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Abstract

In satellite operations, stable maneuvering of a satellite’s onboard antenna to prevent undesirable vibrations to the satellite 

body is required for high-quality high-resolution images. For this reason, the onboard antenna’s angular rate is typically 

minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple 

yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite’s 

onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. 

Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna’s 

azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation 

time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be 

used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only 

considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites 

that have similar operational characteristics. 
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1. Introduction

A satellite in low Earth orbit (LEO) is typically equipped 

with an omnidirectional or directional antenna system 

to communicate with a ground station (GS). If a satellite 

is equipped with a directional antenna system, a gimbal 

system is typically mounted between the body and antenna 

to maintain focus on a GS. Typically, a set of commands to 

point the directional antenna system toward the target GS, 

typically called the tracking profile (TP), is uploaded by 

ground operators [1, 2]. Similar to other LEO satellites, the 

KOrea Multi-Purpose SATellite 3 (KOMPSAT-3) also uses the 

TP to transmit telemetry and image data to Earth. During 

the process of maneuvering an onboard antenna toward a 

target GS with a gimbal system, undesirable vibrations can 

be produced in the satellite body that degrade the quality 

of high-resolution images by introducing a smearing effect. 

Although the satellite body itself is designed to reduce these 

types of vibrations and the onboard antenna’s movements are 

mechanically limited, minimization of these movements is still 

required even though the systemic requirements to operate a 

satellite are satisfactorily achieved. As space missions become 

increasingly complex, movements of onboard antenna must 

be minimized while still satisfying system requirements; 
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furthermore, they must be reliable, sufficiently flexible 

to adapt to many mission-dependent changes, and cost 

effective for mission schedulers [3, 4]. In addition, the 

process of generating commands should effectively reduce 

the load on ground operators, which is directly related to the 

automation of highly complex satellite ground systems [5-7], 

a major interest to associated communities worldwide. 

Unlike other studies on mission scheduling problems 

(e.g., satellite imaging or observation scheduling), the TP 

for a satellite’s onboard antenna has rarely been studied. 

As described in Refs. [8, 9], a single target GS is used to 

generate a TP, and the performance enhancement of a TP 

was continuously investigated to minimize the onboard 

antenna’s speed during pointing GS while satisfying all 

operational constraints. 

To reduce this angular rate, the concept of a virtual GS 

was proposed [10]. This concept can be applied to real 

operations by considering the allowable maximum satellite 

antenna rotation angle that can communicate with the 

central target GS without signal loss; this angle can then 

be regarded as the off-pointing margin angle. An extended 

version of the virtual GS concept is also addressed in [11], 

in which continuous pointing at moving virtual GSs located 

on the ground occurs during maneuvering of the onboard 

antenna. However, performance using this method was only 

marginally enhanced because maneuvering the onboard 

antenna to follow pre-defined, half-circle-shaped virtual 

GSs cannot be widely applied to mission scenarios that 

have different orbits and attitudes. Various optimization 

approaches have also been studied, including validation 

methods to minimize the movement of the onboard antenna 

[4, 12 – 15]. However, obtaining such an optimum solution 

with varying parameters in different operational constraints 

is time consuming and produces high computational loads. 

One of the important factors that must be considered 

in TP performance enhancement is that the solution 

should always be reliably obtained even with different 

task-dependent constraints. Although various fascinating 

optimization methods have been proposed and developed, 

in the real operation of KOMPSAT-3, a TP is generated using 

the method proposed in Ref. [10], which uses the location 

of three target GSs to secure the stable operation of the 

KOMPSAT-3. In Ref. [10], one of the target ground stations 

is the central KARI Mission Operation Center (KMOC); the 

other two stations are fixed virtual ground stations located 

at the east northeast and west southwest sides of the central 

KMOC; these locations were selected by trial and error 

during KOMPSAT-3 operation to improve the performance 

of the satellite’s TPs. Although the method described in Ref. 

[10] reduced the speed of the onboard antenna’s movement 

and addressed all KOMPSAT-3 operational requirements, 

this method has not been broadly adapted to include various 

operational tasks because its solutions are limited to target 

only three GSs.

