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Abstract

In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluid-

structure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a 

long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling 

FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and 

Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization 

process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. 

The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition 

of CL = 1.0. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape. 

Key words:  Long endurance UAV(unmanned aerial vehicle), CFD(computational fluid dynamics), FSI(fluid-structure integration) 
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Nomenclature

α : Angle of attack

2 

addition, this optimization procedure is improved by adopting the design of experiment (DOE) and 

Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE 

simulation and an optimization process for generating the wing geometry/computational mesh, 

transferring information, and finding the optimum solution. The goal of this optimization is to find the 

best high-aspect ratio wing shape that generates minimum drag at a cruise condition of CL = 1.0. The 

result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing 

shape. 

 

Key words: Long endurance UAV (unmanned aerial vehicle), CFD (computational fluid dynamics), 

FSI (fluid-structure integration) analysis, Design optimization, Kriging method 

 

Nomenclature 

 : Angle of attack 

̂ : Coefficient of regression 

CL: Coefficient of drag 

CD: Coefficient of lift 

 f x : Global model 

 : Dihedral angle 

 : Taper ratio 

r : Correlation vector 

R : Correlation function 

R : Correlation matrix 

V : Velocity (m/s) 

x : Design variables 

 y x : Exact response model 
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1. Introduction 

The importance of long-endurance unmanned aerial vehicles (UAVs) in future airfields will be 

growing due to their versatility in many applications, such as executing strategic reconnaissance, 

providing telecommunication links, and helping in metrological research, forest fire detection, and 

disaster monitoring. Therefore, design optimization techniques for long-endurance UAVs have been 

investigated to improve their flight performance and to reduce the development effort. Rajagopal et al. 

[1-2] proposed a multi-disciplinary design optimization (MDO) for optimizing the conceptual design 

of a long-endurance UAV with the panel method code, XFLR5. Park et al. [3] employed a simple 

multi-objective genetic algorithm to find an optimum airfoil shape for a long-endurance UAV.  

High-aspect ratio wings of a long-endurance UAV are needed to minimize the induced drag and 

easily cause wing deflection and deformation during flight [4, 5]. This tendency during flight can 

cause incorrect prediction results if aerodynamic analysis is performed assuming a rigid wing. 

Therefore, fluid -structure integration (FSI) analysis must be used in wing design optimization in 

order to simulate a more accurate and realistic interaction between the aerodynamic loads and the 

structural components of the aircraft wing.  

FSI has two approaches: close coupling and loose coupling [6]. The close coupling approach 

requires large computational resources since it reformulates and resolves the numerical equations by 

combining the fluid and structural motion simultaneously. The second approach, loose coupling, deals 

with only external interactions between the aerodynamic and structural models. Therefore, many 

researchers have applied the loose coupling FSI to optimize an UAV wing design. For instance, 

Gonzalez et al. applied loose coupling multi-physics to a long-endurance UAV wing design using 

XFOIL/ MSES/ NSC2ke and NASTRAN for aerodynamic and structural analyses, respectively [7].  

The meta-model techniques, such as the Kriging model, support vector regression (SVR) and 

artificial neural network (ANN), contribute to simplifying the wing design optimization procedure and 

produce optimum results without a large amount of expensive simulation. Consequently, the meta-
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an UAV wing design. For instance, Gonzalez et al. applied 

loose coupling multi-physics to a long-endurance UAV wing 

design using XFOIL/ MSES/ NSC2ke and NASTRAN for 

aerodynamic and structural analyses, respectively [7]. 

The meta-model techniques, such as the Kriging 

model, support vector regression (SVR) and artificial 

neural network (ANN), contribute to simplifying the wing 

design optimization procedure and produce optimum 

results without a large amount of expensive simulation. 

Consequently, the meta-model techniques like SVR and 

ANN have been incorporated into the UAV aircraft design, 

especially in the design of their wing components.

Lee et al. suggested the design optimization of a long-

endurance UAV wing by using loose coupling FSI analysis 

and the ANN technique [8]. Lam et al. studied an integrated 

multi-objective optimization algorithm based on the Kriging 

method to investigate aerodynamically or structurally 

optimized transonic wings [9]. 

