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Abstract

In this study, one-dimensional analysis under the assumption of an inviscid flow was conducted for the experiment 

initiated by the French-German Research Institute of Saint-Louis (ISL) in order to investigate the energy effect of aluminum 

combustion. Previous theoretical analysis based on the assumptions of isentropic compression and a constant specific 

heat derived by ISL claimed that the experiment was not affected by the heat of aluminum combustion. However, rigorous 

analysis in present investigation that considered the average properties behind the shock wave compression and temperature-

dependent specific heat showed that the S225 experiment was partially affected by the aluminum combustion. The increase in 

heat due to aluminum combustion was estimated from the rigorous analysis.
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1. Introduction

The ram accelerator is a device used to accelerate 

projectiles with synchronized combustion through a tube 

filled with a premixed combustible gas mixture [1]. A 

projectile is accelerated continuously through a ram tube; 

thus, a high final speed can be obtained with a long ram tube. 

Ram accelerators can be utilized as hypervelocity launchers 

or direct launchers for low Earth orbits [2].

The operation mode of the ram accelerator depends on the 

speed of the projectile and Chapman-Jouguet (C-J) detonation 

speed of the combustible gas mixture [1]. The projectile flies 

slower than the C-J detonation speed in subdetonative mode; 

the maximum speed is limited by the C-J detonation speed. 

In this mode, the combustion wave is typically stabilized by 

thermal choking at the base of the projectile (Fig. 1a). Since 

the first experiment conducted at Washington University [1], 

a number of experimental studies and numerical simulations 

have been conducted for this operation mode. The maximum 

speed achieved was approximately 2700 m/s. The projectile flies 

faster than the C-J detonation speed in superdetonative mode. 

An ultimate projectile speed that is above the C-J detonation 
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2. Fig. 1의 색상을 미세하게 수정하고 누락된 글자를 추가하였습니다. 첨부한 새 그림으로 교체하

여 주십시요. 

 

3. 최종 승인 논문에서 두 칼럼 형식으로 변환하는 과정에서 실제의 Table 1이 누락되었습니다. 

논문의 두 번째 페이지(pp. 113)의 왼쪽 칼럼에서 지칭하는 table 1이 누락되었습니다. 다음의 

Table 1을 논문의 두 번째 페이지 또는 세 번째 페이지에 추가해 주십시요. Table 1이 빠진상태에

서 Table번호를 교정하셔서 번호가 하나씩 작아졌습니다. 처음 제공드렸던 파일의 Table번호를 그

대로 쓰시거나 모든 Table 번호를 다시 교정해 주십시요. 이 표는 한 칼럼에 들어가도록 편집 부

탁드립니다. 

Table 1. Summary of S225 experiment setup 

Premixed Combustible Gas 2H2+O2+5CO2 
Pressure ( 1P ) 40 bar 

Temperature ( 1T ) 300 K 

Speed of Sound (a) 320.9 m/s 
Launch Speed of Projectile ( 0u ) 1800 m/s 

Launch Mach Number of Projectile ( 0M ) 5.609 

C-J Detonation Speed (D) 1316.8 m/s 
Over-driven Factor ( 0u /D) 1.367 

Caliber of Accelerator Tube ( 1d ) 42 mm (approximately) 

Diameter of Projectile ( pd ) 30 mm 

Mass of Projectile (m) 130 g 
Cross-sectional Area of Accelerator Tube 
( 1A = 2

1d /4) 
1381 mm2 

Cross-sectional Area of Projectile 
( pA = 2

pd /4) 
706.86 mm2 

Cross-sectional Area of Combustor 
( 2A = 3A = 1A - pA ) 

674.14 mm2 

Fig. 1. Operating mode of ram accelerator
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speed can be achieved in this mode. The detonation wave can 

be stabilized at the reflecting point on the tube wall at very 

high Mach numbers (Fig. 1c), or can be stabilized by shock 

wave induced combustion when the projectile is not fast 

enough to directly initiate detonation (Fig. 1d).

The French-German Research Institute of Saint-Louis 

(ISL) developed a rail tube version of a ram accelerator 

facility named RAMAC 30 version II that directly launches 

projectiles at superdetonative speed [3]. Fig. 2 shows a 

schematic of RAMAC 30 version II, and table 1 shows the setup 

of experiment shot 225. Although the initial launching speed 

of the projectile was only 1800 m/s, superdetonative launch 

was made possible by using an H2/O2/CO2 mixture having a 

low C-J detonation wave speed. Successful acceleration was 

observed in the experiment using the aluminum projectile, 

whereas deceleration was observed for the steel projectile. 

The aluminum projectile showed significant ablation [3, 4]. 

Thus, there were less understood issues that the ablation of a 

projectile might be related to the ignition and combustion of 

a gas mixture. The mechanism of ignition and propulsion has 

not yet been clarified.

Previously, ISL conducted a theoretical study assuming 

a constant specific heat and isentropic compression and 

showed that the heat of the aluminum did not affect the 

acceleration [5]. However, rigorous analysis may be necessary 

to investigate the effect of aluminum combustion. In the 

present study, theoretical analysis was conducted under a 

rigorous approach to understand the experimental results 

of ISL RAMAC30 II. Simplified analysis was conducted for 

comparison with the rigorous analysis.

2. ��Theoretical Methods: solution procedures 
of quasi one-dimensional system

The ram projectile flies in the supersonic flow region, 

and most of the drag is caused by pressure drag. The 

inflow conditions are not disturbed by the ram projectile. 

Therefore, steady-state quasi one-dimensional analysis 

under the assumption of an inviscid flow can be applied to 

superdetonative mode ram accelerators. The conservation 

laws for mass, momentum, and energy and the equation of 

state are as follows:

Continuum Equation: 

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 

2 2i e
i i i e e e

i i e e

P PP u A F P u A
RT R T

         
   

 
2 2

1 1i e e e

i i e e i i

u u P AF
RT R T P A

         
   

  

Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 

   2 21 1 e e
i i e e

i i

P AM F M
P A

      (6) 

The pressure ratio can be derived 

from Eq. (6): 

 2

2

1
1

i ie i

i e e e

M FP A
P A M




 





 (7) 

If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 

i e
i i e e

i i e e

P Pu A u A
RT R T

  

e e i e e i i e e

i i e i i e e i i

P A u R T M R T
P A u RT M RT




   (8) 

The following equation is derived 

from Eqs. (8) and (6). 

