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Abstract

The coverage area of a GNSS regional ionospheric delay model is mainly determined by the distribution of GNSS ground 

monitoring stations. Extrapolation of the ionospheric model data can extend the coverage area. An extrapolation algorithm, 

which combines observed ionospheric delay with the environmental parameters, is proposed. Neural network and least 

square regression algorithms are developed to utilize the combined input data. The bi-harmonic spline method is also 

tested for comparison. The IGS ionosphere map data is used to simulate the delays and to compute the extrapolation error 

statistics. The neural network method outperforms the other methods and demonstrates a high extrapolation accuracy. In 

order to determine the directional characteristics, the estimation error is classified into four direction components. The South 

extrapolation area yields the largest estimation error followed by North area, which yields the second-largest error. 
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1. Introduction

The positioning accuracy of a single frequency global 

navigation satellite system (GNSS) receiver is limited mainly 

due to ionospheric delay errors. An ionospheric map provides 

ionospheric correction data to minimize the ionospheric 

error. The international GNSS service (IGS) provides a global 

ionosphere map to correct the ionospheric error. Since the 

IGS Map is provided as a post-processed data, a regional 

ionospheric map is required for real-time use. An example to 

illustrate this is with the satellite-based augmentation system 

(SBAS) which generates a real-time ionospheric delay map. 

The coverage area of a regional ionospheric map is limited 

by its ground based infrastructure such as GNSS monitoring 

stations. In the case of South Korea, only a small coverage area 

is feasible due to the country’s small ground area. 

The ionospheric delay has a certain level of geographical 

correlation as well as a time correlation. For the geographical 

correlation part, the extrapolation of the ionospheric delays 

for outside the ionosphere map is feasible. The extrapolation 

can be used to overcome the coverage limitation. The 

ionosphere activity is highly correlated with seasonal 

and hourly variations, and these variations are directly 

correlated with the solar and geomagnetic activity. Using this 

information may improve the extrapolation’s accuracy. Use of 

the solar/geomagnetic indices is related with the prediction 

of ionosphere activity. There have been a series of researches 

on using the solar and geomagnetic activities to predict 

ionospheric delays. Among prediction methodologies, neural 

network (NN) has been a primary tool to predict the variation.  

McKinnell and Friedric [1] applied the NN approach to 

predict the lower ionosphere in the aurora zone.  Habarulema 

[2, 3] used the NN to predict total electron content (TEC) 

variation in South Africa. Solar/geomagnetic indices, day / 

hour numbers, and TEC observation locations are used for the 

input data of training process. El-naggar [4] also used NN for 

modeling TEC. He considered user’s latitude, longitude, hour 

in day, and day number as the parameters of NN. In addition 

to NN, the empirical model or the other extrapolation method 

has been used to estimate the TEC. Wielgosz [5] interpolated 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

       * Graduate student, Ph.D. program
  ** Professor, Corresponding author: jrkim@kau.ac.kr     

(64~72)15-127.indd   64 2016-03-29   오후 7:26:39



65

Mingyu Kim    Extending Ionospheric Correction Coverage Area By Using A Neural Network Method

http://ijass.org

and predicted the TEC maps by using Kriging and multi-

quadratic model with GPS observations over a regional 

area. Opperman [6] used adjusted spherical harmonic 

model (ASHA) for near real-time regional ionospheric TEC 

mapping over South Africa.

In contrast to the temporal extrapolation of ionosphere, 

i.e. TEC prediction, researches on the spatial extrapolation 

of the ionosphere have been hardly performed. Habarulema 

[3] performed some spatial extrapolation of TEC outside 

the observation area by changing the location input data 

to the NN processing. Since most of extrapolation methods 

based on interpolation methods, Kim [7] applied three 

interpolation methods to extend the ionospheric correction 

coverage area of South Korea. Krigging, cubic spline, and 

bi-harmonic spline (BHS) methods were evaluated, and the 

BHS method clearly outperforms the other two methods. 

An 81% of error reduction is achieved in comparison with 

the GPS broadcast ionospheric corrections. These methods 

utilized observation data only, and extrapolated the data 

epoch-by-epoch. Neither solar nor geomagnetic data was 

used.

