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Abstract

A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability 

of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the 

abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of 

hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In 

order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been 

performed and the attitude tracking performance has been compared between the two methods considering the single and 

multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter 

that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence. 
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1. Introduction

Over the past decades, a keen interest on aerial robot has 

been growing indefinitely. In fact, aerospace industries have 

focused on aerial robot in lieu of manned aircraft for difficult 

and dangerous flight missions. Especially, a demand of multi-

rotor has been increased drastically and it has been widely 

adopted in many applications such as broadcasting images, 

forest fire monitoring, indoor navigation, and so on. Since 

it has capability of vertical take-off and landing (VTOL), 

hovering, and easy to flight, the application of a multi-rotor 

is almost unlimited. Most recently, a multi-rotor is used even 

for a pizza delivery [22]. In order to perform wide variety 

of missions successfully, for example surveillance, taking 

images at the dangerous environments, etc., capability of 

hovering at the specific location will be a key requirement 

of a multi-rotor. Furthermore, as an inner loop of a guidance 

and navigation control loop, attitude hold controller is 

essential for a hovering maneuver. However, there is no way 

to stabilize attitudes and to maintain controlled flight of a 

quadrotor with a conventional control schemes when any 

one of the motors experiences a fault. Actually, multi-rotor 

aircraft has not actuators but rotors. The attached rotors on 

the multi-rotor have a function as other aircraft’s actuator 

through varying the rotor speed. As an effort to resolve the 

issues, several important researches have been conducted to 

design a fault tolerant control law for a multi-rotor aircraft. 

However, there are still remaining issues need to be resolved. 

Several researches have been performed in the area of fault 

tolerant control law design of the multi-rotor aircraft with the 

multi motor faults but few control schemes are available [1, 

2]. Y. M. Zhang et al. presented active fault tolerant control 

scheme for actuator failures based on a two-state adaptive 

Kalman filter [3]. A similar problem was considered for thrust 

distribution of an underwater unmanned vehicle using the 

control allocation scheme [4]. 
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The gain scheduled PID control technique was employed 

to compensate actuator fault due to overall loss in power 

of all motors in quadrotor UAV [1]. Although, fault tolerant 

controller (FTC) for a single actuator failure has been 

developed, FTC was never successfully implemented for 

multiple faults of a multi-rotor UAV. In order to apply FTC 

for multiple faults successfully, system stability and fault 

tolerance of the controller are major topics need to be 

addressed. A harsh flight environment, i.e., atmospheric 

turbulence, wind gust, or limited space in indoor building 

structure, increases likelihood of malfunction of motors. 

One or multiple motor failures might be directly resulted of 

losing UAV and consequently safety issues can be arisen as a 

major concern if it crashes at the residential area or heavily 

populated city area.

In order to deal with this issue properly, two approaches 

were proposed to develop fault tolerant design capability. 

One approach is simply increasing the number of rotors. This 

idea is adopted in this paper so that a hexacopter instead of 

a quadrotor is used as a test bed. The other is introducing 

a variety of actuation devices. One of the excellent methods 

of the latter approach is proposed by P. Sequi-Gasco et al. 

[2]. In their research, proposed new dual actuator tilting 

concept demonstrates a fault tolerable capability even 

with two actuator faults. And performance of the proposed 

reconfigurable concept was verified using the control 

allocation scheme. However, the dual actuator tilting was not 

able to successfully maintain its attitudes, especially altitude, 

when any one of the actuators failure occurs. This might be 

a major drawback of a quadrotor even the novel actuator 

titling concept is applied. The proposed method also shows 

several limitations to apply for the quadrotor with a motor 

fault situation. One of them is that the quadrotor system 

will become more complicated in both mechanically and 

electrically in order to implement the proposed dual axis 

tilting system. Unfortunately, the complicated system with 

many additional parts may have high chances to increase the 

failure rate, i.e., mean time between accidents (MTBA). And 

in their research, only two types of faults, single actuator fault 

and pair of adverse motors were considered. 

In order to deal with component failures appropriately, 

the aerospace industries have been widely adopting FTC. R. 

