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Abstract

For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain method can only analyze 

each respective channel at several interval points within uncertain parameter space. Discontinuous calculation and couplings 

between channels will lead to inaccurate analysis results. A method based on the 
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-gap metric is proposed, which is able to 

comprehensively evaluate the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing 

hybrid optimization algorithm, which has global and local searching ability, is used to search for a parameters combination 

that leads to the worst stability within the space of uncertain parameters. Finally, the proposed method is used to analyze the 

robust stability of a re-entry missile with uncertain parameters; the results verify the feasibility and accuracy of the method.
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1. Introduction

As technology advances, missiles in modern warfare must 

have longer range, and higher maneuverability. These kinds 

of missiles will face severe changes of external environment, 

and perturbations of internal parameters in their flight 

envelope; meanwhile, complex aerodynamic layout will 

lead to serious couplings between the missiles’ channels. 

Control system design for modern missiles therefore presents 

a challenge for control engineers. Control system stability 

and performance evaluation for missiles with uncertain 

parameters is an important part of control system design. 

Traditional frequency domain evaluation methods are 

carried out for the missiles’ pitch, yaw, and roll channels, 

respectively, at discrete points, in uncertain parameters 

space. So the evaluation results have two problems: 1) due 

to discontinuous calculation in uncertain parameters space, 

the evaluation is not comprehensive, which may lead to 

inaccurate results; and 2) in the process of evaluation, along 

with the increased number of uncertain parameters, the time 

for calculation will increase exponentially, and the evaluation 

process will cost considerable time and manpower. Control 

system designers need to find out methods for evaluation that 

offer higher efficiency and accuracy. 

“Gap” computes the gap metrics between two LTI 

objects. It gives a numerical value δ(P0, P1) between 0 and 

1, for the distance between a nominal system P0 and a 

perturbed system P1. The gap metric was introduced into 

the control literature by Zames and El-Sakkary [1], and 

exploited by Georgiou and Smith [2, 3]. G. Vinnicombe puts 

forward the concept of the 

1 

Research on Robust Stability Analysis and Worst Case 

Identification Methods for Parameters Uncertain Missiles  
 

Zhenqian Hou1 and Xiaogeng Liang2\ 

Automation College, Northwestern Polytechnic University, Xi’an, China 

 

Wenzheng Wang3 

China Aerodynamics Research & Development Center, Mianyang, China 

 

Abstract 

For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain 

method can only analyze each respective channel at several interval points within uncertain parameter 

space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis 

results. A method based on the ν-gap metric is proposed, which is able to comprehensively evaluate 

the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing 

hybrid optimization algorithm, which has global and local searching ability, is used to search for a 

parameters combination that leads to the worst stability within the space of uncertain parameters. 

Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain 

parameters; the results verify the feasibility and accuracy of the method.

 

Key words: parameter uncertainty; robust stability; ν-gap metric; hybrid optimization

 

1. Introduction 

As technology advances, missiles in modern warfare must have longer range, and higher 

maneuverability. These kinds of missiles will face severe changes of external environment, and 

                                          
1 Ph. D Student 
2 Professor, Corresponding author: lxg@sina.com 
3 Dr., Corresponding author: wwz_163@163.com 

-gap metric because the gap 

metric is conservative[4]. Qui and Davidson proved that 

the generalized stability margins of a nominal system P0, 

perturbation system P1, and the gap metric (
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 gap metric) 

between two systems satisfy the triangle inequality relations 

[5]; while Keith Glover et al. gave the relationship between 

the generalized stability margin, and the traditional 

amplitude/phase stability margin [6]. 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.
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The genetic algorithm (GA) is a kind of stochastic global 

searching method, imitating the evolutionary process of 

selection, crossover and mutation in nature [7, 8]. The GA 

can search with extensive scope but is not easy to converge 

to the exact values of optimal solutions. The simulated 

annealing algorithm is a simulation of the annealing 

process in thermodynamics [9, 10]. At high temperature, 

the optimization process is carried out at the global level, 

while at low temperature, it tends to find more exact local 

solutions. 

