root pitch. 

Aerodynamic tables obtained through wind tunnel tests 

are used to predict the fuselage aerodynamic forces and 

moments. Therefore, the resultant math model applies well 

to the stall angle of attack. The first areas of application of 

the math model focus on predicting isolated propeller 

performances in steady flight conditions. Secondly, the 

propeller effects on flight characteristics are investigated 

through trim analyses under forward flight conditions. 

Finally, maneuver simulations are carried out with control 

inputs used in a series of flight tests and the results obtained 

using the present math model are compared with those from 

the flight tests to validate the usefulness of the proposed 

propeller modeling techniques.

2. Propeller Model

The propeller-induced velocity field affects the distribution 

of aerodynamic forces and moments over the propeller 

blades. In addition, the trailing propeller wakes disturb the 

flow field over the fuselage and wing components. Therefore, 

accurate modeling of the propeller-induced-velocity field 

over the airplane is extremely important for developing a 

high-fidelity math model for propeller-driven airplanes. 

The flow fields generated by the propeller can be predicted 

at a reasonable computational cost using the lifting-line or 

lifting-surface theory and vortex wake techniques, which 

allow both the trailed wake geometry and the resultant 

disturbed velocity field to be determined. The fuselage 

and other aerodynamic surfaces are openly immersed in 

the wake region of the propeller. As a result, these surfaces 

can experience large variation in relative air velocity 

depending on the loading conditions of the propeller. In 

addition, each aerodynamic surface with a lifting force 

generates an induced velocity field. Therefore, the induced 

velocities generated by both the propeller and the lifting 

surfaces should be adequately considered when building 

an aerodynamic model. For this purpose, the vortex-lattice-

method (VLM) is adopted to predict the induced velocities 

over other aerodynamic surfaces.

In contrast, the approaches mentioned above cannot take 

into account the viscous and compressible flow effects on 

the propeller air loads because of their bases in potential 

flow theory. The compressibility effect on the propeller 

air loads becomes dominant as the flight speed increases. 

Also, the viscous drag should be duly considered for an 

accurate prediction of the propeller performance. These 

real flow effects can be effectively handled using the BEM, 

where the aerodynamic coefficients for the blade airfoils, 

tabulated in the C-81 format, are generally utilized to 

account for the effects of the Mach number and the angle of 

attack. Air loads are also numerically integrated to account 

for these nonlinear aerodynamic effects. The viscous flow 

effects on the aerodynamic forces and moments of the wing 

components are considered by applying strip theory and 

the induced velocities are computed on the aerodynamic 

centers of the striped wing elements. In addition to the 

complex aerodynamic effects mentioned above, the 

propeller can generate discernible gyroscopic moments 

around the airplane’s center of gravity (CG) during an 

aggressive maneuver. Therefore, the inertial loads of the 

propeller should also be adequately modeled for flight 

dynamics analyses and can be accurately predicted using the 

same BEM framework.

2.1. Kinematics at the blade element

For the application of the BEM in computing the inertial 

and aerodynamic loads of the propeller, the velocity and 

acceleration at each blade element is derived in an exact 

manner using the approaches presented in Refs. [6, 7]. For 

completeness, the main results of the propeller applications 

are summarized in this section. The inertial acceleration 
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Figure 1 shows the front view of the spinner-fixed 

nonrotating coordinates (X, Y, Z) with rotational speed Ω 

in the counter-clockwise (CCW) direction. In the event that 

the propeller is installed with the elevation angle αs and the 

sideward tilt angle βs with respect to the CG-fixed frame, the 

linear velocity and acceleration vectors at the blade element 

located at the azimuth angle ψ=σΩt(σ=±1) and the blade 

radial position rb from the spinner center can be expressed 

in the rotating spinner reference frame (x, y, z) represented 

by the subscript R as
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Where 21,LL , and 3L  are coordinate transformation matrices related to the angular rotation 
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Where 21,LL , and 3L  are coordinate transformation matrices related to the angular rotation 

around the x-, y-, and z-axes, respectively. Using their angular rotations ),,( SS  , other matrices 
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matrices related to the angular rotation around the x-, y-, and 

z-axes, respectively. Using their angular rotations (ψ, βs, αs), 

other matrices and the vector ex are defined as
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The direction of the propeller rotation is differentiated by  ( 1  for CCW, 1  for 

clockwise rotation) and   represents the Dirac delta function. 