J. Patton provides excellent overview of FTC [5]. Generally, 

FTC can be classified into two types, passive and active 

FTC. The controller with the passive FTC is designed to be 

robust enough to encompass as many as possible faults. This 

approach does not require fault detection and diagnosis 

schemes or controller reconfiguration. Extensive studies on 

passive FTC have been performed to develop the attitude 

controller for multi-rotor vehicle considering actuator 

faults [1, 2, 6]. The passive FTC has an advantage that can be 

implemented as a fixed controller. It can tolerate, however, 

only limited predetermined faults and may not be able 

to properly response to faults that are out of design scope. 

Moreover, sacrificing nominal performance is inevitable to 

achieve robustness to certain faults. 

On the other hand, the active FTC which is used 

in this paper with a time delay control method can 

response adaptively to fault events with the blessing of a 

reconfiguration mechanism that allows to maintain stability 

and acceptable performance of the system. Since the active 

FTC shows promising advantages to overcome preceding 

drawbacks of the passive FTC, it has drawn interests from 

many researchers to design aerial vehicle attitude control 

[7]. A dynamic neural network scheme was presented8 to 

detect and isolate the fault of aircraft. Detecting actuator 

faults in a tetrahedron configuration was investigated [9]. 

An iterative learning observer-based fault detection and 

diagnosis mechanism was developed [10] to estimate 

time-varying thrust faults. Also, genetic algorithm such as 

neural network and adaptive neural network schemes were 

proposed to cope with the faults of aircraft control surfaces 

using the reconfigurable flight controller [11, 12]. Although 

various fault tolerant control schemes are available to 

perform attitude hold maneuver, most of these available 

schemes have two drawbacks: first the desired attitude is 

not able to maintain when there are multiple motor faults, 

and secondly the attitude tracking problem is solved without 

considering external disturbance, i.e., wind shear, gust, and 

so on. These two important factors need to be appropriately 

considered so that the multi-rotor vehicle is able to maintain 

controllability and safety at normal conditions as well as 

motor fault conditions.

In this paper, a reliable control scheme for the attitude 

tracking control is presented and a hexacopter vehicle 

is selected as a test bed platform. The developed control 

scheme successfully maintains control authority with two 

fault conditions considered: abruptly disabled motor torque 

and continuously decreased motor torque. Especially, 

the developed technique is able to achieve stable attitude 

tacking maneuver with a wind gust situation along with rotor 

fault conditions. Once faults occurs in multi-rotor UAV, yaw 

attitude is hard to be controlled. Therefore the attitude hold 

means the pitch and roll attitude when fault occurs except 

yaw axis in this paper. The developed approach is shown 

in Figure 1. The developed scheme demonstrates reliable 

and accurate attitude hold control authority that is robust 

enough to overcome external disturbances and also stable 

enough to cope with the severe actuator fault conditions. The 

effective control system is accomplished by designing a TDC 
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SCAS module. 

The following sections are devoted to describe 

mathematical modeling of the rigid hexacopter UAV 

dynamics, actuator faults modeling, and derivation of fault 

tolerant control scheme with multiple rotor faults. In order 

to verify the developed control scheme, nonlinear numerical 

simulation is performed for a hexacopter UAV that are 

implemented in the Matlab/SimulinkⓇ environment. 

Conclusions and future works are addressed in Section 5.

2. Mathematical Model and Problem Formulation

The following notation is used throughout this paper. The 

vector [x y z]T and [vx vy vz]T describe position and velocity 

of the hexacopter in the inertia frame, respectively. And 

angular rate and Euler angles in body frame are represented 

as [p q r]T and [ϕ θ ψ]T, respectively.

2.1 Dynamic Model of Hexacopter

In order to describe a hexacopter dynamic, let us consider 

an inertial frame I and body fixed frame B, as shown in 

the Figure 2 where the X-Y plane represents the ground 

surface. The positive Z-axis of the inertial frame is defined 

as upward from the ground. The origin of the body frame is 

assumed to be at the center of gravity of the hexacopter. The 

transformation from the body frame to the inertial frame can 

be formulated by three successive axis rotations, Z→Y→X 

sequences, as shown in Figure 2. The yaw angle (ψ) is rotated 

w.r.t the Z-axis first. This is followed by the pitch angle (θ) 

rotation w.r.t. the Y-axis, and finally, the roll angle (ϕ) is 

rotated w.r.t. the new X-axis. This coordinate transformation 

can be summarized as the directional cosine matrix defined 

in Eq. (1) [13]. 