   2 21 1 i i e e
i i e e

e e i i

M R TM F M
M RT

 


     (9) 

Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 

2 21 1
2 2i i i i i e e e e eh RT M h R T M     (10) 

where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 

   
1

Ns

k k
k

h T y h T


   

     
0

0

T

k pk kT
h T C T dT h T   

Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 

      
0

0
0

1

Ns T

k pkT
k

h T y C T dT h T

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   0
0 0

1

Ns

k k
k

h T y h T


   

Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(1)

Momentum Equation:

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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RT R T
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 

   2 21 1 e e
i i e e
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P AM F M
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      (6) 

The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 

i e
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The following equation is derived 

from Eqs. (8) and (6). 

   2 21 1 i i e e
i i e e

e e i i

M R TM F M
M RT

 


     (9) 

Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 

2 21 1
2 2i i i i i e e e e eh RT M h R T M     (10) 

where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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0

0

T

k pk kT
h T C T dT h T   

Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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0

0
0
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h T y C T dT h T

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0 0
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k k
k

h T y h T

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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(2)

Energy Equation:  

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 

2 2i e
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i i e e
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RT R T
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 

   2 21 1 e e
i i e e
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      (6) 

The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 

2 21 1
2 2i i i i i e e e e eh RT M h R T M     (10) 

where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(3)

Equation of State: 

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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i i e e

i i

P AM F M
P A
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

 
or

 

 

mass, momentum, and energy and the 

equation of state are as follows: 
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Momentum Equation: 
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Energy Equation: 2 21 1
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Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(4)
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subscript e refers to the outflow state of the process. In 

order to determine the state of flow, pressure P, density ρ, 

temperature T, and speed u are required; enthalpy h is a 

function of the temperature for ideal gases. If the inflow state 

is known, the four unknowns (Pe, ρe, Te, ue) can be determined 

from four equations (Eqs. (1)–(4)). Density ρ can be canceled 

in Eq. (2) with Eq. (4).
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state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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Equation of State: P RT  or 
P

RT
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Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

Here, 

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 
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Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 

   
1

Ns

k k
k

h T y h T


   

     
0

0

T

k pk kT
h T C T dT h T   

Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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Using Eq. (5), Mach number M can replace speed u.
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 
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Using Eq. (5), Mach number M  can 

replace speed u . 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 
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enthalpy of mixture can be expressed as 

      
0

0
0

1

Ns T

k pkT
k

h T y C T dT h T


    

   0
0 0

1

Ns

k k
k

h T y h T


   

Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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1c), or can be stabilized by shock wave 

induced combustion when the projectile is 

not fast enough to directly initiate 

detonation (Fig. 1d). 

The French-German Research 

Institute of Saint-Louis (ISL) developed a 

rail tube version of a ram accelerator 

facility named RAMAC 30 version II that 

directly launches projectiles at 

superdetonative speed [3]. Fig. 2 shows a 

schematic of RAMAC 30 version II, and 

table 1 shows the setup of experiment 

shot 225. Although the initial launching 

speed of the projectile was only 1800 m/s, 

superdetonative launch was made possible 

by using an H2/O2/CO2 mixture having a 

low C-J detonation wave speed. 

Successful acceleration was observed in 

the experiment using the aluminum 

projectile, whereas deceleration was 

observed for the steel projectile. The 

aluminum projectile showed significant 

ablation [3, 4]. Thus, there were less 

understood issues that the ablation of a 

projectile might be related to the ignition 
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mechanism of ignition and propulsion has 

not yet been clarified. 

Previously, ISL conducted a 

theoretical study assuming a constant 

specific heat and isentropic compression 

and showed that the heat of the aluminum 

did not affect the acceleration [5]. 

However, rigorous analysis may be 

necessary to investigate the effect of 

aluminum combustion. In the present 

study, theoretical analysis was conducted 

under a rigorous approach to understand 

the experimental results of ISL RAMAC30 

II. Simplified analysis was conducted for 

comparison with the rigorous analysis. 
 

2. Theoretical Methods: 

solution procedures of quasi 

one-dimensional system 
The ram projectile flies in the 

supersonic flow region, and most of the 

drag is caused by pressure drag. The 

inflow conditions are not disturbed by the 

ram projectile. Therefore, steady-state 

quasi one-dimensional analysis under the 

assumption of an inviscid flow can be 

applied to superdetonative mode ram 

accelerators. The conservation laws for 
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pressure P , density  , temperature T , 
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function of the temperature for ideal 
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four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 
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at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 
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enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(8)

The following equation is derived from Eqs. (8) and (6).

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 
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Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 

i e
i i e e

i i e e

P Pu A u A
RT R T

  

e e i e e i i e e

i i e i i e e i i

P A u R T M R T
P A u RT M RT




   (8) 

The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(9)

Eq. (9) is the momentum equation and is represented in 

terms of the Mach number and temperature. From the energy 

equation of Eq. (3), speed u can be replaced by Mach number M.

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 
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Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

(10)

where hi and he are the enthalpy per unit mass. For the mixture, 

the enthalpy can be computed with the following equation.

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 
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i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

 

mass, momentum, and energy and the 

equation of state are as follows: 
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Momentum Equation: 
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Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 
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If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

Here, yk is the mass fraction of chemical species k, and Ns 

is the number of chemical species. Enthalpy hk for species 

k at temperature T can be defined as the integration of 

constant pressure specific heat Cpk. Here, T0 is the reference 

temperature of enthalpy (generally 298.15 K), and hk(T0) is 

the heat of formation at T0. Finally, the enthalpy of mixture 

can be expressed as

 

mass, momentum, and energy and the 

equation of state are as follows: 
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Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 

state of the process, and subscript e  

refers to the outflow state of the process. 