Based on the above theories, this paper puts forward a 

stability evaluation method that is based on the 
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-gap metric 

for missiles with uncertain parameters. Firstly, the method 

calculates the lower bound of the generalized stability 

margin of the perturbation system, and quickly determines 

whether a system satisfies the stability margin index. Then, 

if the results don’t meet the stability requirements, a hybrid 

optimization algorithm is used to search for the combination 

of uncertain parameters that leads to the worst case. 

Designers can improve control systems, according to the 

evaluation results.

2. The Stability of Feedback Systems

2.1 The Internal Stability

A closed-loop system [P, C] is shown in Figure 1. In the 

figure, u and y denote the inputs and outputs of the closed-

loop system, d and n are the output noise of controller and 

measurements noise, respectively. From d and n to y and u, 

the closed-loop transfer function matrix can be expressed as:

3 

the ν-gap metric for missiles with uncertain parameters. Firstly, the method calculates the lower bound 

of the generalized stability margin of the perturbation system, and quickly determines whether a 

system satisfies the stability margin index. Then, if the results don’t meet the stability requirements, a 

hybrid optimization algorithm is used to search for the combination of uncertain parameters that leads 

to the worst case. Designers can improve control systems, according to the evaluation results. 

 

2. The Stability of Feedback Systems 

2.1 The Internal Stability 

A closed-loop system   ,P C  is shown in Figure 1. In the figure, u  and y  denote the inputs 

and outputs of the closed-loop system, d  and n  are the output noise of controller and 

measurements noise, respectively. From d  and n  to y  and u , the closed-loop transfer function 

matrix can be expressed as: 

   1
,P C

P
G I CP I C

I
 

  
 

                                                   

         (1) 
If the four transfer functions in equation (1) are stable, it is said that closed-loop system   ,P C  is 

internally stable, which means the closed-loop system is stable. 

 

2.2 Generalized Stability Margin 

If the closed-loop system   ,P C  is stable, the frequency domain generalized stability margin of 

the closed-loop system is defined as: 

       ,1 P CP j C j G j    ,                                                (2) 

The generalized stability margin of the closed-loop system is then defined as: 

    
,

inf
:P C

P j j P C
b 

   


, C  [ , ] i s st abl e

0        el se
                                    (3) 

(1)

If the four transfer functions in equation (1) are stable, it is 

said that closed-loop system [P, C] is internally stable, which 

means the closed-loop system is stable.

2.2 Generalized Stability Margin 

If the closed-loop system [P, C] is stable, the frequency 

domain generalized stability margin of the closed-loop 

system is defined as:

3 

the ν-gap metric for missiles with uncertain parameters. Firstly, the method calculates the lower bound 

of the generalized stability margin of the perturbation system, and quickly determines whether a 

system satisfies the stability margin index. Then, if the results don’t meet the stability requirements, a 

hybrid optimization algorithm is used to search for the combination of uncertain parameters that leads 

to the worst case. Designers can improve control systems, according to the evaluation results. 

 

2. The Stability of Feedback Systems 

2.1 The Internal Stability 

A closed-loop system   ,P C  is shown in Figure 1. In the figure, u  and y  denote the inputs 

and outputs of the closed-loop system, d  and n  are the output noise of controller and 

measurements noise, respectively. From d  and n  to y  and u , the closed-loop transfer function 

matrix can be expressed as: 

   1
,P C

P
G I CP I C

I
 

  
 

                                                   

         (1) 
If the four transfer functions in equation (1) are stable, it is said that closed-loop system   ,P C  is 

internally stable, which means the closed-loop system is stable. 

 

2.2 Generalized Stability Margin 

If the closed-loop system   ,P C  is stable, the frequency domain generalized stability margin of 

the closed-loop system is defined as: 

       ,1 P CP j C j G j    ,                                                (2) 

The generalized stability margin of the closed-loop system is then defined as: 

    
,

inf
:P C

P j j P C
b 

   


, C  [ , ] i s st abl e

0        el se
                                    (3) 

(2)

The generalized stability margin of the closed-loop system 

is then defined as:

3 

the ν-gap metric for missiles with uncertain parameters. Firstly, the method calculates the lower bound 

of the generalized stability margin of the perturbation system, and quickly determines whether a 

system satisfies the stability margin index. Then, if the results don’t meet the stability requirements, a 

hybrid optimization algorithm is used to search for the combination of uncertain parameters that leads 

to the worst case. Designers can improve control systems, according to the evaluation results. 