2.2 Propeller forces and moments 

The forces and moments generated by the propeller can be obtained using the BEM by integrating 

the contributions from all of the blade elements. The aerodynamic forces and moments acting on a 

blade element can be derived using the velocity vector shown in Eq. (4) with the notations shown in 

Fig. 2. The geometric pitch angle, the induced angle of attack, and the effective angle of attack are 

represented by  ,  , and  , respectively. The relative air velocity at the blade element consists of 

the inertial velocity defined in Eq. (4) and other contributions such as the induced velocity related to 

the aerodynamic thrust. If the velocity vector BI
Rr  is split into the tangential, perpendicular, and 

radial components  ,,, RPT UUU  in the rotating spinner reference frame, the aerodynamic forces and 

moments at the blade element can be computed with aerodynamic tables for the lift, drag, and 

pitching moment coefficients using the angle of attack and Mach number defined by Eq. (6). 
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The direction of the propeller rotation is differentiated by  ( 1  for CCW, 1  for 

clockwise rotation) and   represents the Dirac delta function. 

2.2 Propeller forces and moments 

The forces and moments generated by the propeller can be obtained using the BEM by integrating 

the contributions from all of the blade elements. The aerodynamic forces and moments acting on a 

blade element can be derived using the velocity vector shown in Eq. (4) with the notations shown in 

Fig. 2. The geometric pitch angle, the induced angle of attack, and the effective angle of attack are 

represented by  ,  , and  , respectively. The relative air velocity at the blade element consists of 

the inertial velocity defined in Eq. (4) and other contributions such as the induced velocity related to 

the aerodynamic thrust. If the velocity vector BI
Rr  is split into the tangential, perpendicular, and 

radial components  ,,, RPT UUU  in the rotating spinner reference frame, the aerodynamic forces and 
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pitching moment coefficients using the angle of attack and Mach number defined by Eq. (6). 
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represented by  ,  , and  , respectively. The relative air velocity at the blade element consists of 

the inertial velocity defined in Eq. (4) and other contributions such as the induced velocity related to 

the aerodynamic thrust. If the velocity vector BI
Rr  is split into the tangential, perpendicular, and 
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pitching moment coefficients using the angle of attack and Mach number defined by Eq. (6). 
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the aerodynamic thrust. If the velocity vector BI
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The direction of the propeller rotation is differentiated by  ( 1  for CCW, 1  for 

clockwise rotation) and   represents the Dirac delta function. 

2.2 Propeller forces and moments 

The forces and moments generated by the propeller can be obtained using the BEM by integrating 

the contributions from all of the blade elements. The aerodynamic forces and moments acting on a 

blade element can be derived using the velocity vector shown in Eq. (4) with the notations shown in 

Fig. 2. The geometric pitch angle, the induced angle of attack, and the effective angle of attack are 

represented by  ,  , and  , respectively. The relative air velocity at the blade element consists of 

the inertial velocity defined in Eq. (4) and other contributions such as the induced velocity related to 

the aerodynamic thrust. If the velocity vector BI
Rr  is split into the tangential, perpendicular, and 
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The direction of the propeller rotation is differentiated by  ( 1  for CCW, 1  for 

clockwise rotation) and   represents the Dirac delta function. 

2.2 Propeller forces and moments 

The forces and moments generated by the propeller can be obtained using the BEM by integrating 

the contributions from all of the blade elements. The aerodynamic forces and moments acting on a 

blade element can be derived using the velocity vector shown in Eq. (4) with the notations shown in 
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the aerodynamic thrust. If the velocity vector BI
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The direction of the propeller rotation is differentiated by  ( 1  for CCW, 1  for 

clockwise rotation) and   represents the Dirac delta function. 