In order to determine the state of flow, 
pressure P , density  , temperature T , 

and speed u are required; enthalpy h is a 

function of the temperature for ideal 

gases. If the inflow state is known, the 
four unknowns ( eP , e , eT , eu ) can be 

determined from four equations (Eqs. 
(1)– (4)). Density   can be canceled in 

Eq. (2) with Eq. (4). 
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Here, 
i i

FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 

for supersonic flows. The speed can be 

defined according to the Mach number and 

speed of sound: 

u Ma M RT   (5) 

Using Eq. (5), Mach number M  can 

replace speed u . 
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The pressure ratio can be derived 

from Eq. (6): 

 2

2

1
1

i ie i

i e e e

M FP A
P A M




 





 (7) 

If the Mach number and   are known 

at two states, the pressure ratio can be 
obtained from Eq. (7). Density  can be 

canceled in Eq. (1) with Eq. (4). 
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The following equation is derived 

from Eqs. (8) and (6). 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 

following equation. 
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Here, ky  is the mass fraction of 

chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 

heat of formation at 0T . Finally, the 

enthalpy of mixture can be expressed as 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

 

mass, momentum, and energy and the 

equation of state are as follows: 

 
Continuum Equation: i i i e e eu A u A   (1) 

Momentum Equation: 

   2 2
i i i i e e e eP u A F P u A      (2) 

Energy Equation: 2 21 1
2 2i i e eh u h u    (3) 

Equation of State: P RT  or 
P

RT
  (4) 

Subscript i  refers to the inflow 
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Here, 
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FF P A  is a non-

dimensional force that can be either thrust 

or drag. Using the Mach number M  
instead of the speed u  is more efficient 
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If the Mach number and   are known 
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The following equation is derived 
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Eq. (9) is the momentum equation 

and is represented in terms of the Mach 

number and temperature. From the energy 

equation of Eq. (3), speed u can be 

replaced by Mach number M . 
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where ih  and eh  are the enthalpy 

per unit mass. For the mixture, the 

enthalpy can be computed with the 
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chemical species k , and Ns  is the number 
of chemical species. Enthalpy kh  for 

species k  at temperature T  can be 

defined as the integration of constant 
pressure specific heat pkC . Here, 0T  is the 

reference temperature of enthalpy 
(generally 298.15 K), and  0kh T  is the 
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Here,  0
0h T  is the heat of formation 

for the mixture. This equation requires 
 pkC T  which is generally represented as 

high order polynomial of temperature; 

evaluation of enthalpy requires many 

computations. Moreover, numerical 

iteration is required to get temperature 

from the enthalpy. If the specific heat is 

averaged properly, it can be treated as 

Here, h0(T0) is the heat of formation for the mixture. This 

equation requires Cpk(T) which is generally represented 

as high order polynomial of temperature; evaluation of 

enthalpy requires many computations. Moreover, numerical 

iteration is required to get temperature from the enthalpy. 

If the specific heat is averaged properly, it can be treated as 

constant. In this case, the analysis can become very simple. 

The energy equation becomes as follows:
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 

heat can be represented with the specific 
heat ratio   and gas constant R . 
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Eq. (12) can be simplified by using 

the previous relation. 
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Here, 
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qq
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  is the non-

dimensional heat release. The 

temperature ratio between the two states 

is 

2

2

11
2

11
2

i
e

i
e

M qT
T M






 







 (14) 

When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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The temperature, pressure, and 

density can be represented as a function 

of the Mach number in an isentropic 

process: 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 

3. Theoretical Analysis for 

Each Example 
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constant. In this case, the analysis can 

become very simple. The energy equation 

becomes as follows: 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 

   2 21 1 i e
i e

e i

M TM F M
M T

      (11) 

2 21 1
2 2p i i i p e e eC T RT M q C T RT M      (12) 
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release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 

heat can be represented with the specific 
heat ratio   and gas constant R . 

1pC R




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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 
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computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
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averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 

 
00

0 0

( ) ( )
T

pkTk k
pk

C T dTh T h TC
T T T T


 
 


 

This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 
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release, which is the difference in the 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 

3. Theoretical Analysis for 

Each Example 
 

 

Table 1. Summary of S225 experiment setup

2. Fig. 1의 색상을 미세하게 수정하고 누락된 글자를 추가하였습니다. 첨부한 새 그림으로 교체하

여 주십시요. 

 

3. 최종 승인 논문에서 두 칼럼 형식으로 변환하는 과정에서 실제의 Table 1이 누락되었습니다. 

논문의 두 번째 페이지(pp. 113)의 왼쪽 칼럼에서 지칭하는 table 1이 누락되었습니다. 다음의 

Table 1을 논문의 두 번째 페이지 또는 세 번째 페이지에 추가해 주십시요. Table 1이 빠진상태에

서 Table번호를 교정하셔서 번호가 하나씩 작아졌습니다. 처음 제공드렸던 파일의 Table번호를 그

대로 쓰시거나 모든 Table 번호를 다시 교정해 주십시요. 이 표는 한 칼럼에 들어가도록 편집 부

탁드립니다. 

Table 1. Summary of S225 experiment setup 

Premixed Combustible Gas 2H2+O2+5CO2 
Pressure ( 1P ) 40 bar 

Temperature ( 1T ) 300 K 

Speed of Sound (a) 320.9 m/s 
Launch Speed of Projectile ( 0u ) 1800 m/s 

Launch Mach Number of Projectile ( 0M ) 5.609 

C-J Detonation Speed (D) 1316.8 m/s 
Over-driven Factor ( 0u /D) 1.367 

Caliber of Accelerator Tube ( 1d ) 42 mm (approximately) 

Diameter of Projectile ( pd ) 30 mm 

Mass of Projectile (m) 130 g 
Cross-sectional Area of Accelerator Tube 
( 1A = 2

1d /4) 
1381 mm2 

Cross-sectional Area of Projectile 
( pA = 2

pd /4) 
706.86 mm2 

Cross-sectional Area of Combustor 
( 2A = 3A = 1A - pA ) 

674.14 mm2 

Inlet Area Ratio ( 2A / 1A ) 0.4881 

Nozzle Area Ratio ( 1A / 3A ) 2.0364 

Length of Accelerator Tube (S) 4.8 
 

5. 논문의 세 번째 페이지 (pp. 114) 왼쪽 칼럼 첫 번째 줄에서  

“If the Mach number and  are known at two states,” 

가 있습니다. 여기에서 and와 are 사이에 수식이 누락되었습니다. 사이에 F 를 추가하여 

“If the Mach number and F  are known at two states,” 

가 되도록 교정하여 주십시요. 

 

6. 수식 (13)에서  
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로 교정해 주십시요. q  가 q로 바뀌어야 합니다. 

 

7. 논문의 네 번째 페이지 (pp. 115)의 Fig. 3 은 한 칼럼에 들어가도 될 것 같습니다. 제가 새로 

드리는 Fig. 3은 그림 내부의 글자를 조금 더 크게 그렸습니다. 한 칼럼 크기로 줄여도 그림내부

의 글자의 인식이 원활하오니 Fig. 3을 교체하여 한 칼럼으로 편집 부탁드립니다. 