 

2. The Stability of Feedback Systems 

2.1 The Internal Stability 

A closed-loop system   ,P C  is shown in Figure 1. In the figure, u  and y  denote the inputs 

and outputs of the closed-loop system, d  and n  are the output noise of controller and 

measurements noise, respectively. From d  and n  to y  and u , the closed-loop transfer function 

matrix can be expressed as: 

   1
,P C

P
G I CP I C

I
 

  
 

                                                   

         (1) 
If the four transfer functions in equation (1) are stable, it is said that closed-loop system   ,P C  is 

internally stable, which means the closed-loop system is stable. 

 

2.2 Generalized Stability Margin 

If the closed-loop system   ,P C  is stable, the frequency domain generalized stability margin of 

the closed-loop system is defined as: 

       ,1 P CP j C j G j    ,                                                (2) 

The generalized stability margin of the closed-loop system is then defined as: 

    
,

inf
:P C

P j j P C
b 

   


, C  [ , ] i s st abl e

0        el se
                                    (3) (3)

bP, C is a value between 0 and 1. When the norm of the 

closed-loop system transfer function matrix is small, bP, C is 

large, else bP, C is small. 

It is possible to relate bP, C to the classical gain and phase 

margins. For a stable SISO system [P, C], define the gain and 

phase margins as follows:

If 
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The frequency domain optimal weighted generalized stability margin is:  
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The problem of finding the optimal weights is a convex optimization problem, which can be solved 
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Reference [12] proves that the ν-gap metric between systems 1P  and 2P  satisfies the mathematical 

definition of distance. Importantly, it satisfies the triangle inequality; so if 2P  is the result of 

perturbing 0P  to 1P , and then 1P  to 2P , then:  

0 2 0 1 1 2( , ) ( , ) ( , )P P P P P P                                                       (15) 

That is to say, the ν-gap metric between 0P  and 2P  is equal to, or less than the sum of the effects of 

the individual perturbations.  

4. The Robust Stability of the Feedback System 

4.1 Relationships between the Generalized Stability Margin and the ν-gap Metric 

Before introducing the relationship between the generalized stability margin and the ν-gap metric, 

we first introduce the following theorem(theorem 2) [12].  

 For any plants 1P  and 2P  within a set and controller C , the following relationship exists: 

 
2 1, , 1 2arcsin arcsin arcsin ,P C P Cb b P P                                           (16) 

Equation (16) can be simplified as [12]:  

 
2 1, , 1 2,P C P Cb b P P                                                           (17) 

From equation (17), it can be seen that within a system set, if 
1 ,P Cb  is large and 1 2( , )P P  is 

small, then 
2 ,P Cb  is also large. So we can say ,P Cb  indicates the robust stability of the feedback 

system.  

When using ,P Cb  for system stability analysis, the input/output weights are introduced; so later in 

this article, the ν-gap metric between plants 1P  and 2P  refers to the distance between the weighted 

plants.  

(13)
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the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing 

hybrid optimization algorithm, which has global and local searching ability, is used to search for a 

parameters combination that leads to the worst stability within the space of uncertain parameters. 

Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain 

parameters; the results verify the feasibility and accuracy of the method.
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1. Introduction 

As technology advances, missiles in modern warfare must have longer range, and higher 

maneuverability. These kinds of missiles will face severe changes of external environment, and 
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-gap metric between P0 and P2 is 

equal to, or less than the sum of the effects of the individual 

perturbations. 