The positive Z-axis of the inertial frame is defined as 

upward from the ground. The origin of the body frame is 

assumed to be at the center of gravity of the hexacopter. 

Three successive rotations, Z→Y→X transformation is 

performed to convert the Euler angle in the body fixed frame 

to the inertia frame as shown in Fig. 2. In order to convert the 

Euler angles from body fixed frame to inertial frame, the yaw 

angle (ψ) is rotated w.r.t the Z-axis first. This is followed by 

the pitch angle (θ) rotation w.r.t. the Y-axis, and finally, the 

roll angle (ϕ) is rotated w.r.t. the new X-axis. This coordinate 

transformation can be summarized as the directional cosine 

matrix defined in Eq. (1) [13]. 
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where F and τ denote the force and torque vector respectively. 

m is the mass, 
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where F and   denote the force and torque vector respectively. m is the mass, IR3x3 is the inertia 

matrix, V is the linear velocity vector, and  denotes the body angular velocity vector. 

Figure 3 shows the hexacopter frame system. The rigid body equations of motion in the body fixed 

frame are formulated [16, 17] as 

6
/ 2

ˆ
1

/ /

6

1

ˆ

ˆ( )

I B
ik

i
I B I B

r i
i

bgk C
m

C C

J k

ξ = v

v

Iω ω Iω ω τ











        



       






                                            (3) 

The notation [ ]Tx y zξ   denote the position vector of the hexacopter frame center and v  denote 

the linear velocity expressed in the inertial frame. g  and k̂  denote the acceleration of gravity and 

the z axis respectively and rJ  denotes rotor inertia.   denotes the skew-symmetric matrix, such 

that v v     indicates the vector cross product  with any vector vR3. The vector FB in the 

body fixed frame represents the principal non-conservative forces applied to the hexacopter airframe 

due to the aerodynamic forces of the rotors [16]. Eq. (3) is approximated that the airframe drag is 

negligible.  

The thrust applied to the hexacopter airframe is defined as Eq. (4). 

6 6
2

1 1
i i

i i
T f b

 

 
   

 
                                                             (4) 

where fi denotes the lift generated by an i-th rotor, b denotes the thrust factor which is always b0, 
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where fi denotes the lift generated by an i-th rotor, b denotes the thrust factor which is always b0, 
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respectively. The torque is consisted of aerodynamic lift and drag generated by the rotors.  
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translational motion can be introduced by increasing the six rotor angular speed simultaneously. 

Increasing the rotor angular speed of (2,3) and decreasing (5,6) will produce positive roll maneuver 
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As shown in Fig. 3, two pairs of rotors are spinning opposite 

direction, i.e., the rotors (1,3,5) spin counter clockwise and 

the rotors (2,4,6) spin clockwise view from the top to bottom. 

In so doing, the reaction torque due to the spinning rotors 

can be cancelled out each other. The lifting force generated 

by a rotor is simply proportional to the angular speed of the 

rotor. Therefore the positive vertical translational motion 

can be introduced by increasing the six rotor angular speed 

simultaneously. Increasing the rotor angular speed of (2,3) 

and decreasing (5,6) will produce positive roll maneuver 

coupled with the negative lateral translation. Similarly, the 

positive pitch maneuver can be achieved by increasing rotor 

angular speed of (3,4,5) and decreasing (1,2,6). And this will 

be coupled with the positive forward translation. Yaw can be 

achieved by introducing unbalance torque between the two 

pairs of counter spinning rotors. 

For a hexacopter, the relationship, denoted as Γ, between the 

rotor angular speed (Ω) and the 4 body-axis accelerations can be 

described as Eq. (9). Given desired and moments, the required rotor 

speeds can be solved using the inverse of the constant matrix Γ. 
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where,  denotes maps that effect of each rotor speeds to the vehicle motion to the thrust(T), rolling, 

pitching and yawing moment domain. 
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The actuator is the key element of the hexacopter that 

generates necessary forces to control the airframe. The 

actuator of the hexacopter is a controllable small electric 

motor attached at the end of the six shaft frame structure. 