2. Fig. 1의 색상을 미세하게 수정하고 누락된 글자를 추가하였습니다. 첨부한 새 그림으로 교체하

여 주십시요. 

 

3. 최종 승인 논문에서 두 칼럼 형식으로 변환하는 과정에서 실제의 Table 1이 누락되었습니다. 

논문의 두 번째 페이지(pp. 113)의 왼쪽 칼럼에서 지칭하는 table 1이 누락되었습니다. 다음의 

Table 1을 논문의 두 번째 페이지 또는 세 번째 페이지에 추가해 주십시요. Table 1이 빠진상태에

서 Table번호를 교정하셔서 번호가 하나씩 작아졌습니다. 처음 제공드렸던 파일의 Table번호를 그

대로 쓰시거나 모든 Table 번호를 다시 교정해 주십시요. 이 표는 한 칼럼에 들어가도록 편집 부

탁드립니다. 

Table 1. Summary of S225 experiment setup 

Premixed Combustible Gas 2H2+O2+5CO2 
Pressure ( 1P ) 40 bar 

Temperature ( 1T ) 300 K 

Speed of Sound (a) 320.9 m/s 
Launch Speed of Projectile ( 0u ) 1800 m/s 

Launch Mach Number of Projectile ( 0M ) 5.609 

C-J Detonation Speed (D) 1316.8 m/s 
Over-driven Factor ( 0u /D) 1.367 

Caliber of Accelerator Tube ( 1d ) 42 mm (approximately) 

Diameter of Projectile ( pd ) 30 mm 

Mass of Projectile (m) 130 g 
Cross-sectional Area of Accelerator Tube 
( 1A = 2

1d /4) 
1381 mm2 

Cross-sectional Area of Projectile 
( pA = 2

pd /4) 
706.86 mm2 

Cross-sectional Area of Combustor 
( 2A = 3A = 1A - pA ) 

674.14 mm2 
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is the averaged specific heat of mixture. The simplest method 

to obtain the averaged specific heat 

 

constant. In this case, the analysis can 

become very simple. The energy equation 

becomes as follows: 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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Here,    0 0
0 0i eq h T h T   is the heat 

release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 

heat can be represented with the specific 
heat ratio   and gas constant R . 
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Eq. (12) can be simplified by using 

the previous relation. 
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dimensional heat release. The 

temperature ratio between the two states 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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The temperature, pressure, and 

density can be represented as a function 

of the Mach number in an isentropic 

process: 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 

3. Theoretical Analysis for 

Each Example 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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density can be represented as a function 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 

3. Theoretical Analysis for 

Each Example 
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be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 
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From the continuum equation of Eq. 
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be derived. 

e i i i i i i i i

i e e e e e e e e

A u M RT M T
A u M RT M T

   
   

    (18) 

The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e
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known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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Length of Accelerator Tube (S) 4.8 
 

5. 논문의 세 번째 페이지 (pp. 114) 왼쪽 칼럼 첫 번째 줄에서  

“If the Mach number and  are known at two states,” 

가 있습니다. 여기에서 and와 are 사이에 수식이 누락되었습니다. 사이에 F 를 추가하여 

“If the Mach number and F  are known at two states,” 

가 되도록 교정하여 주십시요. 
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7. 논문의 네 번째 페이지 (pp. 115)의 Fig. 3 은 한 칼럼에 들어가도 될 것 같습니다. 제가 새로 

드리는 Fig. 3은 그림 내부의 글자를 조금 더 크게 그렸습니다. 한 칼럼 크기로 줄여도 그림내부

의 글자의 인식이 원활하오니 Fig. 3을 교체하여 한 칼럼으로 편집 부탁드립니다. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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of the Mach number in an isentropic 

process: 

2

2

11
2

11
2

i
e

i
e

MT
T M












 (15) 

12
1

2

11
2

11
2

i
e e

i i
e

MP T
P T M














           
 

 (16) 

1
11 2

1

2

11
2

11
2

i
e e

i i
e

MT
T M














           
 

 (17) 

From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 

e i i i i i i i i

i e e e e e e e e

A u M RT M T
A u M RT M T

   
   

    (18) 
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heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 
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next method is enthalpy based average as 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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averaged specific heat of mixture. The 

simplest method to obtain the averaged 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 
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From the continuum equation of Eq. 
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be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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constant. In this case, the analysis can 

become very simple. The energy equation 

becomes as follows: 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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Here,    0 0
0 0i eq h T h T   is the heat 

release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 

heat can be represented with the specific 
heat ratio   and gas constant R . 
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Eq. (12) can be simplified by using 

the previous relation. 
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Here, 
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  is the non-

dimensional heat release. The 

temperature ratio between the two states 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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density can be represented as a function 

of the Mach number in an isentropic 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e
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A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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release, which is the difference in the 
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states. From the definitions of the specific 
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heat ratio   and gas constant R . 

1pC R





 

Eq. (12) can be simplified by using 

the previous relation. 

2 21 11 1
2 2

e
i e

i

TM q M
T

       
 

 (13) 

Here, 
p i

qq
C T

  is the non-

dimensional heat release. The 

temperature ratio between the two states 

is 

2

2

11
2

11
2

i
e

i
e

M qT
T M






 







 (14) 

When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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0 0i eq h T h T   is the heat 

release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 
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heat can be represented with the specific 
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the previous relation. 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
1 1

e e e

i i i

P T
P T

 
 






       
   

 

The temperature, pressure, and 

density can be represented as a function 

of the Mach number in an isentropic 

process: 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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constant. In this case, the analysis can 

become very simple. The energy equation 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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The temperature, pressure, and 

density can be represented as a function 

of the Mach number in an isentropic 

process: 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e

i

A
A  are 

known, the outflow Mach number can be 

computed using Eq. (18), and the other 

properties can be derived from Eqs. (15)–
(17). 
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constant. In this case, the analysis can 

become very simple. The energy equation 

becomes as follows: 
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Here, pkC  is the averaged specific 

heat for species k , and pC  is the 

averaged specific heat of mixture. The 

simplest method to obtain the averaged 

specific heat pkC  is arithmetic mean of 

0( )pkC T  and ( )pkC T ; it is very easy method 

but does not exactly satisfy  h T . The 

next method is enthalpy based average as 

following equation. 
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This method exactly satisfies 
enthalpy if the two temperature T  and 0T  

are properly selected; however, generally 

T  is unknown value. If specific heat can 

be represented as constant, specific heat 
ratio   and gas constant R  are also can 

be represented as constant. In this case, 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) can be 

simplified. 
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0 0i eq h T h T   is the heat 

release, which is the difference in the 

enthalpy of formation between the two 

states. From the definitions of the specific 

heat and specific heat ratio, the specific 

heat can be represented with the specific 
heat ratio   and gas constant R . 
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Eq. (12) can be simplified by using 

the previous relation. 
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When the process is isentropic, q  

and q  are zero (adiabatic). The following 

isentropic relation can then be applied. 
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The temperature, pressure, and 

density can be represented as a function 

of the Mach number in an isentropic 

process: 
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From the continuum equation of Eq. 