2.2 Propeller forces and moments 

The forces and moments generated by the propeller can be obtained using the BEM by integrating 

the contributions from all of the blade elements. The aerodynamic forces and moments acting on a 

blade element can be derived using the velocity vector shown in Eq. (4) with the notations shown in 

Fig. 2. The geometric pitch angle, the induced angle of attack, and the effective angle of attack are 

represented by  ,  , and  , respectively. The relative air velocity at the blade element consists of 

the inertial velocity defined in Eq. (4) and other contributions such as the induced velocity related to 

the aerodynamic thrust. If the velocity vector BI
Rr  is split into the tangential, perpendicular, and 
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moments at the blade element can be computed with aerodynamic tables for the lift, drag, and 

pitching moment coefficients using the angle of attack and Mach number defined by Eq. (6). 
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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In the event that the mass properties of the propeller are included in those for the airplane, the 

gyroscopic moments due to the propeller’s rotational speed Ω  should be additionally considered as 

shown in Eq. (11). It can be demonstrated that those moments cause off-axis responses in the plane 

normal to the spinning axis. By considering the moment arm to the CG point and the coordinate 

transformation defined by T
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PCCS LLL  , the forces and moments generated by the propeller can be 
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mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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Table 1. Configuration data for KLA-100 model 

Weight, Engine, and propeller 
Max. take-off weight  
Engine  
Propeller 

- Number of blades  
- Diameter 
- Maximum RPM 

620 kg 
100 hp Rotax 912s2 

3
1.726 m 
3000 

Geometry of main wings(WG) and stabilizers 
  WG HS VS 

Span (m) 9.5 1.55 1.30 
Chord (m) 1.20 0.65 1.30 

Twist angle (deg) -3.0 0.0 0.0 
Sweep angle (deg) 0.0 0.0 10.0 

Dihedral angle (deg) 5.9 0.0 0.0 
Geometry of control surface components 

 flap aileron elevator rudder 
Chord (%) 30 30 30 30 
Spanwise 
Location 

(m) 

0.72 
~3.39 

3.39 
~4.73 

0.0 
~1.55 

0.0 
~1.3 

Fig. 1 Notations for the blade element position, propeller forces and moment vectors 
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Fig. 1. ��Notations for the blade element position, propeller forces and 
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Fig. 2 Aerodynamic parameters at the blade element  
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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aerodynamic and inertial loads in the non-rotating spinner reference frame as below: 

     
)()(

)()(

iner
S

aero
SS

iner
S

aero
SS

MMM
FFF



                                                      (12) 

In the event that the mass properties of the propeller are included in those for the airplane, the 

gyroscopic moments due to the propeller’s rotational speed Ω  should be additionally considered as 

shown in Eq. (11). It can be demonstrated that those moments cause off-axis responses in the plane 

normal to the spinning axis. By considering the moment arm to the CG point and the coordinate 

transformation defined by T
SP

T
PCCS LLL  , the forces and moments generated by the propeller can be 

 and moments 

7 

           





2

0 0

2)( sin)cos,sin,
4

R

bDL
baero

Y ddrMCMCcVNF             (7) 

   
  





























2

0 0

22)( cos
sin,

cos,
sin,

4
R

b
D

L
bM

baero
Y ddr

MC
MC

rMCcVNM      (8) 

The forces )(iner
SF and moments )(iner

SM due to inertial acceleration can be computed using 

  

 















2

0 0

)(

2

0 0

)(

2

2
R

b
BI
Rx

T
RSbb

biner
S

R

b
BI
R

T
RSb

biner
S

ddrrmN

ddrmN

reLM

rLF





                                     (9) 

where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 
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Sb
iner

S M aF )(                                                            (10) 




















0

)(
)(

2
)(

SSS

SSS
biner

S pΩrq
qΩrp

J 






M                                              (11) 

where SI
CSCS rLa   and   T

SC
CI
CSC

T
SSS rqp LωL ~,, 

The total forces and moments generated by the propeller can be obtained by summing up the 

aerodynamic and inertial loads in the non-rotating spinner reference frame as below: 

     
)()(

)()(

iner
S

aero
SS

iner
S

aero
SS

MMM
FFF



                                                      (12) 

In the event that the mass properties of the propeller are included in those for the airplane, the 

gyroscopic moments due to the propeller’s rotational speed Ω  should be additionally considered as 

shown in Eq. (11). It can be demonstrated that those moments cause off-axis responses in the plane 

normal to the spinning axis. By considering the moment arm to the CG point and the coordinate 

transformation defined by T
SP

T
PCCS LLL  , the forces and moments generated by the propeller can be 

 and 

7 

           





2

0 0

2)( sin)cos,sin,
4

R

bDL
baero

Y ddrMCMCcVNF             (7) 

   
  





