In this study, a simple yet effective method, called the 

ground station searching method, is proposed to improve 

the performance of TP generation. The proposed method 

aims to minimize the speed of an onboard antenna’s 

movement and to obtain reliable solutions within a 

reasonable time suitable for actual satellite operations. 

The performance of the proposed method is tested using 

real KOMPSAT-3 satellite flight data. Using the proposed 

method, the currently operational KOMPSAT-3 TP showed 

performance improvements, and the derived solutions 

were calculated within an acceptable computation time, 

which was confirmed by KOMPSAT-3 mission schedulers 

for numerous test cases. Although the solutions obtained 

with the proposed method may not be optimal solutions to 

the problem of interest, they are applicable to wide ranges 

of real operation scenarios. It is expected that the proposed 

method can also be applied to TP generation for KARI’s next 

Earth-imaging satellite, KOMPSAT-3A, which is planned to 

be launched in early 2015. The proposed method can also be 

easily modified and applied to other LEO satellites that have 

similar operational restraints. The remainder of this paper is 

organized as follows. In Section 2, the TP generation process 

is briefly discussed for the KOMPSAT-3 mission. Detailed 

algorithms to implement the proposed method are provided 

in Section 3 with the derivation of antenna gimbal angles and 

its associated rates, including approaches used to compute 

virtual GS locations. The virtual GS selection process is also 

addressed in Section 3. Simulation results are provided with 

detailed discussions in Section 4, and finally, conclusions 

are given in Section 5.

2. ��Brief Review of the Tracking Profile Gen-
eration Process 

To orient KOMPSAT-3’s onboard X-band antenna to GS, 

a scheduled maneuvering sequence of the X-band antenna 

is pre-generated and stored in a tracking parameter file 

(TPF), which is then uploaded to KOMPSAT-3 through the 

S-band before the task. The TPF is pre-generated by ground 

operators by running TPF generation software, which is 

implemented in the image collection planning subsystem 

(ICPS). During the process of generating a TPF, numerous 

operational constraints and boundaries on the X-band 

antenna’s gimbal angles and its associated rates, which are 

limited by the mechanical design of the antenna pointing 
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mechanism (APM) and the assembled structure attaching 

it to the satellite body, should be considered. The speed of 

the onboard antenna’s movement should also be minimized 

throughout the task to prevent undesirable vibrations to 

the satellite body. These two conditions are required when 

pre-generating a TPF. It is often difficult to generate a TPF 

because it must accommodate different satellite orbits, 

attitudes, positions of the GS, task durations, and numbers 

and types of sub-tasks (e.g., imaging types, which can be 

either multi-point or strip; and non-imaging and downlink 

types, which may be real-time or playback). Thus, the 

successful generation of a TPF that satisfies all restrictions 

is necessary to proceed to further mission scheduling. For 

example, if pre-generation of a TPF is not satisfactorily 

constructed, ground operators must re-allocate every 

imaging and downlink schedule using trial and error to meet 

every user’s request regarding their priority after considering 

long-term schedules; this task is typically time consuming.

Several sequential steps are used to generate an antenna 

TPF for the KOMPSAT-3 satellite as follows. When the 

satellite attitude and position with respect to the Earth 

Centered Earth Fixed (ECEF) frame with numerous mission 

parameters used to a given formulate mission sequence are 

available, the preliminary tracking profile can be generated. 

When computing the preliminary tracking profile, the best 

target ground station is selected among three different 

target GSs that minimize the maximum azimuth angular 

rate throughout the time-varying profiles. Only the azimuth 

angular rate of the onboard antenna is considered as a major 

constraint because the elevation angular rate generally does 

not exhibit dramatic rate changes according to the geometry 

between the satellite attitude and target station. Based 

on the preliminary tracking profile, a corrected tracking 

profile is generated to correct for misalignment errors due 

to the APM mounting, backlash, RF beam bore-sight, and 

misalignments with respect to the satellite bus itself. Then, 

a modified tracking profile is generated by considering the 

antenna’s mechanical and operational limits. During this 

process, a smoothing algorithm is applied to the specific 

segment of a sub-task if the associated profile violates 

mechanical limitations. If smoothing is applied to the derived 

profile, a loss of communication is again checked using the 

antenna’s effective beam width margin. After the modified 

tracking profile is successfully generated, coefficients of a 5th-

order polynomial are extracted for upload to the satellite [8]. 