We propose a new ionospheric delay extrapolation 

method by combining the solar/geomagnetic indices with 

the spatial extrapolation. As an extrapolation method, the 

NN is selected because the NN has a good generalization 

performance. Especially, the optimal prediction can be 

realized with the input similar to the training model. A NN 

is trained to extrapolate the TEC outside the observation 

region. The observed TEC inside the region as well as 

the solar/geomagnetic indices are then used for the NN 

processing. Habarulema’s method [3] does not utilize the 

TEC observation data as an input because additional error 

can be generated when the observed TEC is converted into 

the TEC map. Kim’s method [7] also does not utilize the 

solar/geomagnetic indices and therefore a time correlation 

between the estimates is not considered. The proposed 

method utilizes both of the data sets. Extrapolation 

performance of ionospheric delay around South Korea is 

evaluated by applying the combined NN method. IGS global 

ionosphere map data is used to establish a truth value. Since 

IGS TEC map can be assumed to have no errors, our study 

analyzes only the extrapolation error. Eleven years’ of IGS 

data set is used to train the NN processor. For comparison of 

performance, a least square regression (LSR) model is also 

tested.

 

2. Ionosphere Map Extrapolation

A grid-based ionosphere map may consist of TEC values 

at each grid point as
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parameters, e.g. solar index.  An alternative approach can be a mixed use of both the observation TEC 
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this type of mixed data. 
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[ ]Ap,R,S,C,S,Cx HHDDe = (4)

where DC and DS are cosine and sine of day number, respectively. HC and HS are cosine and sine 

of hour number, respectively. The ionospheric delay variation is highly correlated with hourly and 
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the sinusoidal functions of hourly and seasonal variations are as follows [2, 3]
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where Dt is a day number ranging from 1 to 365 or 366 and Dω is a daily variation frequency of

1/365.25. The hour number Ht ranges from 0 to 24 and Hω is an hourly variation frequency of 1/24. 

Since the solar activity directly affects the ionospheric delay, the Sun spot number, R , can be

used for adopting this effect. The Sun spot number does not have a continuous variation, and the 

epoch-by-epoch use of the Sun spot number is not appropriate for prediction. Instead the moving 

average of the number is adopted for this research. Selection of the moving window is discussed in 

section 4. Geomagnetic activity also affects the ionospheric delay, and the geomagnetic index can be 

considered as the environmental parameter. The Ap index, which quantifies the global geomagnetic 

storm, is considered as the environmental parameter. As like the Sun spot number, a moving averaged 

value is preferred to an epoch-by-epoch value. 

Finding an optimal function f in eq. (3) is the main topic of this research. Coefficients of 

function f are calculated for each outside grid points with the same inputs, obsI and ex . Thus, the 

information of extrapolation positions is not considered as parameters.

(6)

where tD is a day number ranging from 1 to 365 or 366 and ωD   

is a daily variation frequency of 1/365.25. The hour number 

tH ranges from 0 to 24 and ωH is an hourly variation frequency 

of 1/24. 

Since the solar activity directly affects the ionospheric delay, 

the Sun spot number, R,  can be used for adopting this effect. 
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The Sun spot number does not have a continuous variation, 

and the epoch-by-epoch use of the Sun spot number is not 

appropriate for prediction. Instead the moving average of the 

number is adopted for this research. Selection of the moving 

window is discussed in section 4. Geomagnetic activity also 

affects the ionospheric delay, and the geomagnetic index 

can be considered as the environmental parameter. The Ap 

index, which quantifies the global geomagnetic storm, is 

considered as the environmental parameter. As like the Sun 

spot number, a moving averaged value is preferred to an 

epoch-by-epoch value. 

Finding an optimal function f in eq. (3) is the main topic 

of this research. Coefficients of function f are calculated 

for each outside grid points with the same inputs, Iobs and 

xe. Thus, the information of extrapolation positions is not 

considered as parameters.
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where si is a unit vector in the direction ni. The BHS method 

can be numerically unstable for large numbers of points and 

has a tendency to drastically overshoot when points are close 

together [8]. The BHS utilizes the observed TEC only and 

does not require the environmental parameters. Therefore, 

the extrapolation becomes the function of observed TEC 

only as follows
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In order to apply the environmental parameters as well as the observed TEC, the LSR is used to 

define the extrapolation function. We can assume that the input variables have a linear relationship 

with the following output variables;

xHy = (13)

where the output variable is the extrapolated TEC at i-th outside point as

( )
iextpIy = (14)

The input variable consists of the observed TECs and the environment variables:

[ ]eobs xIx = (15)

The mapping matrix H maps the input variables to the output variables. The least square equation can 

be rewritten with individual terms as follows
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The LSR problem is to determine the set of coefficients ic by fitting past data at the extrapolation area.

