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Abstract

In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, 

expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the 

influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for 

two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear 

deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately 

determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral 

equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve 

both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are 

obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic 

creep and recovery creep are presented.
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1. Introduction

Composite materials have various applications in 

many engineering structural fields. Especially, aerospace 

structures require high stiffness and strength to weight 

ratio. These applications have required accurate prediction 

of the thermo-mechanical behavior of composite laminates 

for the design and analysis of structural composite. 

Therefore, advanced composites have been used 

continuously and have been expanded in their application 

for the last three decades. Numerous theories (Pagano, 

1969; Pagano, 1970; Reddy, 2004) have been developed for 

the accurate analysis of laminated composite structures. 

Several equivalent single layer (ESL) plate theories (Reddy, 

2004) are developed by assuming the form of the in-plane 

displacement field as a linear combination of unknown 

functions and the thickness coordinate. The first ESL 

theory is a classical laminated plate theory (CLPT), based 

on the Kirchoff-Love plate assumption that the in-plane 

displacement remains normal to the centerline of the 

plate after deformation. Improved theory over CLPT is a 

first-order shear deformation theory, which considers the 

transverse shear deformation of the plate which requires 

the shear correction factor. Even though the FSDT is more 

reliable than the CLPT, it still cannot accurately predict 

the mechanical behaviors for the laminated composite 

plates. Thus, more advanced theories have been required, 

and a series of the smeared higher order theories (Lo 

et al, 1977; Reddy, 1984) have been developed for the 

laminated composite plates. For instance, the third-order 
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shear deformation theory uses a cubic polynomial for the 

in-plane displacement field. In TSDT, there is no need 

to use the shear correction factor. Among the advanced 

theories, efficient higher order plate theory (EHOPT), 

developed by Cho and Parmerter (1993), demonstrates 

the best performance among displacement-based zig-zag 

theories. It has been recognized that the zig-zag pattern of 

in-plane displacement provides the accuracy analysis of 

deformation and stress.

Meanwhile, in all of the above ESL theories, the material 

properties of composite laminates have been considered 

as linear elastic materials. In reality, composite laminates 

are inhomogeneous materials which are composed of 

a viscoelastic matrix and elastic fibers as reinforcement 

(Yi, Pollock, Ahmad and Hilton, 1994). Hence, like 

other viscoelastic materials, the mechanical behavior 

of fiber reinforced composites leads to creep strain, 

stress relaxation and time-dependent failure. These 

viscoelastic behaviors are critical when the composite 

laminates are in high temperature or vibrating conditions. 

Several researches (Hilton and Yi, 1993; Aboudi and 

Cederbaum, 1989) have analyzed the dynamic response of 

composite laminates considering the viscoelastic effects. 

For example, Srinatha and Lewis (Srinatha and Lewis, 

1981) suggested a numerical procedure which solved 

an integral problem using the trapezoidal integration 

method for the Boltzmann superposition integral. As a 

result, the accuracy of the results depends on a time step 

∆t. However, it requires extensive computational time to 

obtain the reliable results by reducing the size of each time 

step, especially for long-term problems. Other researchers 

(Chen, 1995; Hilton and Yi, 1993) solved the problem of 

computational cost by using the Laplace transformation 

for a viscoelastic beam. The results in the real time domain 

were obtained by the inverse Laplace transformations 

based on numerical calculation. 

In the present study, the mechanical behavior of 

viscoelastic composite laminates is investigated using the 

Laplace transformation based on the FSDT and TSDT. By 

applying Laplace transformation instead of the direct time 

integrations of the Boltzmann superposition integral and 

directly inversing the equations in the Laplace domain to 

the real time domain, the accuracy increases significantly 

as much as that of elastic counterparts. In addition, since 

the viscoelastic constitutive equation has the form of 

integration, the top and bottom stress free conditions 

cannot be directly applied in the TSDT model. Thus, based 

on the Laplace transformation, top and bottom stress free 

conditions are successfully applied in the Laplace domain, 

which makes the theoretical formulation very simple. 

The present theory considers viscoelasticity in two basic 

models: Maxwell and Kelvin for viscoelastic phenomena 

such as creep, cyclic creep and recovery. More complex 

models with extended Prony series can be developed from 

these basic models. 

The presented and discussed numerical results focus on: 

(1) the comparison of deflections by using the FSDT and 

TSDT for elastic composite laminates; (2) the deflection of 

both elastic and viscoelastic composite laminate; (3) the 

influence of viscoelastic coefficients to dynamic responses 

of composite laminates; (4) the in-plane displacement of 

viscoelastic composite laminates.