(1), the area ratio between two points can 

be derived. 
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The solution procedures are very 

simple in isentropic processes; if the 

inflow state and area ratio e
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properties can be derived from Eqs. (15)–
(17). 
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drag and thrust are obtained, the net 

thrust and acceleration can be computed. 

The speed was computed assuming 

constant acceleration except in case 7. In 

this case, the increasing inflow speed due 
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considered; the acceleration was 

computed for increments of 0.1 from 

Mach number 5.6 to 7.0, and each 

acceleration was adopted as the projectile 

accelerated. 
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specific heat ratio 

The specific heat dramatically 
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specific heat should be treated as a 
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consider the temperature-dependent 

specific heat, the NASA Glenn coefficient 

for constant pressure specific heat was 

used [6]. The specific heat ratio was 

computed from its definition: 
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If the specific heat can be treated as 

constant, the analysis becomes very 
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temperatures: 300 K (temperature before 

Table 2. Examples for theoretical analysis; expansion in nozzle was regarded as isentropic 

for all cases. 

Case pC ,   Assumption 
at the inlet Combustible mixture Averaged 

acceleration Final speed 

1 

p pC C  
1.4   

Isentropic compression 

2H2+O2+5CO2 

21203.6 G 2288 m/s 

2 
Isentropic compression 

with 
shock wave drag 

16125.9 G 2181 m/s 

3 Shock wave compression 18916.8 G 2240 m/s 
4 

 pC T  
 T  

Shock wave compression 

2H2+O2+5CO2 11625.3 G 2082 m/s 
5 2H2+O2+5CO2+0.3Al 16078.4 G 2180 m/s 
6 2H2+O2+5CO2+0.15Al 13811.4 G 2131 m/s 
7 2H2+O2+5CO2+0.15Al 12413.8 G 2099 m/s 

 

 
Fig. 3. Schematic of theoretical analysis 
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If the specific heat can be treated as constant, the analysis 

becomes very simple. In this research, the averaged specific 

heat was obtained from the arithmetic mean of the specific 

heat at two temperatures: 300 K (temperature before 

combustion) and 2500 K (approximate temperature after 

combustion). The specific heat ratio followed that of the cold 

diatomic of gases (γ = 1.4).

In cases 4–7, the specific heat was evaluated as function 

of temperature, and the momentum equation of Eq. (9) 

and energy equation of Eq. (10) were used. In cases 1–3, the 

specific heat was assumed to be constant, and the momentum 

equation of Eq. (11) and energy equation of Eq. (14) were used.

3.2 Assumptions for compression at inlet

The property behind the inlet is the input condition of 

combustor. A conical shock wave is generated on the cone 

in the supersonic flow field, and the pressure on the cone 

generates the drag. Therefore, both the property behind the 

inlet and the drag should be predicted.

For rigorous analysis, the drag should be predicted properly, 

and all of the conservation equations should be satisfied; the 

drag can be estimated from the Taylor-Maccoll equation [7], 

and the flow property can be computed from the conservation 

equations. The rigorous approach was adopted for cases 3-7.

In order to evaluate the exact drag, the pressure on the 

cone surface is required. The downstream flow solution of 

the conical shock wave can be obtained from the following 

Taylor-Maccoll equation [7]:
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ordinary differential equation and should 

be solved with a numerical method (e.g., 

Runge-Kutta method). The speed just 

behind the shock wave is required for the 

initial condition of the Taylor-Maccoll 
equation. The normal Mach number nM , 
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The tangential speed tu  is 

preserved across the shock wave, and the 
normal speed behind the shock wave nu  

can be computed from the definition of the 

Mach number: n n su M RT  

Table 3. Specific heat at 300 and 2500 K and averaged specific heat [J/molK] 

Chemical Species Specific Heat at 300 K Specific Heat at 2500 K Average 
H2O 33.596 54.777 44.187 
CO2 37.220 61.443 49.332 

2H2O+5CO2 36.185 59.538 47.862 

 
Fig. 4. Schematics of conical shock 

wave. The normal and tangential speeds 

to the shock wave are 1nu  and tu , 

respectively. The speeds along the layer 

and normal to the layer are ru  and u , 

respectively. 
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from the following Taylor-Maccoll 

equation [7]: 
2 2

2 2
max 2

2

2

1 2 cot
2

0

r r r
r r

r r r r
r

du du d uu u u
d d d

du du du d uu
d d d d

 
  

   

                

     

where 2
max / 2u h u   
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be solved with a numerical method (e.g., 

Runge-Kutta method). The speed just 
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initial condition of the Taylor-Maccoll 
equation. The normal Mach number nM , 
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Fig. 4. Schematics of conical shock 

wave. The normal and tangential speeds 

to the shock wave are 1nu  and tu , 

respectively. The speeds along the layer 

and normal to the layer are ru  and u , 

respectively. 
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wave. The normal and tangential speeds 

to the shock wave are 1nu  and tu , 
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respectively. 

Fig. 4. ��Schematic of conical shock wave. The normal and tangential 
speeds to the shock wave are un1 and ut, respectively. The 
speeds along the layer and normal to the layer are ur and uθ, 
respectively.

Fig. 3. Schematic of theoretical analysis
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The speed just behind the shock wave can be determined 

from un and ut. If the initial condition is obtained, the Taylor–

Maccoll equation can be integrated from shock wave θ=β to 

cone surface θ=θc. The semi-vertex angle of cone θc can be 

determined when the normal speed to the ray is zero (u0=0). 