In this study, we optimized the design procedure using 

FSI analysis and the Kriging method. The goal of this 

study is finding the optimized shape of a high-aspect ratio 

wing planform having minimum drag for an electrically 

powered long-endurance UAV. Loose coupling FSI analysis 

is performed with high-fidelity computational aerodynamic 

and structural analysis codes, FLUENT and DIAMOND/

IPSAP. These analyses simulate realistic aeroelastic behaviors 

of the long endurance UAV wing. We especially introduce 

the design guidelines in which design variables influence 

the system response of UAV. In addition, we suggest that 

how to find the optimum solution efficiently though the 

optimization techniques: design of experiment (DOE) and 

Kriging method. Finally, we propose the optimum solution 

to improve the efficiency and accuracy of the long endurance 

UAV.

2. Optimization Procedure

2.1 FSI analysis

The wing shape of a flying airplane experiences 

deformations due to the wing’s aerodynamic load (the wing 

is the main source of lift force). The aeroelastic deformation of 

aircraft wings are usually presented by an upward deflection 

and a twist motion. Therefore, aerodynamic analysis based 

on rigid wing shapes could lead to incorrect results.

To avoid these, we use an FSI analysis that considers 

the coupling effects of an aerodynamic load as well as 

structural deformation. The computation results of an 

external aerodynamic load are distributed on the wing 

surface. Structural analysis of the designed component 

layouts and material properties of external and internal 

wing structures is carried out to calculate the amount and 

direction of deformation caused by the aerodynamic effect. 

Fig. 1 shows the design procedure of the FSI analysis in 

this study. The aerodynamic and structural analyses are 

separately performed in computational fluid dynamics 

(CFD) and computational structural dynamics (CSD) 

modules, respectively. This procedure in Fig. 1 is the loose 

coupling FSI.

The aerodynamic analysis module consisted of 

GAMBIT [10], T-GRID [11], and FLUENT [12]. FLUENT is a 

commercial CFD code that uses the Euler solver and Navier-
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Stokes solver to simulate the aerodynamic loads. To validate 

the computation results of this CFD code, the aerodynamic 

performance are simulated for a UAV (EAV-2), which has 

similar configuration to the aircraft investigated in this study: 

the same fuselage, airfoil, and empennage. And the results 

are compared to the flight test data [13] as presented in Fig. 2. 

The Navier-Stokes solver is applied, and the same speed and 

same Reynolds numbers are considered. Also, additional 

drag from the propeller slipstream is simulated by using the 

fan-disk model. From the figure we can see that the CFD 

code is properly predicting the lift and drag characteristics 

of the UAV. 

GAMBIT is a modeling and mesh-generation tool for 

simulated surfaces of UAV wing. T-GRID is volume-mesh 

software for three-dimensional airflow space over aircraft 

surfaces. The total number of mesh nodes on the wing upper 

and lower surfaces is 5040. Although only the wing is the 

target of our analysis and optimization, the fuselage and 

empennage are also included in CFD analysis to take into 

account the interference effects on the wing. In this way, CFD 

analysis is performed for a full-scale aircraft. An example of 

mesh generation for UAV surfaces is shown in Fig. 3.

In this study, the Euler solver of the FLUENT code is used 

for the computation of aerodynamic loading. Although 

the accuracy of the calculation may be reduced compared 

to the Navier-Stokes solver, the computation time can be 

significantly reduced by using the Euler solver, without 

having to include the simulation of boundary layer and 

viscous effects. Furthermore, the Euler method is considered 

to be acceptable in this study since the pressure force, which 

is a main source of the wing deformation, can be accurately 

predicted by assuming an inviscid flow. Other parameters of 

the analysis are, the designed cruise speed, substantially low 

at V = 10m/s, and moderate angles of attack (α = 2 and 4°). 

Both of these prevent a severe flow separation, which amplify 

any viscous effects. Not having to simulate the boundary 

layers, thus eliminating them, contributes to minimizing the 

number of mesh cells. This facilitates computation speed, 

and thereby reduces computation time. This is important 

because numerous cases with various optimization design 

variables must be computed within the effective time. The 

CSD analysis is performed using open-source software 

called the Finite-Element Method (FEM), DIAMOND/IPSAP 

[14]. The model for structural analysis is presented in Fig. 4. 