4. ��The Robust Stability of the Feedback Sys-
tem

4.1 Relationships between the Generalized Stability 
Margin and the 

1 

Research on Robust Stability Analysis and Worst Case 

Identification Methods for Parameters Uncertain Missiles  
 

Zhenqian Hou1 and Xiaogeng Liang2\ 

Automation College, Northwestern Polytechnic University, Xi’an, China 

 

Wenzheng Wang3 

China Aerodynamics Research & Development Center, Mianyang, China 

 

Abstract 

For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain 

method can only analyze each respective channel at several interval points within uncertain parameter 

space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis 

results. A method based on the ν-gap metric is proposed, which is able to comprehensively evaluate 

the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing 

hybrid optimization algorithm, which has global and local searching ability, is used to search for a 

parameters combination that leads to the worst stability within the space of uncertain parameters. 

Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain 

parameters; the results verify the feasibility and accuracy of the method.

 

Key words: parameter uncertainty; robust stability; ν-gap metric; hybrid optimization

 

1. Introduction 

As technology advances, missiles in modern warfare must have longer range, and higher 

maneuverability. These kinds of missiles will face severe changes of external environment, and 

                                          
1 Ph. D Student 
2 Professor, Corresponding author: lxg@sina.com 
3 Dr., Corresponding author: wwz_163@163.com 

-gap Metric

Before introducing the relationship between the 

generalized stability margin and the 
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-gap metric, we first 

introduce the following theorem(theorem 2) [12]. 

 For any plants P1 and P2 within a set and controller C, the 

following relationship exists:
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So that: 

    1 2 1 2( , ) max ,P P P j P j 
                                                  (14) 

Reference [12] proves that the ν-gap metric between systems 1P  and 2P  satisfies the mathematical 

definition of distance. Importantly, it satisfies the triangle inequality; so if 2P  is the result of 

perturbing 0P  to 1P , and then 1P  to 2P , then:  

0 2 0 1 1 2( , ) ( , ) ( , )P P P P P P                                                       (15) 

That is to say, the ν-gap metric between 0P  and 2P  is equal to, or less than the sum of the effects of 

the individual perturbations.  
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4.1 Relationships between the Generalized Stability Margin and the ν-gap Metric 

Before introducing the relationship between the generalized stability margin and the ν-gap metric, 

we first introduce the following theorem(theorem 2) [12].  

 For any plants 1P  and 2P  within a set and controller C , the following relationship exists: 

 
2 1, , 1 2arcsin arcsin arcsin ,P C P Cb b P P                                           (16) 

Equation (16) can be simplified as [12]:  

 
2 1, , 1 2,P C P Cb b P P                                                           (17) 

From equation (17), it can be seen that within a system set, if 
1 ,P Cb  is large and 1 2( , )P P  is 

small, then 
2 ,P Cb  is also large. So we can say ,P Cb  indicates the robust stability of the feedback 

system.  

When using ,P Cb  for system stability analysis, the input/output weights are introduced; so later in 

this article, the ν-gap metric between plants 1P  and 2P  refers to the distance between the weighted 

plants.  

(16)

Equation (16) can be simplified as [12]: 
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From equation (17), it can be seen that within a system 

set, if bP1, C is large and 
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The proposition shows that we need to apply weights, in order to assess the generalized stability 

margin ,P Cb  of a specified closed-loop system. Since the plant and controller are fixed, the loop 

shape must not be altered by the weights. So we apply input and output weights, in the way shown in 

Figure 3.  

The frequency domain weighted generalized stability margin of the system can be obtained as:  

      
1

,11 o o
weight P C

i i

W W
P j C j G j

W W
    





   
         

,                       (9) 

The frequency domain optimal weighted generalized stability margin is:  

         1 1

,
max

i o
bw o i i oW W

P j C j W P j W W C j W      , ,                          (10) 

The optimal weighted generalized stability margin of the closed-loop system is then:  

    
( , )

min
: bw

bw P C

P j C j P C
b 

   


,  [ , ] i s st abl e

0               el se
                             (11) 

The problem of finding the optimal weights is a convex optimization problem, which can be solved 

by an optimization algorithm. So the optimal generalized stability margin of the closed-loop system 

can be calculated at frequency points, and minimum value can be seen as a measurement of the 

closed-loop system robustness to input/output perturbations. 