2

0 0

22)( cos
sin,

cos,
sin,

4
R

b
D

L
bM

baero
Y ddr

MC
MC

rMCcVNM      (8) 

The forces )(iner
SF and moments )(iner

SM due to inertial acceleration can be computed using 

  

 















2

0 0

)(

2

0 0

)(

2

2
R

b
BI
Rx

T
RSbb

biner
S

R

b
BI
R

T
RSb

biner
S

ddrrmN

ddrmN

reLM

rLF





                                     (9) 

where bm  represents the blade mass per unit length. The inertial forces and moments in Eq. (9) can be 

analytically integrated and expressed using the mass properties of the blade, including the total blade 

mass bM and its polar moments of inertia bJ . Eqs. (10) and (11) are the resultant equations for the 

perfectly balanced propeller. 
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In the event that the mass properties of the propeller are included in those for the airplane, the 

gyroscopic moments due to the propeller’s rotational speed Ω  should be additionally considered as 

shown in Eq. (11). It can be demonstrated that those moments cause off-axis responses in the plane 

normal to the spinning axis. By considering the moment arm to the CG point and the coordinate 

transformation defined by T
SP

T
PCCS LLL  , the forces and moments generated by the propeller can be , the forces and 

moments generated by the propeller can be obtained in the 

body-fixed CG reference frame.

The aerodynamic coefficients required to compute 

sectional air loads are tabulated in the standard C-81 

format which is widely used in rotorcraft analyses [3]. These 

coefficients are computed using the Navier-Stokes Solver, 

KFLOW, which was developed by one of the authors and is 

widely used in rotorcraft airfoil design [8-10]. The accuracy 

of KFLOW in predicting the aerodynamic coefficients of 

the airfoils for rotorcrafts is validated through rigorous 

correlations of its results with wind tunnel test data. The 

geometric data for the airfoil sections are measured using 

the propeller for a light-sports airplane and applied to 

the KFLOW aerodynamic analyses for airfoils distributed 

along the blade span. The lift, drag, and pitching moment 

coefficients of the selected 7-airfoil sections are tabulated in 

the C-81 form with variations in Mach numbers (M=0.1~0.7) 

and the angles of attack (α=-180~180degrees). The results are 

shown in Fig. 3.

2.3. Propeller wake model

The lifting-line theory can be efficiently coupled with the 

BEM to predict the strength of the line vortex of each blade 

element using the sectional lift coefficient and relative air 

speed as shown in Eq. (13). 
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ages (ζFW≤90o) are used for the near wake filaments to save 

computing time. The strength of the tip vortex filament is 

defined using the single peak model [4] presented in Eq. 

(14) and the strengths of the near wake filaments can be 

determined by applying the conservation law of circulation 

as shown in Eq. (15) when Nelem blade elements are used.
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where Dr(r, ζ) and Dz(r, ζ) represent the shape functions for 

the wake geometry [4].

Landgrebe’s model addresses both the tip vortex and the 

inboard vortex sheet, with the geometries represented using 

the thrust coefficient CT and the average twist angle θrw (in 

degrees). In addition, Kocurek and Tangler’s model accounts 

for the blade number effect on the tip vortex geometry. The 

detailed model parameters can be found in Ref. [4] for both 

models. Once the strengths and geometries of all vortex 

filaments are determined, the induced velocities at any 

position can be computed using the Bio-Savart law. Vatistas’ 

model [13] for the vortex core radius is adopted in the study 

to avoid the singular behavior of the induced velocity when 

the radial distance from a line vortex element approaches 

zero.

3. ��Modeling the Propeller Effect on Airframe 
Aerodynamics

The detailed aerodynamic models for the airframe can 

be found in Ref. [14]. The major approaches used to build 

the math model in this study will be summarized briefly 

for the sake of completeness. The aerodynamic forces 

and moments of the fuselage, main and tail wings are 

greatly affected by both the propeller’s wake and the flow 

velocities induced by their lift forces. These effects can be 
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to compute the induced velocity field and strip theory is 

applied to compute the aerodynamic forces and moments 

of the wing components. This approach might be effective 

for propeller-driven airplanes, in which wing components 
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 represents the relative position (rWG, rHS, 

rVS) of the striped wing element with respect to the airplane’s 

CG. The velocity vectors, VInd.prop and VInd.airframe, represent 

the induced velocities due to the propeller wake and the 

total downwash from other aerodynamic components, 

respectively. Fig. 6 shows the schematic diagram depicting 

the control point, the line elements of the bound vortex and 

the trailed wake. Fig. 7 shows the vortex lattices over the 

wings, fuselage, and control surfaces when VLM is applied to 

the light-sports airplane.