Typically four possible faults are conceivable, such as zero 

torque, i.e., disabled motor (F1), decreased torque (F2), offset 

torque (F3), and spinning opposite direction as opposed to 

what it designed for (F4). Even though the hexacopter has 
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<0 leads to the F3 type failure. 

The preceding motor fault numerical models are 

simulated in Fig. 5. A sine function is used as a reference 

input to the motor. The actual motor torques are computed 

with and without faults. Two parameters are considered. 

One is the fault evolution rate (a) and the other is the gain 

degradation factor (α). The scalar aj > 0 denotes the unknown 

fault evolution rate. A small value of aj characterizes slowly 

developing fault, also known as an incipient fault. For a large 

value of aj, the time profile approaches to a step function that 

represents an abrupt fault. Having those two parameters, 

two types of faults, the motor stop (F1) and degraded motor 

torque (F2) are plotted against with the nominal torque case 

as shown in Fig. 5. 

The motor torque drops to zero with α = 0 and reduces to 

50% of the nominal input with α = 0.5. A larger fault evolution 

rate (a) corresponds to the rapid approach to the final fault 

torque. The single fault modeling can be expanded to the 

multiple faults model as described in Eq. (11).
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Note that B is control effectiveness matrix which is represents the relation between the rotor speeds 

and the vehicle dynamics and also inverse of the  in Eq. (9) and Bf represents the actuator fault 

distribution matrix related to the normal constant control input matrix B. 
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vehicle dynamics and also inverse of the Γ in Eq. (9) and Bf 

represents the actuator fault distribution matrix related to 

the normal constant control input matrix B.

2.4 Problem Statement

Having the hexacopter rigid body dynamic model, Eq. 

(8), and the multiple actuator faults model, Eq. (11), a fault 

tolerant control scheme needs to be designed. The control 

scheme should be able to stabilize the system as well as track 

the desired reference command. It should be applicable 

for both the nominal rotor situation and single or multiple 

motor faults situation.

 

3. Fault Tolerant Control Design

3.1 Fault Tolerant Control Scheme with TDC

The TDC control scheme has been studied in many years 

and well established [19, 21]. Therefore, detailed derivation 

of the scheme is not covered in this paper, but major concept 

is reviewed. 

A general nonlinear dynamic equation is given as below 

equation.
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ˆ ˆ
d d-f(x, t) A x + B r - Bu ke                                                       (18) 

Rewriting Eq. (18), the computed control input yields as 

ˆ -1
d du = B [-f(x, t) + A x + B r -ke]                                                    (19) 

Combining Eq. (17) and Eq. (19), the error dynamics can be rearranged as  

( )de = A +k e                                                                    (20) 

Assuming the time step L is very small, the time delay estimation can be approximated as  

ˆ ˆf(x, t) f(x, t - L)                                                                (21) 

Similarly, Eq. (15) can also be approximated as  

ˆ ˆf(x, t) x(t - L) - Bu(t - L)                                                        (22) 

By substituting Eq. (22) into Eq. (19), f̂(x, t) and uncertainty terms are eliminated. The final 

computed control input is obtained as  

ˆ -1
d du = u(t - L) + B [-x(t - L) + A x + B r -ke]                                         (23) 

Eq. (23) is a typical TDC control law. Since internal plant dynamics equation is not included, the 

TDC control law does not require an exact dynamic model and properties of a rotorcraft. It only requires 

previous time step quantities, i.e., control input u(t-L), states x(t-L) and predefined quantities, i.e., 

estimated control effectiveness B̂  and pre-shaped input matrix Bd.  

From Eqs. (17), (18), and (21), the error dynamics can be rearranged as  

ˆ ˆ
de = A e + -f(x, t) + f(x, t - L) +ke 

                                                      (24) 

As shown in Eq. (24), the system is stable as long as magnitude of error satisfies the condition 

specified in Eq. (25). 

ˆ ˆ

d

f(x, t) - f(x, t - L)
e >

k + A
                                                                 (25) 

where, k is negative quantity and Ad is stable. The Eq. (25) indicates that the error will be bounded 
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where, k is negative quantity and Ad is stable. The Eq. (25) 

indicates that the error will be bounded only if the system 
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difference at time t and t-L is small enough. Taking notice 

of these characteristics of TDC scheme, it is assumed that 

the hexacopter can have fault tolerant capabilities even in 

faults occurrence such as system disturbances and unknown 

parameters of system model.