Habarulema [3] tested the LSR to predict TEC variation, but the observed TEC values were not used 

for the LSR. Only the six coefficients from 1Nc + to 6Nc + were estimated.
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The LSR problem is to determine the set of coefficients ci 

by fitting past data at the extrapolation area. Habarulema [3] 

tested the LSR to predict TEC variation, but the observed TEC 

values were not used for the LSR. Only the six coefficients 

from cN+1 to cN+6 were estimated.
  

3.3 Neural Network (NN)

The NN is a statistical learning model and has a similar 

structure to the biological neural network. A NN is composed 

of neurons and synapses, and neurons are interconnected 

(64~72)15-127.indd   66 2016-03-29   오후 7:26:42



67

Mingyu Kim    Extending Ionospheric Correction Coverage Area By Using A Neural Network Method

http://ijass.org

with synapses which store weights. A NN can solve the 

problem by changing the weights from the learning of the 

neurons [11, 12]. 

The back-propagation neural network (BPNN) is one 

of the most widely used NN’s. It is a feed-forward, multi-

layer perceptron (MLP), supervised learning network [13]. 

The feed-forward network maps sets of input onto a set of 

output data. A MLP consist of multiple layers, with each layer 

connected to the next one. In the Input-output mapping 

process, activation function or transfer functions are 

involved. The activation functions determine the activation 

of inputs from the previous layer. The supervised learning 

method consists of a learning task which infers a function 

from the training data when the input-output relationships 

are known or pre-defined [14]. Learning the NN is generally 

performed by computing a gradient descent, using back-

propagation [3]. The BPNN is applied to define the function 

f(Iobs, xe). 

Figure 1 illustrates the network architecture. All the N 

observed TEC and another 6 environmental parameters are 

mapped to one hidden and output layers. After the input-

output and target of the network is set, weight are randomly 

initialized within the range of -1≤w≤1. The network output 

is calculated by combining each weight and activation 

function as
network is set, weight are randomly initialized within the range of 11  w . The network output is 

calculated by combining each weight and activation function as 

    n1n2n10112n1n1nn
net bbbbuWffWfWfy    ,,, 2n1nn  (17) 

where nety  is network output, f represents the activation function, n represents n-th layer, 

u represents the network inputs, and b represents network bias. 1, nnW represents the weight from 

layer 1n to n . The hyperbolic tangent sigmoid function is one of the most widely used activation 

functions as [15]: 
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Hyperbolic tangent sigmoid function is in the range of )1,1( , and y is zero when x is zero. The 

network can be characterized as calculating the weights of a network such that the following mean 

squared error (MSE) is minimized: 
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where e is MSE, y is the reference output or desired output, and N is number of data. The NN 

training is based on minimization of the MSE of reference output minus number of data as described 

in eq. (19). In the case of this paper, y is the TEC value outside the observation region. 

The training stands for the process of updating and computing of the gradients of weights and 

biases. There are many types of training methods such that gradient descent method, Bayesian 

regularization, Levenberg-Marquardt method, etc [15]. In this paper, the Levenberg-Marquardt 

method is selected. In general, the network data is divided into three subsets: training, validation, and 

test set. The reason for dividing the network is in order to be able to reduce the memory used for the 

computation, as well as to avoid over-fitting. The training set is used for calculating the gradient and 

updating the network weights. The validation set is monitored during the training process to minimize 

over-fitting. A test set is used only for testing the final solution. In this paper, training, validation, and 

the test set is allocated to 70%, 15% and 15%, respectively. The difference from Habarulema’s NN 

prediction method [3] is in the presence of the observation TECs. His NN prediction algorithm 

utilizes the environmental parameters only. 
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Fig. 1.  Neural network architecture for ionosphere map extrapolation

4. DATA PROCESSING

The extrapolation performance is dependent on the data characteristics, and it is important to use 

a realistic data for evaluating the extrapolation performance. IGS provides a global ionosphere map by 

using globally distributed ground network data. Thanks to its large number of observations and 

advanced processing algorithms, it is reasonable to use the IGS map data as a truth value.