It has 2 spars, 5 ribs and skin, and these parts are put together 

by manufacturing structure.

The material properties of each structural component 

are assumed carbon-fiber composite materials that are 

commonly used for UAV structures. The meshes for the CFD 

analysis are also dedicated to CSD analysis. For structural 

analysis, the mesh aspect ratio problem is controlled by 

increasing the wing spanwise mesh number.

Also, two in-house codes, one is in CFD module and the 

other is in CSD module, are included in this FSI procedure 

as shown in Fig. 1. The in-house code in the CFD module 

does two things. First, it calculates geometric parameters to 

generate the geometry and mesh of initial wing planform. It 

does this according to any design variables used in the first 

FSI iteration. Second, it defines the deflection of the wing 
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Fig. 2. Validation of CFD analysis for EAV-2 aerodynamic performance with flight test data [13] 

(FLUENT, Re=2.8×105) 
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planform from the CSD analysis to update the geometry and 

mesh of the wing at each FSI iteration. The in-house code 

in the CSD module also generates the initial wing shape 

as defined design variables at the first FSI iteration, and it 

distributes aerodynamic forces on the wing surface from 

the CFD analysis onto the structural wing meshes. All of this 

FSI procedure is monitored and controlled by a process of 

integration using PIAnO software [15], a design optimization 

tool. 

The procedure of the FSI used in this study begins with 

initial wing geometry and a wing surface generated by 

GAMBIT. Then the volume meshes are generated by T-GRID. 

Next, the CFD analysis is performed using FLUENT; in 

this, and an aerodynamic load on each node of meshes is 

transferred to, and distributed on, the corresponding nodes 

of the structural meshes of DIAMOND/IPSAP for the CSD 

analysis. 

In the second procedure, the amount of wing upward 

deflection, in terms of wing-tip displacement, is calculated 

from aerodynamic loads as well as dead loads on the wing. 

The geometrical data for wing deflections are transferred into 

GAMBIT again, and the initial wing geometry is updated in 

GAMBIT. New meshes are then generated for the deflected 

wing geometry, and new aerodynamic loads and resulting 

new displacements are calculated. This iteration process 

continues until the amount of wing-tip displacement is 

satisfied with the convergence condition as follows as Eq. 1:

7 
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where f and  is a force and displacement, respectively. The subscript i is a current iteration. 

This procedure is a two-way FSI analysis and it is mostly completed within 4 to 5 iterations. Fig. 5 

shows an example of the FSI convergence history for displacement, and changed aerodynamic 

characteristics after the two-way FSI analysis. As shown in Fig. 5(b), the initial wing geometry 

produces a lift of CL = 1.2639 at an angle of attack of 4°, and the deflected wing, after convergence, 

generates a reduced lift of CL = 1.2600. 
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we choose these: full factorial design (FFD), central composite design (CCD), and optimal latin-hyper 

cube design (OLHD).  

In this study, we employ a 3-level FFD design method for a two design variables, which 2 design 
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wing, after convergence, generates a reduced lift of CL = 
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Fig. 4. Structural model for CSD analysis 
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(a) FSI convergence history for displacement (b) Wing deflection with respect to lift and drag change 

Fig. 5. Example of FSI convergence history and wing deflection 
( = 4°, taper ratio = 0.7, dihedral angle  = 4°) 
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and to simulate the computational system using statistical 

methods. The DOE is used to determine which design 

variables have an effect on a response value, and, thus, which 

design variables should be selected as the best point. Of the 

many methods for generating sampling points, we choose 

these: full factorial design (FFD), central composite design 

(CCD), and optimal latin-hyper cube design (OLHD). 

In this study, we employ a 3-level FFD design method for 

a two design variables, which 2 design variables arranged 

at 3 different factorial experiment point in Fig. 6 [16]. Due to 

the filling of sampling points in the design space, 3-level FFD 

can be represented by the objective function within an entire 

design space. According to 3-level FFD, a total of 18 simulations 

(3 taper ratios, 3 dihedral angles, and 2 angles of attack) are 

carryout by the FSI analysis. Then using the interpolation 

method at each sampling point, we calculate the objective 

function, using the values of CD at the target lift of CL = 1.0

2.3 Kriging Method

Meta-modeling is a method of approximating a real system 

response efficiently based on the DOE. For wing design 

optimization, even a single FSI analysis requires a large 

amount of computation time, and a design optimization 

with FSI analysis iteratively is very time-consuming. In order 

to find the optimum wing shape efficiently, the objective 

function, CD at CL = 1.0, is approximated by a Kriging method.