3.2 SCAS Control Law Design

The conventional PI controller is used to control the heave 

and yaw channel. In so doing, the much simpler controller is 

able to implement yet satisfies the purpose of this research. 

The final TDC control law for the pitch and roll channel can 

be obtained as Eq. (26) and Eq. (27) [20].
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The pitch and roll attitude hold configuration of TDC are 

shown in Fig. 6 and Fig. 7 respectively.

4. Numerical Example

A hexacopter numerical model is developed using the 

dynamics equations, Eqs. (8), in conjunction with the TDC 

scheme, Eqs. (26) and (27). The developed numerical model 

is implemented in the Matlab/SimulinkⓇ environment 

to demonstrate the effectiveness and robustness of the 

developed fault tolerant control scheme. The hexacopter is 

assumed as a rigid vehicle without being considered flexibility 

of airframe structure. Two missions, tracking attitudes and 

holding a desired altitude, are evaluated including F1 and 

F2 types of actuator faults and external disturbance, i.e., 

wind shear, gust, and turbulence. Note that the simulation is 

performed with external disturbance only for the proposed 

case because the states of hexacopter with PID controller are 

diverging at the presence of the wind disturbance. These are 

the most unlikely achievable missions using an ordinary PID 

controller. The control scheme computes desired output at 

the current time step using the quantities computed at the 

previous time step, i.e., the inputs, states, and estimated 

control effectiveness with pre-shaped input. 

Since the proposed time delay fault tolerant control is 

developed based on the robustness of the TDC that allows 

excluding the uncertainty terms as shown in Eq. (23), it is 

capable of not only stabilizing the system but also performing 

robust controllability against uncertainties such as model 

uncertainty and external disturbance. 

The full nonlinear 6-DOF rotorcraft dynamics is 

developed including the equation of motion of a rotorcraft 

and the actuator dynamic blocks. The actuator bandwidth is 

20 rad/s. Without losing accuracy of numerical integration, 

0.01 second is selected as the numerical simulation time 

step, L of Eq. (21). The numerical simulation was conducted 

considering many parameters, i.e., two types of faults, F1 

and F2, three different types of external disturbance, and two 

control methods, PID and TDC. The F1 fault denotes that the 

motor #3 is disabled (abrupt fault) at ten second followed 

by disabled motor #1 (abrupt fault) at twenty second. A 

half torque of the motor #4 (incipient fault) is introduced at 

thirty second and is denoted as F2 fault. In order to compare 

tracking performance, the simulation was conducted using 

both conventional PID and developed TDC. The pitch and 

roll attitude hold configuration of PID are shown in Fig. 8 and 

Fig. 9 respectively. 

The simulation starts from zero altitude and reaches 

target altitude 10 meter. This target altitude should be hold 

during entire simulation time. Three second later, +5 degree 

pitch attitude command is injected to the system and then 

+5 degree roll attitude command is added at five second. As 

shown in Figs. 10 through 13, both TDC and PID controllers 
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only if the system difference at time t and t-L is small enough. Taking notice of these characteristics of 

TDC scheme, it is assumed that the hexacopter can have fault tolerant capabilities even in faults 

occurrence such as system disturbances and unknown parameters of system model. 

 

3.2 SCAS Control Law Design 
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1 2
3 3( ) [ ( ) ( ) 2 ]nd d d ndu u t L m t L                                          (26) 

1 2
2 2 ( ) [ ( ) ( ) 2 ]n d nu u t L l t L                                            (27) 

The pitch and roll attitude hold configuration of TDC are shown in Fig. 6 and Fig. 7 respectively. 
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flexibility of airframe structure. Two missions, tracking attitudes and holding a desired altitude, are 

evaluated including F1 and F2 types of actuator faults and external disturbance, i.e., wind shear, gust, 

and turbulence. Note that the simulation is performed with external disturbance only for the proposed 

case because the states of hexacopter with PID controller are diverging at the presence of the wind 

disturbance. These are the most unlikely achievable missions using an ordinary PID controller. The 

control scheme computes desired output at the current time step using the quantities computed at the 

previous time step, i.e., the inputs, states, and estimated control effectiveness with pre-shaped input.  