If shock wave angle β is assumed, θc is determined; the 

iterative method is required in order to obtain the desired θc. 

After the speed or Mach number behind the shock wave is 

obtained, other properties like the pressure or temperature 

can be determined from the isentropic relation; the flow 

field behind the shock wave is isentropic. If the pressure 

on the cone Pc is obtained, the drag can be obtained from 

F=PcAp. When the conical shock wave was solved for the 

inflow condition of S225 (M1, P1, T1, γ = 1.4), for example, 

the pressure on the cone Pc and drag F were determined as 

157.75 bar and 11150.5 N, respectively.

If the temperature-dependent specific heat is considered, 

the property behind the inlet can be determined by solving 

the momentum and energy equations of Eqs. (9) and (10), 

respectively:
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isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 
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If the initial condition is obtained, the 
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determined from the isentropic relation; 
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isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 
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If the temperature-dependent 

specific heat is considered, the property 
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solving the momentum and energy 

equations of Eqs. (9) and (10), 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

If the specific heat is assumed to be constant, the 

momentum and energy equations are Eqs. (11) and (14).

 

The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 

Taylor–Maccoll equation can be integrated 
from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 
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If the specific heat is assumed to be 

constant, the momentum and energy 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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compression. 
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The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 
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from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 
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c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 
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solving the momentum and energy 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 
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iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 

respectively: 
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If the specific heat is assumed to be 

constant, the momentum and energy 

equations are Eqs. (11) and (14). 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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The drag can be obtained from Eq. 

(6): 
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

 

The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 

Taylor–Maccoll equation can be integrated 
from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 

respectively: 
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If the specific heat is assumed to be 

constant, the momentum and energy 

equations are Eqs. (11) and (14). 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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The drag can be obtained from Eq. 

(6): 

   2 22 2
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1 1P AF M M
P A
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

 

The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 

Taylor–Maccoll equation can be integrated 
from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 

respectively: 
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If the specific heat is assumed to be 

constant, the momentum and energy 

equations are Eqs. (11) and (14). 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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The drag can be obtained from Eq. 

(6): 

   2 22 2
2 1

1 1

1 1P AF M M
P A

      

A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

The drag can be obtained from Eq. (6):

 

The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 

Taylor–Maccoll equation can be integrated 
from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 

respectively: 
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If the specific heat is assumed to be 

constant, the momentum and energy 

equations are Eqs. (11) and (14). 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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The drag can be obtained from Eq. 

(6): 
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P A
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A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

A drag of F = -4679.16 N was obtained under the 

assumption of isentropic compression for M1, P1, T1, γ = 1.4, 

and 

 

The speed just behind the shock 
wave can be determined from nu  and tu . 

If the initial condition is obtained, the 

Taylor–Maccoll equation can be integrated 
from shock wave    to cone surface 

c  . The semi-vertex angle of cone c  

can be determined when the normal speed 
to the ray is zero ( 0u  ). If shock wave 

angle   is assumed, c  is determined; the 

iterative method is required in order to 
obtain the desired c . After the speed or 

Mach number behind the shock wave is 

obtained, other properties like the 

pressure or temperature can be 

determined from the isentropic relation; 

the flow field behind the shock wave is 
isentropic. If the pressure on the cone cP  

is obtained, the drag can be obtained from 

c pF P A . When the conical shock wave 

was solved for the inflow condition of 
S225 ( 1M , 1P , 1T ,   = 1.4), for example, 

the pressure on the cone cP  and drag F  
were determined as 157.75 bar and 

11150.5 N, respectively. 

If the temperature-dependent 

specific heat is considered, the property 

behind the inlet can be determined by 

solving the momentum and energy 

equations of Eqs. (9) and (10), 

respectively: 
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If the specific heat is assumed to be 

constant, the momentum and energy 

equations are Eqs. (11) and (14). 
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After 2M  and 2T  are obtained, 2P  

can be obtained from Eq. (7). 

The conical shock wave can be 

approximated with the isentropic 

compression wave in order to simplify the 

analysis. However, the isentropic 

assumption does not consider the total 

pressure loss by the shock wave. 

Therefore, such an approximation may 

cause an error in the estimated drag and 

output properties. The simplified approach 

was used for cases 1 and 2. 

If the compression in the inlet is 

approximated with the isentropic process, 

2M  can be obtained from the area ratio of 

Eq. (18). After 2M  is obtained, other 

properties (e.g., 2P  and 2T ) can be 

obtained using Eqs. (15) and (16). 
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The drag can be obtained from Eq. 

(6): 

   2 22 2
2 1

1 1

1 1P AF M M
P A

      

A drag of F  = -4679.16 N was 

obtained under the assumption of 
isentropic compression for 1M , 1P , 1T ,   = 

1.4, and 2

1

A
A  = 0.4881. 

Case 1 used the isentropic 

assumption in the inlet. Case 2 used the 

properties of isentropic assumption 

excluding the drag; the drag followed the 

same properties as those for shock wave 

compression. 

3.3 Assumptions for combustion 

 = 0.4881.

Case 1 used the isentropic assumption in the inlet. Case 

2 used the properties of isentropic assumption excluding 

the drag; the drag followed the same properties as those for 

shock wave compression.

3.3 Assumptions for combustion

The premixed combustible gas for S225 was 2H2 + 

O2 + 5CO2: the stoichiometric mixture of H2 and O2 was 

diluted with 5CO2. If complete combustion is assumed, 

the reaction formula is 2H2 + O2 + 5CO2 → 2H2O + 5CO2. In 

Table 4. Heat release of each reaction

 

The premixed combustible gas for 

S225 was 2H2 + O2 + 5CO2: the 

stoichiometric mixture of H2 and O2 was 

diluted with 5CO2. If complete combustion 

is assumed, the reaction formula is 2H2 + 

O2 + 5CO2 → 2H2O + 5CO2. In this case, 

the products are independent of the final 

pressure and temperature. However, 

dissociation occurs at high temperatures; 

the combustion products are determined 

by the conditions that minimize the Gibbs 

free energy (i.e., equilibrium state). In 

order to investigate the effect of chemical 

equilibrium, the constant pressure 

combustion for 2H2 + O2 + 5CO2 at 40 

bar and 300 K was computed using CEA2 

[8], which can compute equilibrium 

combustion chemistry. The major 

products of the equilibrium reaction were 

H2O and CO2; the other species were very 

minor. If combustion of aluminum was 

considered, additional oxygen was 

required for aluminum oxidation. When the 

equilibrium reaction with aluminum was 

computed using CEA2, the major products 

of the equilibrium reaction were H2O, 

Al2O3, CO2, and CO; additional oxygen for 

the reaction with aluminum was supplied 

from the dissociation of CO2. As a result, 

the chemical reaction can be generalized 

by the following formula: 