The Kriging method is composed of the combination of 

a global model and a local deviation. An equation of the 

Kriging model is defined as:

8 
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method. The function      * * *
1, ,

t

nexpR R   r x x x x x is a correlation vector between the 

interested point *x and existing sampling points. For the correlation matrix and correlation vector, the 

correlation parameters can be estimated by maximizing the concentrated conditional log likelihood 

function as shown in Eq. 5 [17]. 
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= 1.0, is the design lift of this study for a long-endurance cruise condition. As shown in Fig. 7, the 

initial wing planform is consisted of two parts, and the optimization process is applied to the only 

outboard section (part 2) that starts at the 65% spanwise station. Therefore, the taper and dihedral 

angle are changed for this outboard section. The initial value of taper ratio and dihedral angels is λ = 

0.8 and Γ = 4°, respectively. The lower and upper bounds of the taper ratios are 0.7 and 1.0, 

respectively, and the dihedral angles are +8° and -8°, as presented in Table 1. Wing area and wing root 

chord are defined and fixed as 2.0 m2 and 0.32 m, based on a conceptual aircraft design procedure of 

Advanced Aircraft Analysis (AAA) [18]. Therefore, varying taper ratio with the fixed-wing area 
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Fig. 6. The 3-level full factorial design of two design variables 
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Fig. 7. Initial wing planform and optimized outboard section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Initial wing planform and optimized outboard section
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the taper ratio decreases, wing aspect ratio increases. In 

general, higher aspect ratio (lower taper ratio) wing requires 

structural reinforcement. Therefore, the taper ratio below λ = 

0.7 is not considered since a lower-taper ratio increases the 

structural weight of a wing. The λ = 0.8 is corresponding to 

AR=20, which is already a high aspect ratio in the practical 

wing structural design. The design limits for the dihedral 

angles (8° ≤ Γ ≤ 8°) are defined due to the similar reason. Also 

note that even though the dihedral angle controls the lateral 

stability of aircraft, it is only considered as a design variable 

to optimize such that it could affect the wing’s aerodynamic 

performance coupled with the effect of wing deflection.

Two angles of attack, α = 2 and 4°, are considered, and 

this angle range covers the expected cruise angle of attack. 

As mentioned above, the optimization problem of this study 

is that the objective function (a minimum drag, CD) with 

constant lift (CL = 1.0) is obtained by the taper ratio (λ) and 

the dihedral angle (Γ). We try to optimize the taper ratio and 

dihedral angle so that they minimize CD at CL = 1.0 as follows 

in Eq. 6.
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 Taper Ratio (  ) Dihedral ( ) 

Lower Bound 
  0.7 

-8° 

Initial 
  0.8 

4° 

Upper Bound 
  1.0 

8° 

  
Table 2. FSI analysis results for the 18 cases
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Table 2. FSI analysis results for the 18 cases 

Case No.  (~)  (deg.) α=2 deg. α=4 deg. CD @ 
CL=1.0 CL CD CL CD 

1 0.8 4 1.0685 0.0303 1.2612 0.0425 0.0259 
2 1.0 4 1.0479 0.0315 1.2390 0.0442 0.0283 
3 0.8 8 1.0641 0.0302 1.2580 0.0426 0.0260 
4 0.7 4 1.0869 0.0298 1.2808 0.0421 0.0244 
5 0.8 -8 1.0603 0.0300 1.2525 0.0422 0.0262 
6 1.0 8 1.0448 0.0313 1.2368 0.0439 0.0283 
7 0.7 -8 1.0755 0.0294 1.2716 0.0416 0.0248 
8 1.0 -8 1.0405 0.0311 1.2314 0.0437 0.0284 
9 0.7 8 1.0836 0.0297 1.2741 0.0418 0.0244 
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values of the objective function serve as main data for design 

optimization through the Kriging method.