3. The ν-gap Metric 

Define the ν-gap metric 1 2( , )P P  between systems 1P  and 2P  [11], as follows:  

    
1 2

1 2 1 2* * * *
2 2 2 1 1 1 2 1 1 1( , )

, ,

1 else
P P

I P P P P I P P if p P P p P P


 


   



  [ ] = [ ]
             (12) 

where, *
2 1,p P P[ ]  denotes the number of open RHP poles of the fictitious feedback system, 

comprising the plants 2P  and *
1P . *

1P  is the conjugate transpose of 1P . The ν-gap metric 

quantifies the difference between the two systems, and its scope is within [0, 1]. 

The frequency domain ν-gap metric can be expressed as: 

 is small, then bP2, C is also 

large. So we can say bP, C indicates the robust stability of the 

feedback system. 

When using bP, C for system stability analysis, the input/

output weights are introduced; so later in this article, the 
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-gap metric between plants P1 and P2 refers to the distance 

between the weighted plants. 

4.2 Robust Stability Analysis Method

We can use the 
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-gap metric to calculate the influence 

of each parameter on the stability of feedback systems, 

and the lower bound of the frequency domain generalized 

stability margin of parameter uncertain systems can also be 

calculated, using the relationship between the generalized 

stability margin, and the 
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-gap metric. 

According to equation (15) and equation (17), the lower 

bound of the frequency domain optimal generalized 

stability margin of the uncertain parameters system 
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4.2 Robust Stability Analysis Method 
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The lower bound of the optimal generalized stability margin is:  

    ( , ) min ,bw P C bwb P j C j


                                                  (19) 

According to equation (18) and equation (19), the robust stability of parameters uncertain systems 

can be rapidly evaluated. When the robust stability does not meet the requirements, the optimization 

algorithm can be used to search for the uncertain parameters combination that leads to the worst case. 

5. Genetic-Simulated Annealing Hybrid Optimization Algorithm 

5.1 Genetic Algorithm 

The genetic algorithm is a method for solving both constrained and unconstrained optimization 

problems, which is based on natural selection, the process that drives biological evolution. The 

genetic algorithm repeatedly modifies a population of individual solutions. At each step, the genetic 

algorithm selects individuals at random from the current population to be parents, and uses them to 

produce the children for the next generation. Over successive generations, the population “evolves” 

toward an optimal solution. The genetic algorithm can be applied to solve a variety of optimization 

problems that are not well suited to standard optimization algorithms, including problems in which the 

objective function is discontinuous, non-differentiable, stochastic, or highly nonlinear. 

The genetic algorithm uses three main types of rules at each step, to create the next generation from 

the current population: 
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According to equation (18) and equation (19), the robust 

stability of parameters uncertain systems can be rapidly 

evaluated. When the robust stability does not meet the 

requirements, the optimization algorithm can be used to 

search for the uncertain parameters combination that leads 

to the worst case.

5. ��Genetic-Simulated Annealing Hybrid Op-
timization Algorithm

5.1 Genetic Algorithm

The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems, 

which is based on natural selection, the process that drives 

biological evolution. The genetic algorithm repeatedly 

modifies a population of individual solutions. At each step, 

the genetic algorithm selects individuals at random from the 

current population to be parents, and uses them to produce 

the children for the next generation. Over successive 

generations, the population “evolves” toward an optimal 

solution. The genetic algorithm can be applied to solve a 

variety of optimization problems that are not well suited 

to standard optimization algorithms, including problems 

in which the objective function is discontinuous, non-

differentiable, stochastic, or highly nonlinear.

The genetic algorithm uses three main types of rules at 

each step, to create the next generation from the current 

population:

1) Selection rules select the individuals(called parents). 

They contribute to the population at the next generation.

2) Crossover rules combine two parents, to form children 

for the next generation. 

3) Mutation rules apply random changes to individual 

parents, to form children.