The geometry of the trailing vortex filaments can be 

prescribed as in the propeller or traced using the free wake 

theory. Even though the geometry predicted using the free 

wake theory shows a complex structure after the rollup 

process as discussed in Ref. 4, its effect on the induced 

velocity fields over the wing components is nearly the same 

as when it is modeled with straight lines taking into account 

the flight velocity direction. Therefore, this paper uses 

the straight line vortex filament to reduce computational 

time. The air loads of each wing component are computed 

using 2-D aerodynamic tables as in the BEM. However, 

the aerodynamic forces and moments for the fuselage are 

modeled using the wind tunnel database rather than the 

values obtained from the table for the analysis with the VLM 

in order to include the viscous drag. 

4. Applications and Validation

The propeller models proposed in this paper are applied 

to a light-sports-airplane, KLA-100, which is developed 

under the KAS-VLA certification requirements established 

by the Korean airworthiness certification authority. Table 1 

shows the major performance and configuration data for the 

KLA-100 while Fig. 8 shows the distribution of the chord and 

the twist for the propeller. The installed 3-bladed propeller 

operates with a fixed pitch setting which can be adjusted 

on the ground. Using these data, the isolated propeller 

performances are first predicted with variations in the 

pitching settings and in the flight speed. Next, the proposed 

propeller models are implemented in the flight dynamic 

math model for the KLA-100, which is used to investigate the 

propeller effects on the air loads over major aerodynamic 

surfaces. Also, the effects of the gyroscopic moments 

generated by the propeller are investigated through trim 

analyses for the coordinated turn flights. Finally, maneuver 

simulations for the scaled KLA-100 model are performed 

with the control inputs used in flight tests to validate the 

proposed propeller models.

The propeller performance is predicted for the root pitch 

setting of 30 degrees at the sea-level ISA (International 

Standard Atmospheric) condition. The effects of flight speed 

and the propeller’s RPM are shown in Fig. 9. The result shows 

that propeller efficiency is increased as RPM decreases, 

using the current setting of the root pitch angle over most 

of the speed range. The maximum thrust-to-weight ratio of 

over 0.33 can be obtained near the maximum RPM. In this 

condition, the negative rolling moment due to the propeller 

torque can be increased over 500 N m.

The propeller wake effects on aerodynamic performance 
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Fig. 7 Vortex lattice distributed over the aerodynamic surfaces for the VLM 

 

 

Fig. 8 Distribution of chord length and twist angle along the blade span 
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are studied though trim analyses for steady level flights with 

variations in flight velocity. For this purpose, the following 

four different cases were selected for comparative studies.

Case 1: ��using the coupled propeller and airframe 

aerodynamic model proposed in this study

Case 2: ��trim analyses without the propeller inflow effect 

on the airframe aerodynamics

Case 3: ��the same condition as Case 1 but the propeller 

torque effect is ignored

Case 4: ��the same condition as Case 2 but the propeller 

torque effect is ignored

Using the above combinations, the propeller torque 

effect can be identified from the results of analyzing Cases 

1 and 3. Also, the propeller inflow effect can be deduced by 

comparing the results of Cases 1 and 2. Trim analyses were 

performed over the speed range of 100 km/hr to 220 km/hr 

at sea level standard ISA conditions with the maximum take-

off weight. Fig. 10 and 11 show the variations in trim attitude 

angles and the control inputs, respectively. The effect of the 
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Table 1. Configuration data for KLA-100 model
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Table 1. Configuration data for KLA-100 model 

Weight, Engine, and propeller 
Max. take-off weight  
Engine  
Propeller 

- Number of blades  
- Diameter 
- Maximum RPM 

620 kg 
100 hp Rotax 912s2 

3
1.726 m 
3000 

Geometry of main wings(WG) and stabilizers 
  WG HS VS 

Span (m) 9.5 1.55 1.30 
Chord (m) 1.20 0.65 1.30 

Twist angle (deg) -3.0 0.0 0.0 
Sweep angle (deg) 0.0 0.0 10.0 

Dihedral angle (deg) 5.9 0.0 0.0 
Geometry of control surface components 

 flap aileron elevator rudder 
Chord (%) 30 30 30 30 
Spanwise 
Location 

(m) 