However, before uploading, a TPF is again generated using 

the extracted coefficients of the 5th-order polynomial, and 

communication availability is double checked, as shown in 

Ref. [10]. From these TP generation sequences, the critical 

phase that directly affects the overall TP performance is 

shown to be the preliminary tracking profile generation 

phase. Therefore, the current proposed method is primarily 

applied and implemented to the stages of generating the 

preliminary tracking profile. In Fig. 1, the overall flow of the 

TPF generation process is depicted. 

3. Problem Definitions 

3.1 ��Derivation of the antenna gimbal angles and 
their associated rates

When the satellite position, 
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In Eq. (1), the satellite position vector expressed in the ECEF frame, ECEF
Satr , is provided by satellite 

navigation information. The GS position vector expressed in the ECEF frame, ECEF
GSr , can be derived 

from the longitude, GS , geodetic latitude, GS , and geodetic height, GSh , of the target GS. The 

direction cosine matrices, ECEF
ECIQ  and ECI

LVLHQ , are well-known matrices that convert a vector from 

the ECEF frame to the Earth-Centered-Inertial (ECI) frame and from the ECI frame to the Local 

Vertical/Local Horizontal (LVLH) frame, respectively. Another transformation matrix, LVLH
BODYQ , is the 

matrix that transforms a vector from the LVLH frame to the satellite body frame, expressed in roll-

pitch-yaw Euler angles, which can be obtained from satellite attitude profile. 

 

Using the unit vector 2ˆ BODY
Sat GSp , the profile of the antenna gimbal angles, ( )t  and ( )t , which 

are aimed at the target GS ( , ,GS GS GSh  ), can be obtained from Eq. (2). Because the continuously 

discretized orbit in the ECEF frame and the attitude in the LVLH frame from the satellite navigation 

information are given, the corresponding profiles of the antenna gimbal angles will also be 

continuously discretized over time. The geometry of the antenna gimbal angles is shown in Fig. 2. 
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where n is the total discretized number used to establish a 

given X-band antenna TP, which may differ for every mission 

task, and Δt is the sampling interval used to generate a given 

tracking scenario. A Δt of 1 s is used for all simulations. 

On-board X-band antenna gimbal angle rates are often 

mechanically limited and should be operated within their 

boundaries, as shown in Eq. (4), where the subscripts min 

and max indicate pre-defined constraints on the minimum 

and maximum associated gimbal angle rates, respectively. 
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Although these conditions are all satisfied, their variations 
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the antenna’s effective beam width margin could be used to 

minimize the undesirable vibrations of the satellite body, as 
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If the longitude, latitude and height of the center point, 

which is the real GS (λ0, ϕ0, h0), are given, then a square-

shaped distribution of the virtual GS location (λi, ϕj, hv) with 

respect to (λ0, ϕ0, h0) can be obtained, where i=1, 2, ..., m, j=1, 

2, ..., m and m is a user-defined division number to create 

equally spaced grids on both longitude and latitude for the 

virtual GSs. hv is the height of the virtual GS, which is assumed 

to always be zero in this study. In real situations, the height 

of the GS is not always zero; however, unlike the actual GS 
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Fig. 2. Geometry of an antenna gimbal angle with respect to the satellite body and ECI frame (not to 
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satellite X-band antenna. However, to reduce gimbal angle rates, the location of an arbitrarily selected 

virtual GS within the antenna’s effective beam width margin could be used to minimize the 

undesirable vibrations of the satellite body, as shown in Ref. [10].  
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valid for the current study as it focuses on the generation of virtual GS distributions in which 
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where   is the defined phase angle to locate the four edges. If 1k   and 1 , then 315   ; if 
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between 0 0 0( , , )h   and each edge’s location ( , , )k vh  , which can be approximated by 
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Then, the matrix that contains the equally distributed 

virtual GS locations, Mij(λi, ϕj, hv), can be computed as follows:
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Then, a single row matrix that contains the coordinates of candidate GS locations, ( , , )c c c vh M , 

can be extracted from ( , , )ij i j vh M  if the conditions shown in Eq. (9) are satisfied. Conditions in 