2. Mathematical formulation

2.1.  Constitutive equation for linear viscoelastic 
material

Instead of Hook’s law, the stress-strain relation for linear 

viscoelastic materials can be expressed by Boltzmann 

superposition integral equations:

(1)

where t is time, τ is time variable of integration, and σij(t) and 

εkl(t) are the time-dependent stress and strain, respectively. 

Jijkl(t) is the compliance and Qijkl(t) is the relaxation modulus 

which can be approximately determined by Prony series:

(2)

where the relaxation modulus Eijkl,0, Eijkl,p and the coefficient 

ap can be determined from experimental relaxation curves.

In the present study, the viscoelastic material is modeled 

by following both Maxwell and Kelvin models. The relaxation 

modulus for the Maxwell model (Eq. 3) and the compliance 

modulus for the Kelvin model (Eq. 4) are expressed as time-

Fig. 1. Geometry and coordinates of rectangular laminated plates.
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dependent simpler forms:

(3)

(4)

By taking the Laplace transform with respect to time, the 

Boltzmann superposition integral equation in the Laplace 

domain can be derived as:

(5)

where (   )* are the parameters in the Laplace domain.

It is well recognized that the form of the Boltzmann 

superposition integral equation in the Laplace domain for 

viscoelastic material is similar to that of Hook’s law in linear 

elastic constitutive equations. Hence, it is possible to solve 

the problem of viscoelastic laminate in the Laplace domain 

with the same elastic counterpart.

2.2. First-order shear deformation theory

In this paper, we consider a linear plate model with the 

thickness h, and the length L. The geometry and coordinates 

of the laminated composite plate are shown in Fig. 1. Based 

on the Reissner-Mindlin plate theory which analyzes for first-

order transverse shear deformation, the time dependent 

displacement field across the laminate thickness can be 

expressed in the following form:

(6)

where uα
0 and w are displacements defined at the mid-plane 

of the laminated plates.

Due to the linearity of the Laplace transform, the 

displacement field in the Laplace domain can be written as,

(7)

In the present theory, the virtual work principle for quasi-

static viscoelastic problems is described as:

(8)

where v is viscoelastic solid volume, and a is the surface on 

which the distributed loads p is applied.

Substituting the displacement fields into the virtual work 

principle and applying Laplace transform, the equilibrium 

equations can be obtained:

(9)

where stress resultants are defined as follows:

(10)

(11)

(12)

The resultants in the Laplace domain can be expressed as 

follows:

(13)

(14)

(15)

where stress resultants  are defined as follows:

(16)

For both static and harmonic loadings, the cylindrical 

bending behavior of the composite plate is analyzed. Thus, 

all of the equilibrium equations are reduced to the one 

dimensional form. The displacement variables are assumed 

as a trigonometric form by considering the simply supported 

boundary. In the time domain, the displacement and 

transverse load can be chosen to be of the forms:

(17)

where  is the external load;  

for harmonic loading, and pn(t)= Pn for a static loading case. 

By substituting Eq. (17) into equilibrium equations, the 
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algebraic relations in the Laplace domain can be obtained 

as follows:

(18)

where [K]5×5 is the numerical global stiffness matrix with the 

detail expression which will be shown in the Appendix.

By applying the inverse Laplace transform to Eq. (18), the 

algebraic relations in the real time domain can be obtained 

as follows:

(19)

where f5(t) is the time dependent function of force which can 

be determined for two basic viscoelastic models and both 

static and harmonic loads.

From Eq. (19), the solutions of 

are determined, then the displacements are calculated by 

substituting the obtained solution into the displacement 

fields. Therefore, all of the displacement, stress and strain of 

laminated composite plates can be determined.

2.3. Third-order shear deformation theory

Following the third-order transverse deformation, the 

time dependent displacement can be expressed in the 

following forms:

(20)

where uα
0 and w are displacement variables defined at the 

mid-plane of the laminated plates.

Being identical to Eq. (6)-(7), the displacement fields in 

the Laplace domain can be written as:

(21)

The number of the unknown variables is reduced by 

applying top and bottom surface traction free boundary 

conditions as follows:

(22)

(23)

Similar to FSDT analysis, substituting the displacement 

fields into the virtual work principle and applying Laplace 

transformation, the equilibrium equations can be obtained 

as follows:

(24)

where the added stress resultants are defined as:

(25)

(26)

(27)

The resultants in the Laplace domain can be expressed as 

follows:

(28)

(29)

(30)

where stress resultants  are defined similarly in the 

FSDT and  are defined as follows:

(31)

Executing the same procedure as the FSDT case, the 

algebraic relations can be obtained as follows:
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(32)

where [K]5×5 is the numerical global stiffness matrix with the 

detail expression which will be shown in the Appendix.