0.72 
~3.39 

3.39 
~4.73 

0.0 
~1.55 

0.0 
~1.3 

Fig. 1 Notations for the blade element position, propeller forces and moment vectors 
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Fig. 9 Results of propeller performance prediction 

 

 

 

Fig. 10 Trim attitude angles (forward flight, sea level, standard ISA)  
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Fig. 9. ��Results of propeller performance prediction
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Fig. 10. ��Trim attitude angles (forward flight, sea level, standard ISA) 
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propeller torque is relatively small compared to that of the 

propeller wake. The pitch attitude, the RPM, and the elevator 

deflection are negligibly affected by the propeller, unlike 

the roll angle and the lateral-directional controls which are 

considerably affected. The wake effects can be visualized 

by comparing the distributions of wing loadings as shown 

in Fig. 12. The root section of the main wing shows highly 

unsymmetrical distribution of the wing loadings which 

generates a large positive rolling moment. The tip region 

shows the effect of aileron deflection in compensating for 

the moment and maintaining steady level flight. In addition, 

the horizontal and vertical stabilizers have unsymmetrical 

wing loadings and the rudder deflection shows discernible 

differences in compensation for the yawing moment 

generated by the vertical stabilizer due to propeller induced 

velocity.

The effect of the gyroscopic moments resulting from the 

propeller rotation and the angular motions of the airplane 

are investigated through trim analyses of the coordinated 

turn flight, with variations in the normal load factor. Analyses 

are performed with a flight speed of 200 km/hr and a normal 

load factor in the range of nZ=1.1~4.0. The gyroscopic 

moments generated from the propeller are proportional to 

the product of the body angular rate (pS, qS) and JbΩ as shown 

in Eq. (11). Their effects on general maneuvering flights can 

be deduced from the analyses by varying the propeller’s polar 

moment of inertia. For this purpose, analyses are undertaken 

over the range of Jb=0.0~6.0 kg m2, where the trim flight 

without the gyroscopic moment effect is defined by Jb=0.0. 

Fig. 13 represents the pitch, roll, and yaw rates during turn 

maneuvers and the pitch rate shows the largest variation. 

Therefore, the propeller gyroscopic moments mainly 

contribute to the pitching moment around the airplane’s 

CG for the level turn flight. Figs. 14 and 15 present the body 

attitudes and controls. The rudder deflection δrudder with Jb=6.0 

kg-m2 is around 7 degrees less than that required with Jb=0.0 

for the turning flight, with nZ=4.0. Therefore, the gyroscopic 

moment can significantly affect the control margin. It can 

also degrade maneuverability by decreasing the propeller 

efficiency as shown in Fig. 16. The polar moment of inertia 

Jb for the VLA-100 is estimated to be around 0.75 kg-m2. 

Therefore, Jb=6.0 seems to be unrealistically high. The VLA-

100 must be maneuverable at over 180 degrees/sec pitch 

rate during aggressive maneuvers. Therefore, the present 

analyses with a large Jb can be used to estimate the effect of 
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Fig. 11 Propeller RPM and controls for trimmed level flight 
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Fig. 11. ��Propeller RPM and controls for trimmed level flight
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Fig. 12 Propeller effects on the distribution of wing loading 
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Fig. 12. ��Propeller effects on the distribution of wing loading
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the propeller’s gyroscopic moments in real flights. 

The proposed propeller models were applied to the 

simulation studies and the results were compared with the 

flight test data collected from the 1/5-scale RC model of the 

KLA-100. Fig. 17 shows the RC model with the two-bladed 

propeller on the runway ready for flight tests. A series of 

flight tests were carried out with varying propeller thrust 

conditions. The results of the control response tests at 80 % of 
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Fig. 13 Angular rates for trimmed turn flights 
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Fig. 13. ��Angular rates for trimmed turn flights
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Fig. 14 Attitude angles for trimmed turn flights 
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Fig. 14. ��Attitude angles for trimmed turn flights
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Fig. 15 Rudder and aileron deflections for trimmed turn flights 
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Fig. 15. ��Rudder and aileron deflections for trimmed turn flights
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Fig. 16 RPM and propeller efficiency during trimmed turn flights 