2H2 + O2 + 5CO2 + x Al → 2H2O + 

2
x Al2O3 +  35 2

x CO2 + 3
2

x CO 

When aluminum is not included ( x  

= 0), the formula represents the complete 

combustion of 2H2 + O2 + 5CO2. If the 

combustion is affected by aluminum, the 

acceleration can be increased. Two 

representative case 2H2 + O2 + 5CO2 + 

0.15Al and 2H2 + O2 + 5CO2 + 0.3Al 

were selected from repeated calculation 

for various mixtures; the former showed 

the best fit for the overall speed 

trajectory, the latter resembled in the 

maximum acceleration in the experiment. 

Table 4 summarizes the heat releases of 

the reactions. 

3.4 Assumptions at nozzle 

The product of the combustion 

expands at the nozzle to generate thrust. 

In superdetonative mode, the flow field of 

the ram accelerator is supersonic. The 

expansion in supersonic flow can be 

regarded as isentropic. The exit Mach 

number can be obtained from the area 

ratio of Eq. (18), and the other properties 

can be obtained from Eqs. (15)-(17). 

The thrust can be computed by using Eq. 

(6). 

 

4. Discussion on Theoretical 

Analysis 
Table 2 and Fig. 5 summarize the 

theoretical analysis results. Case 1, which 

used isentropic compression at the inlet, 

showed the highest acceleration. Case 2, 

which also considered the drag of the 

shock wave, showed decreased 

acceleration relative to case 1. 

Case 2 showed the same results as 

the theoretical analysis from ISL [5]. The 

results also matched the experimental 

results well. However, case 3, which 

considered shock wave compression, 

showed a very different result. In case 3, 

the pressure behind the shock wave and 

in the combustor was higher than that of 

the isentropic compression. Thus, shock 

wave compression might generate more 

thrust at the nozzle. However, the loss 

Table 4. Heat release of each reaction 

Mixture Heat Release [J/mol] Increasing Ratio 
2H2+O2+5CO2 60456 - 
2H2+O2+5CO2+0.15Al 66952 10.7% 
2H2+O2+5CO2+0.3Al 73212 21.2% 

Table 3. Specific heat at 300 and 2500 K and averaged specific heat [J/mol•K]

 

combustion) and 2500 K (approximate 

temperature after combustion). The 

specific heat ratio followed that of the 
cold diatomic of gases (   = 1.4). 

In cases 4–7, the specific heat was 

evaluated as function of temperature, and 

the momentum equation of Eq. (9) and 

energy equation of Eq. (10) were used. In 

cases 1–3, the specific heat was assumed 

to be constant, and the momentum 

equation of Eq. (11) and energy equation 

of Eq. (14) were used. 

3.2  Assumptions  for  compression  at 
inlet 

The property behind the inlet is the 

input condition of combustor. A conical 

shock wave is generated on the cone in 

the supersonic flow field, and the 

pressure on the cone generates the drag. 

Therefore, both the property behind the 

inlet and the drag should be predicted. 

For rigorous analysis, the drag 

should be predicted properly, and all of 

the conservation equations should be 

satisfied; the drag can be estimated from 

the Taylor-Maccoll equation [7], and the 

flow property can be computed from the 

conservation equations. The rigorous 

approach was adopted for cases 3-7. 

In order to evaluate the exact drag, 

the pressure on the cone surface is 

required. The downstream flow solution of 

the conical shock wave can be obtained 

from the following Taylor-Maccoll 

equation [7]: 
2 2
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The Taylor-Maccoll equation is an 

ordinary differential equation and should 

be solved with a numerical method (e.g., 

Runge-Kutta method). The speed just 

behind the shock wave is required for the 

initial condition of the Taylor-Maccoll 
equation. The normal Mach number nM , 

pressure sP , and temperature sT  behind 

the shock wave can be obtained from the 

normal shock wave relation: 
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The tangential speed tu  is 

preserved across the shock wave, and the 
normal speed behind the shock wave nu  

can be computed from the definition of the 

Mach number: n n su M RT  

Table 3. Specific heat at 300 and 2500 K and averaged specific heat [J/molK] 

Chemical Species Specific Heat at 300 K Specific Heat at 2500 K Average 
H2O 33.596 54.777 44.187 
CO2 37.220 61.443 49.332 

2H2O+5CO2 36.185 59.538 47.862 

 
Fig. 4. Schematics of conical shock 

wave. The normal and tangential speeds 

to the shock wave are 1nu  and tu , 

respectively. The speeds along the layer 

and normal to the layer are ru  and u , 

respectively. 
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this case, the products are independent of the final pressure 

and temperature. However, dissociation occurs at high 

temperatures; the combustion products are determined 

by the conditions that minimize the Gibbs free energy (i.e., 

equilibrium state). In order to investigate the effect of chemical 

equilibrium, the constant pressure combustion for 2H2 + O2 + 

5CO2 at 40 bar and 300 K was computed using CEA2 [8], which 

can compute equilibrium combustion chemistry. The major 

products of the equilibrium reaction were H2O and CO2; the 

other species were very minor. If combustion of aluminum 

was considered, additional oxygen was required for aluminum 

oxidation. When the equilibrium reaction with aluminum was 

computed using CEA2, the major products of the equilibrium 

reaction were H2O, Al2O3, CO2, and CO; additional oxygen 

for the reaction with aluminum was supplied from the 

dissociation of CO2. As a result, the chemical reaction can be 

generalized by the following formula:

2H2 + O2 + 5CO2 + xAl 

→ 2H2O + 
x
2

Al2O3 + (5-
3x
2 )CO2 + 

3x
2

CO

When aluminum is not included (x = 0), the formula 

represents the complete combustion of 2H2 + O2 + 5CO2. If 

the combustion is affected by aluminum, the acceleration 

can be increased. Two representative case 2H2 + O2 + 5CO2 

+ 0.15Al and 2H2 + O2 + 5CO2 + 0.3Al were selected from 

repeated calculation for various mixtures; the former 

showed the best fit for the overall speed trajectory, the latter 

resembled in the maximum acceleration in the experiment. 