3.2 Effects of design variables and best points

To investigate the effects of two design variables, taper 

ratio and dihedral angle, on the objective function, we 

research the analysis of means (ANOM) and the analysis 

of variance (ANOVA) using the nine sampling points as 

shown in Table 2. With the ANOM and ANOVA, the effect 

of all design variables can be systematically investigated 

and then the weakly influencing design variables can be 

omitted to carry out the optimization problem efficiently. As 

the taper ratio increases from -1 level of DOE (taper ratio = 

0.7) to +l level (taper ratio = 1), the objective function value 

also increases as shown in Fig. 8. However, the change of 

the objective function value is insignificant with respect to 

changes in the dihedral angle. In addition, the influence of 

taper ratio on the objective function is over 90 % in Fig. 9. The 

results of the ANOM in Fig. 8, and ANOVA in Fig. 9 indicate 

that the taper ratio has a stronger influence on CD at CL = 1.0 

than the dihedral angle.

Using the DOE table, we also can find the best point 

that the one of DOE points has a minimum (or maximum) 

objective function while satisfying constraints. In Table 2, 

we define the 4th sampling point (λ = 0.7, Γ = 4°) with the 

minimum function value (CD = 0.2444) as the best point.

3.3 Design optimization results

The optimization results for the design variables and the 

objective function from the results of the FSI analysis (Table 2) 

and the Kriging method are summarized in Table 3. As shown 

in Table 3, the optimal values of taper ratio and dihedral 

angle are 0.7 and 5.49, respectively. The approximated value 

of the objective function from the Kriging method is CD = 

0.02436, producing a 5.95 % decrease in drag compared to 

the drag of the initial shape at CD = 0.02590 within 4 iterations 

of optimization problem as shown in Fig. 10.

A comparison figure between the initial wing and 

the optimal wing is shown in Fig. 11. As shown in Fig. 

11(a), the taper ratio is decreased from 0.8 (initial) to 0.7 

(optimal). When the taper ratio decreases, the length of 

the wing becomes longer in the direction of chord length 

to maintain the total area of the wing surface. The optimal 

dihedral angle is increased up to 5.49°, compared to the 

initial angle is 4° as shown in Fig. 11(b). To validate the 

optimization results with the Kriging method, one case 

of additional FSI analysis is performed based on the 

optimized design variables, λ = 0.7 and Γ = 5.49°. The 

results in Table 3 suggest the Kriging method properly 

predicts the objective function since the FSI validation 

produces a similar value, CD = 0.02433. In addition in Fig. 

12, the differences for the CD values of initial and optimum 

shapes between the Kriging method and its FSI validation 

are about 0.1 %. Consequently, the optimized shape of the 

wing can be efficiently found with both the DOE method 

and the Kriging method.

4. Conclusions

In this study, we carry out the wing shape optimization 

of a long-endurance UAV to improve its aerodynamic 

performance while considering the effect of fluid-structure 

28 

 
Fig. 8. ANOM results for the objective function 
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Fig. 9. ANOVA results for the objective function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 20 40 60 80 100
Percentage (%)

ANOVA for Objective Function
Dihedral Taper ratio

Fig. 9.  ANOVA results for the objective function

30 

 
Fig. 10. The convergence history of optimization process 
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interaction. In order to the UAV’s aerodynamic performance, 

its the wing shape, with the design variables, taper ratio and 

dihedral angle, is optimized to minimize drag, which is the 

objective function of this study, at the constant lift of CL = 1.0.  

In addition, the optimization process is facilitated through 

the DOE and Kriging method.

Among the wing design variables, the taper ratio 

influences on the objective function more than the dihedral 

angle. The optimized wing shape of the UAV is represented 

by the decreased taper ratio (λ = 0.7) and the increased 

dihedral angle (Γ = 5.49°) compared to these variables of the 

initial wing design. The corresponding decrease in the UAV 

wing drag is approximately 5.95% (CD = 0.02436), compared 

to that of the initial wing (CD = 0.02590). 

From the fact that the FSI validation shows only 0.1 % 

difference in the UAV wing drag (CD = 0.02433), we can 

guarantee that the Kriging method is a good predictor of the 

FSI analysis.
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