 

 

 
Fig. 17 Scaled RC-model of KLA-100 for flight tests 

1 1.5 2 2.5 3 3.5 4
88

90

92

94

96

98

100

102

104

nZ (g)


 (R

P
M

)

: Jp = 0.00 kg/m2

: Jp = 1.50 kg/m2

: Jp = 3.00 kg/m2

: Jp = 4.50 kg/m2

: Jp = 6.00 kg/m2

1 1.5 2 2.5 3 3.5 4
70

72

74

76

78

80

82

nZ (g)

 
(%

)

Fig. 16. ��RPM and propeller efficiency during trimmed turn flights
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the maximum propeller thrust are compared to validate the 

proposed propeller model. Figs. 18-20 compare the results 

of the flight simulations with those of the corresponding 

flight tests. The doublet-type input was imposed for 

each of the control channels. The relevant responses are 

represented in the attitude angle and the angular rate. The 

RC model is equipped with only the attitude and heading 

reference system (AHRS), containing a coarse alignment 

of its axes with the reference frame of the airplane due to 

space limitations. Therefore, the effects of the relative wind 

velocity and the misalignment in the AHRS reference frame 

cannot be duly accounted for in the measurements of the 

trim attitude angles. Also, the configuration of the RC model 

may differ from the actual design, especially with respect to 

the propeller and control surface geometries. Therefore, the 

measured trim attitudes, which are shown at the initial time 

for each figure, are discernibly different from the computed 

ones. However, the overall dynamic responses to the doublet 

inputs for each channel show a good correlation between the 

two datasets, with a small phase shift due to the delay in the 

communication link.

5. Conclusions

This paper focuses on the aerodynamic and inertial 

modeling of the propeller in order to build a high-fidelity 

math model for propeller-driven airplanes. The effects 

of the trailing wake on other aerodynamic surfaces were 

successfully modeled using the blade-element-method 

combined with the vortical wake theory. The gyroscopic 

moments of the propeller were formulated in an exact 

manner from the kinematics, with all body states taken 

into account. In addition, the vortex-lattice method was 

adopted to consider the velocity induced by the propeller 

while strip theory was utilized to compute the forces and 

moments generated by the wing components. Therefore, the 

resultant aerodynamic models can accurately address the 

compressibility effect over the propeller blade and viscous 

effects on air loads for all aerodynamic surfaces. These 

models were integrated into the flight dynamic analysis 

program for a light-sports-airplane KLA-100 and various 

applications were tested to validate the usefulness of the 

proposed approaches.

The roll attitude and lateral-directional control are 

significantly affected by the propeller wake for the trimmed 
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Fig. 16 RPM and propeller efficiency during trimmed turn flights 

 

 

 
Fig. 17 Scaled RC-model of KLA-100 for flight tests 
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Fig. 17. ��Scaled RC-model of KLA-100 for flight tests
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Fig. 18 Response comparison for aileron doublet input at 0.8 maxT  

 

Fig. 19 Response comparison for elevator doublet input at 0.8 maxT
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Fig. 18. ��Response comparison for aileron doublet input at 0.8 Tmax  
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Fig. 19 Response comparison for elevator doublet input at 0.8 maxT
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Fig. 19. ��Response comparison for elevator doublet input at 0.8 Tmax  
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Fig. 20 Response comparison for rudder doublet input at 0.8 maxT  
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Fig. 20. ��Response comparison for rudder doublet input at 0.8 Tmax  
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level forward flight, whereas the propeller torques have 

relatively small influences on the trim states and controls. 

The effect of the gyroscopic moments generated by the 

propeller was investigated through a series of trim analyses 

for the coordinated turn flight, with variations in the polar 

moment of the propeller. The large pitch rates required for 

turn flights with a high normal load factor mainly generates 

the gyroscopic moment around the airplane’s yaw axis, which 

causes large rudder deflections. Flight simulations were 

undertaken for the scaled KLA-100 model and the results 

were compared with the corresponding flight test data. The 

airplane responses to doublet inputs for the aileron, elevator, 

and rudder deflections using the methods presented are 

well correlated with the flight test results. The applications 

show that a high-fidelity math model for a propeller-driven 

airplane can be built using the proposed aerodynamic and 

inertial models for the propeller.
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