By applying the inverse Laplace transform to Eq. (32), the 

algebraic relations can be obtained as follows:

(33)

From Eq. (33), the solutions of 

are determined, then the displacements are calculated 

by substituting the variables into the displacement fields. 

Therefore, all of the displacement, strain and stress of 

laminated composite plates can be determined.

3. Numerical results and discussion

To compare the present analysis with the results of the 

previous study and other theories, the [0/90/0] laminated 

composite plate is chosen as an illustrative numerical 

example. The material properties of the ply are:

(34)

where L denotes the direction of the fiber and T denotes the 

direction perpendicular to the fiber. The shear correction 

factor for FSDT is chosen as k=5/6. The viscoelastic 

coefficient aM for the Maxwell model and aK for the Kelvin 

model are assumed as:

(35)

To show the influence of the viscoelastic coefficient 

to mechanical behavior especially transient time, the 

coefficients aM and aK are assumed in the following range:

  (36)

for both static and harmonic loadings.

The displacements are normalized by the following 

nondimensional values:

   

(37)

where S represents the length to thickness ratio, which is 

defined by S=L/h.

The numerical examples consider both static and 

harmonic loads which are shown in Fig. 2. The static loading, 

which is constant with respect to time, is presented as 

follows:

(38)

where u(t) is the Heaviside unit step function which 

presents the recovery process of viscoelastic creep, and the 

recovery time t0=12s. The harmonic loading is presented as 

follows:

(39)

where  is the frequency which is chosen to be small 

enough for the static problem ( ).

3.1. Numerical result for static loading

Fig. 3 shows the nondimensional deflection W for the 

creep and creep-recovery process based on FSDT and TSDT. 

The letter E means the analysis for the elastic solution; V 

indicates the analysis for the viscoelastic case. The responses 

of both FSDT and TSDT methods have good agreements for 

the deflection behavior of the Maxwell and Kelvin models. 

For the Maxwell model, the value of nondimensional 

deflection increases linearly with respect to time from We 

(We=2.409 with FSDT and We=2.699 with TSDT), which is 

the nondimensional deflection in the elastic case. For the 

Fig. 2. Time- dependent function of static and harmonic loads.
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Kelvin model, at transient time, the value of deflection W 

of the mid-plane increases from 0 to We exponentially. For 

the creep-recovery process, the deflection W of the Maxwell 

model drops suddenly at t0 = 12s, and maintains that value 

constantly; the one for the Kelvin model decreases from 

We to 0. The difference between the FSDT and TSDT is the 

value of We derived from the linear elastic response. All of the 

above mechanical behaviors have good agreements with the 

linear viscoelastic creep and recovery responses which were 

presented by Flugge (1975).

Fig. 4 shows the time-dependent nondimensional in-

plane displacement U1 for the Maxwell model based on 

the FSDT and TSDT. The elastic solution of FSDT is the 

straight line, but that of TSDT is the cubic line. The in-plane 

displacement U1 for the Maxwell model is greater than 

that of the elastic solution in time. Fig. 5 presents the time-

dependent nondimensional in-plane displacement U1 for 

the Kelvin model based on the FSDT and TSDT, with the time 

from 0 to 12s and the time step ∆t=0.1s. The displacement for 

the viscoelastic solution of the Kelvin model increases from 

0 to the bound of the linear elastic solution at transient time. 

After that, the elastic and viscoelastic cases have nearly the 

same responses. 

Fig. 6 shows the influence of viscoelastic coefficients for 

the Maxwell and Kelvin model to the deflection of the mid-

plane for the TSDT. For the Maxwell model, the angle  

between the viscoelastic line and horizontal elastic line can 

be determined as follows:

Fig. 3. Time-dependent nondimensional deflection W with static 
loading.

Fig. 4. Time-dependent nondimensional in-plane displacement U1 
for the Maxwell model with static loading.

Fig. 5. Time-dependent nondimensional in-plane displacement U1 
for the Kelvin model with static loading.

Fig. 6. Influence of viscoelastic coefficient to deflection based on 
TSDT with static loading.
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(40)

where K is the stiffness matrix. When the value aM decreases, 

the angle  also decreases. Thus, the solution is close to 

the elastic one. In contrast, for the Kelvin model, when aK 

increases, the deflection of the viscoelastic solution is closer 

to the elastic one for both creep and creep-recovery. In some 

cases, with a small value of aK, the deflection W does not 

have enough time to obtain We. Thereby, there is an amount 

of difference ∆W known as viscoelastic damping.