5.2 Simulated Annealing Algorithm

Simulated annealing is a method for solving unconstrained 

and bound-constrained optimization problems. The method 

models the physical process of heating a material, and then 

slowly lowering the temperature to decrease defects, thus 

minimizing the system energy.

At each iteration of the simulated annealing algorithm, a 

new point is randomly generated. The distance of the new 

point from the current point, or the extent of the search, is 

based on a probability distribution with a scale proportional 

to the temperature. The algorithm accepts all new points 

that lower the objective; but also, with a certain probability, 

points that raise the objective. By accepting points that raise 

the objective, the algorithm avoids being trapped in local 

minima, and is able to explore globally for more possible 

solutions. An annealing schedule is selected to systematically 

decrease the temperature, as the algorithm proceeds. As the 

temperature decreases, the algorithm reduces the extent of 

its search, to converge to a minimum. 

Consider the following optimization problem: 
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where, x∈S is a feasible solution to the optimization problem, 

and S is the definition domain, 
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After some iterations at the current temperature, decrease 

the temperature to Ti, and repeat the above process, until 

reaching the minimum temperature. 

At high temperature, the simulated annealing algorithm 

carries out the optimization at global scope; at low 

temperature, it tends to find local optimal solutions. The 

calculation is not parallel, so the optimization process is 

slow.

5.3 ��The Genetic-Simulated Annealing Hybrid Opti-
mization Algorithm

The genetic algorithm searches at global scope by parallel 

calculating; but is not easy for it to converge to the exact 

optimal solution. The simulated annealing algorithm is 

able to find a more accurate solution, but the optimization 

process is slow. According to the characteristics of these 

two algorithms, we construct the hybrid genetic-simulated 

annealing algorithm (GA-SA), by combining these two 

algorithms. First, given the initial population, the genetic 

algorithm is used to find out the approximated optimal 

solutions at global scope; then the simulated annealing 

algorithm searches in the neighborhood of approximate 
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solutions, to find a more accurate optimal solution. The 

algorithm process is shown in Figure 4.

5.4 Optimization Algorithm Verification

In this section, four test functions are presented, to 

compare the computing performance of the hybrid 

algorithm (GA-SA), and the genetic algorithm (GA). The 

conditions of the two algorithms are the same, such as the 

populations, and length of an individual. The results are 

shown in Table 1. As we can see, under the same parameter 

settings, the genetic-simulated annealing hybrid algorithm 

23 

Initialization
（set iteration number，

population number，
mutation probability
and so on，produce 

pop0 ）

Compute fitness 
value of each 

individual in pop0

Selection
（produce pop1）

Crossover
（produce pop2）

Mutation
（produce pop3）

Last iteration？

END

N

Y

Set initial temperature     ，
termination  temperature       ，

decrease rate of temperature

Set the shift number of solution at 
current temperature

For each individual in pop3，use 
current solution       to produce a 
new solution         , let    
compute    

Produce pop4

( ) , 0kn T n 

x
'x

( ') ( )f f x f x  
1n n 

0 ?f 

exp( / ) ?
(0,1)

kf T
U



 


( )?kn n T 'x x

N

Y

Y

N

0T

eT
, 1  

1k kT T 

1 ?k eT T  1k kT T
Y

N

N

Y

 
Fig. 4. Hybrid Optimization Algorithm Flow Diagram 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Hybrid Optimization Algorithm Flow Diagram



69

Zhenqian Hou    Research on Robust Stability Analysis and Worst Case Identification Methods for Parameters Uncertain Missiles 

http://ijass.org

is able to obtain more accurate results. The hybrid algorithm 

has faster convergence speed, and can always converge to 

more accurate optimal solutions. Compared with the genetic 

algorithm, the results show that the hybrid algorithm has 

more advantages, in terms of computational efficiency, and 

computational accuracy. 
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where, 
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pitch rate, angle of sideslip, yaw rate, and roll rate, respectively; 
T

x y zu        is the input 

vector, , ,x y z    are the elevator deflection, rudder deflection, and aileron deflection, respectively; 

and 
T

x y zy        is the output vector. 
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where, 
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where, 
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pitch rate, angle of sideslip, yaw rate, and roll rate, respectively; 
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vector, , ,x y z    are the elevator deflection, rudder deflection, and aileron deflection, respectively; 

and 
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x y zy        is the output vector. 