Eq. (9) indicate that the candidate GS locations should always be located within the allowable off-

point distance of the onboard antenna.  
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Then, the selected virtual target GS will be the final GS, (λGS, 

ϕGS, hGS)=(λtar, ϕtar, hv), at which the satellite onboard antenna 

should point. With this selected final target GS, the highest-

performing TP for the given task will be shown. In Eq. (10), 

only the magnitude of the azimuth angular rate of the onboard 

antenna is minimized during the final target ground station 

selection process because the elevation angular rate variation 

typically does not undergo rapid changes, as opposed to the 

azimuth angular rate, due to the geometries between the 

satellite’s orbit, attitude and the locations of the GS during LEO 

flight operations. The geometrical concept of the proposed 

virtual GS location derivation is shown in Fig. 3. 

4. Results with Real Flight Data 

4.1 Simulation Setups

To analyze the results of this study, the proposed 

method is directly implemented in the real operational TP 

generation software of the KOMPSAT-3 satellite. A total of 66 

real operational scenarios currently used in the KOMPSAT-3 

mission are randomly chosen by mission schedulers to 

determine how this newly implemented method enhances 

TP performance. Every selected test scenario uses different 

satellite attitude and orbital information, overall task 

durations, imaging and downlink types with different 
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durations. In these simulations, the Daejeon site is considered 

as the target station; however, the proposed method can be 

modified and applied to any GS’s location to derive a TP. The 

location of the center GS is given to be approximately 127.35 

deg E, 36.38 deg N at a height of 110 m. To create equally 

spaced grids in both longitude and latitude for the virtual 

GSs, m is set to be 20 by trial and error while considering 

computational time and TP performance enhancements. 

Additionally, candidate GS locations are selected with the 

conditions of dmax-dmar=250 km, as shown in Eq. (9). This 

value is selected as the current two virtual ground stations, 

as implemented in the ICPS for the KOMPSAT-3 satellite, 

and are located approximately 250 km apart from the central 

KMOC, which is located in Daejeon City. Before discussing 

the primary analysis results, the maximum azimuth angular 

rate of the onboard antenna is derived using both the current 

method (i.e., method A) and the method presented in Ref. 

[10] (i.e., method B). For method B, two virtual GSs locations 

are given; the ENE virtual GS is located at approximately 

129.80 deg E, 36.78 deg N, and the WSW virtual GS is located 

at approximately 125.08 deg E, 35.78 deg N (ENE and WSW 

indicate the compass directions East-North-East and West-

South-West, respectively). 

4.2 Analysis of the Results

Before deriving a TP for each mission scenario given, 

the first step is to find the candidate virtual GSs among 

the distributed virtual GSs. Among the 400 distributed 

virtual GSs, a total of 328 candidate virtual GSs satisfy the 

conditions shown in Eq. (9) and are thus selected for further 

consideration. As expected, the candidate virtual GSs are 

equally distributed with respect to the central real GS, as 

shown in Fig. 4. However, some selected target virtual GSs 

are located in the territory of North Korea. Though the 

downlink signal is encoded, these problems can easily be 

solved by additionally constraining the latitude conditions 

during the process of selecting candidate virtual GSs with the 

conditions shown in Eq. (9). However, because the proposed 

method has not been verified for actual flight operation, 

constraints on the latitude conditions are not considered in 

the following analysis. 