3.2. Numerical result for harmonic loading

Fig. 7 and 8 show the time-dependent nondimensional 

deflection W based on the FSDT and TSDT, respectively. 

Both methods present similar viscoelastic behavior for 

Maxwell and Kelvin models. For the elastic model, which 

is represented as a continuous line, the displacement has 

the same phase with the harmonic loading =0. For both 

viscoelastic models, there are phase delay  and . 

For the Maxwell model, the center of deflection changes from 

0 to WM depending on the Maxwell viscoelastic coefficient aM 

and the frequency  of harmonic loading. The amplitude of 

deflection fluctuation of the viscoelastic solution is greater 

than the elastic one. The difference depends on the 

ratio. For the Kelvin model, the amplitude of fluctuation is 

smaller than that of the elastic model.

Fig. 9 presents the time-dependent nondimensional 

in-plane displacement U1 for the Maxwell and Kelvin 

models based on the TSDT at the time when the in-

plane displacements have the maximum or minimum 

values. From these lines, the region of fluctuation of the 

Fig. 9. Amplitude of nondimensional in-plane displacement U1 based 
on TSDT. 

Fig. 10. Influence of the viscoelastic coefficient to the amplitude of 
deflection.

Fig. 7. Time-dependent nondimensional deflection W based on FSDT 
with harmonic loading.

Fig. 8. Time-dependent nondimensional deflection W based on TSDT 
with harmonic loading.
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viscoelastic response for both Maxwell and Kelvin models 

are distinguished clearly. The fluctuation region of the 

elastic case is limited by two continuous lines; the one of 

viscoelastic case with the Maxwell model is limited by the 

discontinuous line, and the one with the Kelvin model is 

limited by the two dot-dashed lines. The amplitude of U1 for 

the Kelvin model is smaller than the one of the elastic model. 

For the Maxwell model, there is a center difference which 

depends on both the viscoelastic coefficient and frequency 

of external loading. 

Fig. 10 shows the effect of the viscoelastic coefficient to 

the amplitude of deflection in the case of harmonic loading. 

The upper figure is for the Maxwell model and the lower 

one is for the Kelvin model. With the small value of , 

the influence of the viscoelastic coefficient is insignificant, 

and the amplitude ratio of the Maxwell and elastic model 

is approximately 1. This ratio of amplitude increases 

when  increases. Fig. 11 presents the influence of the 

viscoelastic coefficient to the phase delay of the deflection in 

the case of harmonic loading. The upper figure of Fig. 11 for 

the Maxwell model shows that when increasing the value of 

ratio , the phase delay increases linearly. In contrast, as 

presented in the lower figure of Fig. 11 for the Kelvin model, 

the phase delay decreases when increasing the ratio . 

4. Conclusion

The mechanical behaviors of linear viscoelastic composite 

laminates have been analyzed by applying the Laplace 

transform without any integral transformation or any 

time step scheme. The numerical examples for static and 

harmonic loading under the quasi-static assumption show 

the creep responses of viscoelasticity for both the FSDT and 

TSDT cases. For the harmonic loading, the results of both 

basic models demonstrate the phase delay and the change 

of amplitude of deflection compared to the elastic one. For 

static loading, the Kelvin model has a better analysis for 

creep responses than that of the Maxwell model, especially 

in transient time.

For more efficient analysis, a higher-order cubic zig-zag 

theory such as efficient higher order plate theory (Cho, 1993), 

needs to be developed in the environment of viscoelastic 

behavior. In addition, a time-dependent relaxation modulus 

needs to be expresses through general Prony series which 

was developed in the present study for basic Maxwell and 

Kelvin models. These are currently under process.
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Appendix A. Components of the stiffness 
matrix K of FSDT:

♣ The first row of stiffness matrix K:

♣ The second row of stiffness matrix K:

♣ The third row of stiffness matrix K:

♣ The fourth row of stiffness matrix K:

Fig. 11. Influence of the viscoelastic coefficient to the phase delay.
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♣ The fifth row of stiffness matrix K:

Appendix B. Components of the stiffness 
matrix K of TSDT:

♣ The first row of stiffness matrix K:

♣ The second row of stiffness matrix K:

♣ The third row of stiffness matrix K:

♣ The fourth row of stiffness matrix K:

♣ The fifth row of stiffness matrix K:

Appendix C. The functions of f5(t):

♣ For static loading 

 

 

♣ For harmonic loading
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