where, x=[α ωz β ωy ωx]T is the state vector, α, ωz, β, ωy, ωx are 

the angle of attack, pitch rate, angle of sideslip, yaw rate, and 

roll rate, respectively; u=[δx δy δz]T is the input vector, δx, δy,  
δz are the elevator deflection, rudder deflection, and aileron 

deflection, respectively; and y=[ωx ωy ωz]T is the output 

vector.

The control system of the pitch channel is shown in Figure 

5. nz and nzc are the normal overload and normal overload 

Table 1. Comparison between the Two Algorithms
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Table 1. Comparison between the Two Algorithms 

Test 
Function 

Standard 
Solution Algorithms Mean Optimal 

Solution 

1f  （0 , -1） 
GA (-0.0001 , -1.0161) 

GA-SA (0 ,-1) 

2f  ( ,2.275)  
GA (3.1537 , 2.2230) 

GA-SA （3.1416 , 2.2750） 

3f  （0 , -15）
GA (0.0019 , 14.8422) 

GA-SA （0 , -14.9468） 

4f  （0 , 0） 
GA (-0.0009 , -0.0007) 

GA-SA （0 , 0） 
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command, respectively. K1, K2, K3 are control variables.

The yaw channel is similar to the pitch channel.

The control system of the roll channel is shown in Figure 

6. 
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mC , yawing moment derivative due to 

rudder deflection y
nC , and rolling moment derivative due to aileron deflection x

lC , are uncertain 

parameters, and their respective nominal values and variation ranges are shown in Table 2. The 

influence of each uncertain parameter on the stability of the closed-loop missile is calculated at a 

flight height of 4000 m, and speed of 2 Ma, using the ν-gap metric method. The state matrix A  and 
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Case 1: only take z
mC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of z
mC , respectively; 

Case 2: only take y
nC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of y
nC , respectively; and 

 are the roll angle and roll angle command, 

respectively. Kr1, Kr2 are control variables.

The pitching moment derivative due to elevator 

deflection  
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Case 1: only take z
mC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of z
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Case 1: only take z
mC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of z
mC , respectively; 

Case 2: only take y
nC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of y
nC , respectively; and 
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Case 1: only take z
mC  as the uncertain parameter, and calculate the ν-gap metrics when the real 

values vary -10%, -5%, 5%, and 10% from the nominal value of z
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Case 1: only take z
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.

All of the uncertain parameters are taken into consideration, 

to evaluate whether the missile’s control system satisfies 

the stability requirements. The generalized stability margin 

index of the closed-loop system is defined as b(P, C)=0.2. If 

the requirements are not satisfied, the generalized stability 

margin (as equation (11) shows) is taken as the objective 

function; then the GA-SA hybrid optimization algorithm is 

used to search for the uncertain parameters combination 

that leads to the worst performance. Figure 11 shows the 

generalized stability margin of the nominal system (solid 

line), and lower bound of the frequency domain generalized 

stability margin of the perturbed closed-loop system (dashed 

line), as well as the generalized stability margin of the worst 

case of the closed-loop system (dotted line).

Table 2 shows the uncertain parameters combination 

of worst case. It can be seen that when all the uncertain 

parameters vary 10% from the nominal values, their 

combination will lead to the worst performance. Comparing 
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Fig. 6. The Control System of the Roll Channel

Table 2. Uncertain Parameters and the Worst Case Combination
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Table 2. Uncertain Parameters and the Worst Case Combination 

Uncertain 
parameters 

Nominal value 
(1/rad) 

Variation 
range (%) 

Worst case 
combination 

(1/rad) 
z

mC  -0.0064 [-10,10] -0.00704 
y

nC
 -0.0085 [-10,10] -0.00935 

x
lC  -0.0027 [-10,10] -0.00297 
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this with the results of Case 1, Case 2 and Case 3, it should 

be noted that while each uncertain parameter has the 

biggest influence on the stability of the closed system, their 

combination cannot be guaranteed to lead to the worst 

performance.