After selecting candidate virtual GSs, a near-optimum 

target GS is selected from the 328 candidate virtual GSs for 

each of the 66 test scenarios; these target GSs minimize the 

magnitude of the maximum azimuth angular rate of the 

onboard antenna. When compared to the solutions derived 

with method B, a total of 55 scenarios (approximately 83%) 

show improvement in their tracking profile’s performance 

by adapting method A. For the remaining scenarios, the 

generated tracking profile with method B showed a lower 

maximum azimuth angular rate than the minimized values 

produced by method A. This indicates that targeting the ENE 
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Fig. 3. Geometrical concept of the proposed virtual GS location derivation (not to scale). 
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Fig. 4. Candidate GSs’ distribution with respect to the GS center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. ��Candidate GSs’ distribution with respect to the GS center.
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or WSW virtual GS or the central GS is better than targeting 

the virtual GSs (328 candidate virtual GSs) generated with 

method A. Table 1 lists the top 10 test cases out of the 55 

scenarios that showed performance improvements. In 

Table 1, enhanced performance is directly compared as 

percentage rates using the maximum azimuth angular 

rates of the onboard antenna derived from methods A 

and B. In the top 10 cases shown in Table 1, more than 

approximately 12% of the maximum azimuth angular rates 

are reduced in magnitude by using the current method; a 

maximum reduction of approximately 25% is also achieved. 

Additionally, the mean of the rate reductions for the 55 

scenarios is approximately 11.46%. These improvements 

are noticeable reductions, especially considering that 

the proposed method is sufficiently simple, reliable and 

fast to be used in real operations. As shown in Table 1, the 

computational time of method A is approximately 0.4-2.4 

min (0.1-2.6 min for all 66 test scenarios); this is several 

minutes slower than the computation time required with 

method B, which all remained less than 1 min. Although 

slower than method B, we have confirmed from the operator 

of the KOMPSAT-3 satellite that the observed computation 

times are tolerable when scheduling tasks; therefore, they 

do not significantly hinder overall mission operation. In 

addition, within the ranges of computation times in method 

A, operators have confirmed that obtaining stable and 

reliable solutions with given scheduled tasks is the most 

important factor in this process due to significant changes 

in initial orbit conditions, attitudes, overall task duration 

and the durations of each sub-task; stable and reliable 

solutions were rare with the previous method that utilized 

optimization algorithms. 

In Fig. 5, the locations of the selected virtual GSs produced 

by method A are depicted for the top 10 performing scenarios; 

two of the virtual GSs used to derive the TP produced by 

method B are also marked for comparison. As an example, 

cases 1 and 2 identified the ENE virtual GS (125.08 deg E, 

35.78 deg N) to minimize the azimuth angular rate of the 

onboard antenna using method B; however, after applying 

method A, the targeting locations for the onboard antenna 

were moved slightly to the northwest with respect to the 

central GS for case 1 and moved to the south for case 2. The 

corresponding coordinates for the selected virtual GSs using 

the current method are 125.11 deg E, 36.97 deg N for case 1, 

and 127.24 deg E, 34.13 deg N for case 2. These slight changes 

in the target virtual GSs’ locations reduced the azimuth 

angular rate of the onboard antenna by approximately 25% 

for case 1 and approximately 18% for case 2, which could 

Table 1. ��Derived maximum azimuth angular rates of methods A and B. Top 10 performing cases from the 55 scenarios that showed enhanced per-
formance. 
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Fig. 5. Location of the selected virtual GSs for the top 10 performing cases that minimize the 

maximum azimuth angular rate of the onboard antenna’s movement using method A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. ��Location of the selected virtual GSs for the top 10 performing 
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onboard antenna’s movement using method A.
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seriously affect the quality of a high-resolution image. In 

Table 2, the locations of the selected target virtual GSs with 

method A are listed for the top 10 performing cases and 

compared to the solutions produced by method B. The 

characters in Table 2 are defined as follows: N for north, S 

for south, E for east, W for west and C for central. By applying 

method A, the locations of the target virtual GSs are changed 

to the locations where they can minimize the maximum 

angular rate of the onboard antenna under given mission 

tasks.