Since the proposed time delay fault tolerant control is developed based on the robustness of the TDC 

that allows excluding the uncertainty terms as shown in Eq. (23), it is capable of not only stabilizing 

the system but also performing robust controllability against uncertainties such as model uncertainty 

and external disturbance.  

The full nonlinear 6-DOF rotorcraft dynamics is developed including the equation of motion of a 

rotorcraft and the actuator dynamic blocks. The actuator bandwidth is 20 rad/s. Without losing accuracy 

of numerical integration, 0.01 second is selected as the numerical simulation time step, L of Eq. (21). 

The numerical simulation was conducted considering many parameters, i.e., two types of faults, F1 and 

F2, three different types of external disturbance, and two control methods, PID and TDC. The F1 fault 

denotes that the motor #3 is disabled (abrupt fault) at ten second followed by disabled motor #1 (abrupt 

fault) at twenty second. A half torque of the motor #4 (incipient fault) is introduced at thirty second and 

is denoted as F2 fault. In order to compare tracking performance, the simulation was conducted using 

both conventional PID and developed TDC. The pitch and roll attitude hold configuration of PID are 

shown in Fig. 8 and Fig. 9 respectively.  
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Fig. 11. Time Histories of Lateral States (PID) 
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Fig. 13. Time Histories of Lateral States (proposed method) 
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show similar tracking performance until the faults occur. 

However, once the F1 fault occurs, the PID controller is not 

able to track the input command properly. The longitudinal 

states, q and θ, show oscillating responses with large 

amplitude. And the PID controller fails to track the pitch 

attitude (θ) command input. In addition, the altitude drops 

rapidly from the initial hovering altitude. These results are 

shown in Fig. 10. Note that the numerical simulation was 

conducted without bounded altitude despite it drops below 

zero altitude. 

Figure 11 shows time responses of the lateral/directional 

states with the PID controller. The yaw rate (r) and yaw angle 

(ψ) show bounded oscillation with very slow convergence to 

the steady state, but the roll rate (p) and roll angle (ϕ) diverge 

rapidly right after F1 fault occurs. Apparently these results 

demonstrate that the conventional PID controller is not able 

to cope with the motor failure situation at all. 

On the other hand, the developed TDC scheme shows 

promising performance for both nominal and motor failure 

conditions. The time histories of the longitudinal states with 

the developed TDC scheme are presented in Fig. 12. When 

the F1 and F2 faults occur the pitch state (θ) shows small 

deviation from the input command and tracks back to the 

command position within 3-4 seconds. Furthermore, the 

altitude (h) is maintained its targeted altitude regardless of 

the motor failures indicating robustness of the developed 

TDC. 

Similarly, as shown in Fig. 13, the roll state (ϕ) shows 

transient maneuver when the F1 and F2 faults are introduced. 

Briefly after the transient maneuver, however, it traces back 

the commanded attitudes.

Figure 14 shows the time histories of each motor input that 

clearly present disabled rotor #1 and #3 and 50% degraded 

performance of rotor #4. Throughout the entire simulation, 

external disturbances, i.e., wind shear, gust, and turbulence 

whose time histories are shown in Fig. 15 are applied to 

the system. Note that in order to maintain altitude hold 

mode with the continuous positive pitch and roll attitude 

command inputs, the yaw angle (ψ) should be allowed to 

move freely without any bounds. 

 

5. Conclusions and Future Works

A fault tolerant control scheme is developed as an attitude 

tracking system for a hexacopter aircraft. A formulation of 

fault tolerant control design is developed based on the TDC 

scheme that allows excluding the internal plant dynamic 

model and uncertainties. The developed control scheme is 

effective enough to provide robust control authority for both 

external disturbances and single or multiple rotor failure 

situations. The numerical method implemented in the 

Matlab/SimulinkⓇ environment confirms the effectiveness 

and robustness of the developed fault tolerant control 

scheme with TDC. The numerical simulation results validate 

that the proposed TDC is superior in the attitude tracking to 

PID controller, especially when abrupt and incipient rotor 

faults are introduced. It requires, however, the accurate 

inertia information of the hexacopter aircraft. Since only 

the decreased torque was considered as the incipient rotor 

fault, the offset torque will be investigated to improve the 

control reliability in the future. Furthermore, flight tests will 

be performed to verify the proposed control scheme.
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