The traditional Nyquist stability criterion for the stability 

analysis of parameters uncertainty missiles is used to 

compare with the proposed method in this paper. The 

Nyquist stability criterion can only deal with the stability of 

an SISO system, so only one channel of the missile can be 

analyzed at a time. Many combinations of the uncertain 

parameters need to be tested, to get the worst performance; 

and the reliability of the results cannot be guaranteed, due 

to the limitation that is mentioned above. This especially 

applies for missiles with severe couplings between channels. 

Letting all uncertain parameters vary -10% / 10% from the 

nominal values at the same time, the stability analysis 

results of the pitch/yaw/roll channels are given in Figures 

12~17, respectively. From Figures 12~17, we can see that the 
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Fig. 7. ν-Gap Metric between the Nominal and Perturbed Systems: Case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. ‌�ν-Gap Metric between the Nominal and Perturbed Systems: 
Case 1
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Fig. 8. ν-Gap Metric between the Nominal and Perturbed Systems: Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. ��ν-Gap Metric between the Nominal and Perturbed Systems: 
Case 2
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Fig. 9. ν-Gap Metric between the Nominal and Perturbed Systems: Case 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. ��ν-Gap Metric between the Nominal and Perturbed Systems: 
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Fig. 10. ν-Gap Metric between the Nominal and Perturbed Systems 
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Fig. 11. Generalized Stability Margin and Lower Bound of the System 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Generalized Stability Margin and Lower Bound of the System
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combination in which all uncertain parameters vary 10%, has 

more influence on the stability of the missile, than the ones 

that vary -10%. Although each channel of the parameter-

uncertain missile is stable, the stability of the whole missile 

cannot be guaranteed, due to the couplings between the 

channels.

6. Conclusions

In this paper, a method based on the 
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-gap metric is 

proposed, to evaluate the robust stability of missiles with 

uncertain parameters. A genetic-simulated annealing 

hybrid optimization algorithm is proposed, to search 

for a parameters combination that leads to the worst 

performance, within the space of uncertain parameters. 

The results show that the importance of each uncertain 

parameter to the stability of the closed-loop system can be 

quantified through the 
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-gap metric between the nominal 

system and the perturbed system; and the uncertain 

parameters combination leading to the worst performance 

is obtained, using the GA-SA hybrid optimization algorithm. 

Compared with the traditional method for robust stability 

analysis of parameters uncertainty missiles, the method 

proposed in this paper has higher calculation efficiency 

and accuracy.
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Fig. 12. The Stability of the Missile’s Pitch Channel: Uncertain Parameters Vary 10% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. ��The Stability of the Missile’s Pitch Channel: Uncertain Param-
eters Vary 10%
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Fig. 13. The Stability of the Missile’s Pitch Channel: Uncertain Parameters Vary -10% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. ��The Stability of the Missile’s Pitch Channel: Uncertain Param-
eters Vary -10%
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Fig. 14. The Stability of the Missile’s Yaw Channel: Uncertain Parameters Vary 10% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The Stability of the Missile’s Yaw Channel: Uncertain Param-
eters Vary 10%

34 

 

-100

-50

0

50

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

10
3

-90

0

90

180

270

Ph
as

e 
(d

eg
)

Bode Diagram
Gm = 15.1 dB (at 19.6 rad/sec) ,  Pm = 82.5 deg (at 1.48 rad/sec)

Frequency  (rad/sec)
 

Fig. 15. The Stability of the Missile’s Yaw Channel: Uncertain Parameters Vary -10% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. ��The Stability of the Missile’s Yaw Channel: Uncertain Param-
eters Vary -10%
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Fig. 16. The Stability of the Missile’s Roll Channel: Uncertain Parameters Vary 10% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. ��The Stability of the Missile’s Roll Channel: Uncertain Param-
eters Vary 10%
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Fig. 17. The Stability of the Missile’s Roll Channel: Uncertain Parameters Vary -10% 
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