In Figures 6 and 7, the variation profiles of the onboard 

antenna’s azimuth angular rate for methods A and B are 

compared for case 1 (Fig. 6) and case 2 (Fig. 7). Case 1 has 

a task duration of 625 s and is composed of 13 different 

sub-tasks: the imaging of a target area with a real-time data 

downlink and playback data downlink. For case 2, 7 different 

sub-tasks are implemented over a task duration of 357 s. In 

addition, near the peaks in both figures, rapid satellite attitude 

reorientations are shown to perform the given sub-mission 

tasks. As shown in Fig. 6, the magnitude of the minimized 

maximum value for the azimuth angular rate was found to 

be approximately 2.37 deg/s approximately 345 s after the 

beginning of the task with method B and approximately 

1.77 deg/s approximately 374 s after the task began with 

method A. For case 2, shown in Fig. 7., the minimized 

maximum azimuth angular rate magnitude with method A 

was approximately 0.59 deg/s approximately 57 s after the 

task began and approximately 0.72 deg/s approximately 

57 s after the task began with method B during the task. 

Although variation in the elevation angular rate is not of 

Table 2. ��Location comparisons of the selected target virtual GSs between methods A and B.
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Fig. 6. Azimuth angular rate variation profile comparison for case 1 between methods A and B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. ��Azimuth angular rate variation profile comparison for case 1 
between methods A and B. 
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Fig. 7. Azimuth angular rate variation profile comparison for case 2 between methods A and B.  

 

 

Fig. 7. ��Azimuth angular rate variation profile comparison for case 2 
between methods A and B. 
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primary interest in this study and is therefore not shown, 

the magnitude of the maximum elevation angular rate 

throughout the task was also reduced by applying method A 

to case 1. For case 2, no significant differences in the variation 

histories of the elevation angular rate were observed between 

methods A and B. The magnitudes of both the maximum 

azimuth and elevation angular rates with methods A and 

B were significantly lower than the mechanical limitations 

(Eq. (4)) imposed on the KOMPSAT-3 satellite; thus, these 

rates satisfied the systemic design requirements. However, 

the reduced gimbal angle rates produced by method A will 

remove undesirable vibrations in the satellite body during 

the performance of mission tasks.

5. Conclusions 

In this paper, a ground station searching method 

is proposed to reduce the angular rates of a satellite’s 

onboard antenna during tracking profile generation. A 

tracking profile should be stably generated rapidly, and the 

associated speed of the onboard antenna’s movement to 

point at a given target ground station should be minimized 

to reduce undesirable vibrations to the satellite body, 

avoiding degradation of the quality of high-resolution 

imaging. Therefore, the proposed method is founded 

upon the motivations of minimizing the speed of the 

onboard antenna’s movement while obtaining reliable 

solutions within a reasonable time that is suitable for 

real satellite operation. To validate the performance 

of the proposed method, 66 real mission scenarios of 

the KOMPSAT-3 satellite are arbitrarily selected and 

analyzed. Approximately 83% of these flight scenarios show 

reductions in their onboard antenna’s azimuth angular 

rates. Additionally, reliable solutions were always obtained 

within a reasonable computation time of less than several 

minutes when generating the tracking profile. Although 

proposed method of generating the tracking profile is 

slightly slower than the method currently adapted for real 

operation of KOMPSAT-3, the operator has confirmed that 

such a delay in computation time does not affect the overall 

mission operation. By adapting the proposed method, a 

maximum of approximately 25% of the maximum azimuth 

angular rates are reduced in magnitude when compared 

to the solutions obtained from the method currently used 

during the operation of the KOMPSAT-3 satellite. These 

improvements are significant reductions, particularly 

when considering the simplicity, reliability and sufficiently 

fast computing time, which can be used in real satellite 

operations. In future work, the effects on the quality of high-

resolution imaging produced by the reductions in speed 

achieved with the proposed method should be analyzed 

in more detail. The authors believe that the proposed 

method could also be applied to tracking profile generation 

for KARI’s next Earth imaging satellite, the KOMPSAT-3A, 

which is planned to be launched in early 2015. Moreover, 

the proposed method could be easily modified and applied 

to other LEO satellites with similar operational concepts.
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