Table 3 summarizes the heat releases of the reactions.

3.4 Assumptions at nozzle

The product of the combustion expands at the nozzle to 

generate thrust. In superdetonative mode, the flow field 

of the ram accelerator is supersonic. The expansion in 

supersonic flow can be regarded as isentropic. The exit Mach 

number can be obtained from the area ratio of Eq. (18), and 

the other properties can be obtained from Eqs. (15)-(17). The 

thrust can be computed by using Eq. (6).

4. Discussion on Theoretical Analysis

Table 2 and Fig. 5 summarize the theoretical analysis 

results. Case 1, which used isentropic compression at the 

inlet, showed the highest acceleration. Case 2, which also 

considered the drag of the shock wave, showed decreased 

acceleration relative to case 1.

Case 2 showed the same results as the theoretical analysis 

from ISL [5]. The results also matched the experimental 

results well. However, case 3, which considered shock wave 

compression, showed a very different result. In case 3, the 

pressure behind the shock wave and in the combustor was 

higher than that of the isentropic compression. Thus, shock 

wave compression might generate more thrust at the nozzle. 

However, the loss due to the shock wave severely decreases 

the net thrust. As a result, shock wave compression (case 

3) produced less acceleration than isentropic compression 

(case 1). Case 2 followed the flow property of case 1 and 

drag of case 3. Thus, case 2 underestimated the pressure and 

 

due to the shock wave severely decreases 

the net thrust. As a result, shock wave 

compression (case 3) produced less 

acceleration than isentropic compression 

(case 1). Case 2 followed the flow 

property of case 1 and drag of case 3. 

Thus, case 2 underestimated the pressure 

and thrust compared to case 3. 

Whereas case 3 showed a higher 

acceleration than the experimental results, 

case 4, which considered the 

temperature-dependent specific heat, 

showed a lower acceleration. The 

averaged specific heat, which is the 

arithmetic mean of the specific heat, was 

47.86 J/molK in case 3. In case 4, the 

averaged specific heat was approximately 

50 J/molK; this was computed from the 

enthalpy base specific heat of 
   3 2 3 2/h h T T  . Because the specific 

heat was underestimated in case 3, the 

temperature increment was overestimated. 

The specific heat ratio in case 3, was 1.4 

which followed that of the cold diatomic 

gases. In contrast, case 4 used the 

temperature-dependent specific heat 

ratio for each chemical species; the 

specific heat ratio was 1.32 for the inflow 

condition and was lower than 1.2 after 

combustion. The flow property was 

sensitive to variation in the specific heat 

ratio; generally, the pressure or 
temperature ratio depends on 1   rather 

than  , as in Eq. (15) or (16). Thus, the 

exact specific heat should be considered 

in order to obtain the exact flow property. 

Cases 5 and 6 considered the 

additional energy due to the combustion of 

aluminum. When the reaction was 2H2 + 

O2 + 5CO2 + 0.3Al, the acceleration was 

comparable to the maximum acceleration 

of the experiment in Fig. 5. When the 

reaction was 2H2 + O2 + 5CO2 + 0.15Al, 

the acceleration behavior before the 

projectile arrived at 240 cm position 

quietly agreed with the experimental 

result. 

Case 7 considered an increasing 

inflow speed due to the acceleration of the 

projectile and showed a lower speed than 
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Fig. 5. Speed and acceleration for theoretical analysis 

Fig. 5. Speed and acceleration for theoretical analysis
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thrust compared to case 3.

Whereas case 3 showed a higher acceleration than the 

experimental results, case 4, which considered the temperature-

dependent specific heat, showed a lower acceleration. The 

averaged specific heat, which is the arithmetic mean of the 

specific heat, was 47.86 J/mol.K in case 3. In case 4, the averaged 

specific heat was approximately 50 J/mol.K; this was computed 

from the enthalpy base specific heat of (h3-h2)/(T3-T2). Because 

the specific heat was underestimated in case 3, the temperature 

increment was overestimated. The specific heat ratio in case 

3, was 1.4 which followed that of the cold diatomic gases. In 

contrast, case 4 used the temperature-dependent specific 

heat ratio for each chemical species; the specific heat ratio 

was 1.32 for the inflow condition and was lower than 1.2 after 

combustion. The flow property was sensitive to variation in the 

specific heat ratio; generally, the pressure or temperature ratio 

depends on γ-1 rather than γ, as in Eq. (15) or (16). Thus, the 

exact specific heat should be considered in order to obtain the 

exact flow property.

Cases 5 and 6 considered the additional energy due to 

the combustion of aluminum. When the reaction was 2H2 + 

O2 + 5CO2 + 0.3Al, the acceleration was comparable to the 

maximum acceleration of the experiment in Fig. 5. When 

the reaction was 2H2 + O2 + 5CO2 + 0.15Al, the acceleration 

behavior before the projectile arrived at 240 cm position 

quietly agreed with the experimental result.

Case 7 considered an increasing inflow speed due to the 

acceleration of the projectile and showed a lower speed 

than case 6 because the drag increased with the speed; the 

acceleration decreased by approximately 11%. And, we can 

easily recognize that this case showed the best fitting with the 

experimental result S225. There is still some deviation after 

the flight distance 360 cm; significant ablation of projectile 

would cause unstable flight problem in the experiment.

5. Conclusion

The theoretical analysis from ISL, which derived on 

the assumptions of isentropic compression and averaged 

specific heat, showed that the S225 experiment would not 

be affected by the heat of the aluminum reaction. However, 

present analysis showed a different result. The increment of 

heat due to aluminum combustion was approximately 11%, 

and the maximum effect might be 21%; further heat due to 

the combustion of aluminum may be available because the 

theoretical analysis in that investigation assumed inviscid flow.

Assumptions such as applying the isentropic process 

to the shock wave or a constant specific heat can simplify 

the analysis. Simplified analysis is frequently adopted for 

theoretical analysis because it can supply fast solutions. 

In this research, a rigorous analysis that satisfies the 

conservation law with temperature-dependent specific 

heat was suggested. Based on the fully rigorous analysis, the 

increase in heat due to the combustion of aluminum in the 

S225 experiment was properly understood; it was confirmed 

that aluminum combustion had influenced to the ram 

accelerator in superdetonative mode operation.
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