 

Fig. 2. Observation and estimation areas of ionospheric delay data

Figure 2 illustrates the observation data area (square) and the extrapolation data area (circle) near 

the Korean peninsula. The latitude of the observation area ranges from N25˚ to N50˚, and the 

longitude ranges from E110˚ to E145˚. The observation area is approximately close to the area where 

the GNSS satellites are visible at the center of Korea with a mask angle of 5˚. The grid size is 5˚ for 

both the latitude and longitude. The IGS map grid size is different for the latitude and longitude; 2.5˚

along the latitude and 5˚ along the longitude. For the other regional ionosphere maps, an equal grid 

size is generally used. For example, SBAS has a grid size of 5˚ along both the latitude and longitude. 

For general applications, an equal 5˚ grid size is used for the latitude and longitude directions in this 

research. The extrapolation area is set as two types; 5˚ and 10˚. Fig. 2 shows the 5° and 10°

extrapolation area. In the case of the 5° extrapolation area, the latitude of the North and South 

Fig. 2.  Observation and estimation areas of ionospheric delay data
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global ionosphere map by using globally distributed ground 

network data. Thanks to its large number of observations 

and advanced processing algorithms, it is reasonable to use 

the IGS map data as a truth value.

Figure 2 illustrates the observation data area (square) 

and the extrapolation data area (circle) near the Korean 

peninsula. The latitude of the observation area ranges from 

N25˚ to N50˚, and the longitude ranges from E110˚ to E145˚. 

The observation area is approximately close to the area where 

the GNSS satellites are visible at the center of Korea with a 

mask angle of 5˚. The grid size is 5˚ for both the latitude and 

longitude. The IGS map grid size is different for the latitude 

and longitude; 2.5˚ along the latitude and 5˚ along the 

longitude. For the other regional ionosphere maps, an equal 

grid size is generally used. For example, SBAS has a grid 

size of 5˚ along both the latitude and longitude. For general 

applications, an equal 5˚ grid size is used for the latitude and 

longitude directions in this research. The extrapolation area 

is set as two types; 5˚ and 10˚. Fig. 2 shows the 5° and 10° 

extrapolation area. In the case of the 5° extrapolation area, 

the latitude of the North and South extrapolation areas are 

55° and 20°, respectively (longitude from 110° to 145°). The 

latitude of North and South direction and the longitude of 

East and West 10° extrapolation area are 5° extended from 5° 

extrapolation area. The number of observed TEC points is 54 

and the number of extrapolated TEC points is 28.

The ionospheric delays at 5˚ or a 10˚ area are 

estimated every two hours by using both observation and 

environmental data. The ionospheric delay in 2014, when 

the geomagnetic index Ap was very high and the ionospheric 

variation was very high, is selected for this evaluation. 

Previous research [7] showed that the extrapolation during 

low geomagnetic activity, e.g. 2007, yielded a relatively 

low extrapolation error. In contrast the high ionospheric 

activity period yielded a high extrapolation error, and then 

this research focuses on the high activity period, 2014.  The 

Solar sun spot number varies with an approximately 11 year 

cycles, and the ionospheric variation behavior repeats every 

11 years. For training the LSR and NN processors, 11 years of 

data, which are solar/geomagnetic indices and TEC values 

inside and outside the observed region, from January 1, 2003 

to December 31, 2013 are used. In the training process, the 

coefficients which mapping the TEC of the inside region and 

environmental parameters to the TEC of the outside region 

are calculated. It takes approximately two hours for training 

with 11 years data. Since the main purpose of this thesis is to 

demonstrate the feasibility of the TEC extrapolation using a 

NN, the post-processing NN method is used instead of a real-

time NN method.

The NN prediction results depend on the number of 

hidden neurons. If the number of hidden neurons is too 

high, an overfitting problem occurs and it causes longer 

computation time. If the number of hidden neurons is too 

low, the problem becomes an ill-conditioned problem. 

Because there are no criteria for the range of hidden layer 

size, the layer size is determined empirically. By changing 

the layer size, the estimation errors are computed and 

compared. Based on these trial and errors, the number of 

hidden neurons is set to 80.

The length of the moving average windows for the Sun 

spot number R and the geomagnetic index are determined 

empirically as well. After a series of experiments were 

conducted by changing the window length, the moving 

average window for R is set to 7 months and the window for 

Ap is set to 8 hours.

 

5. Results

Three extrapolation methods, BHS, LSR, and NN, are 

tested for the evaluating the estimation accuracy. One-day 

data is analyzed to figure out the characteristics of each 

method, and then one-year data is analyzed to compute 

statistical values. 

5.1 Single-day analysis

Extrapolation error characteristics on September 8, 2014 

are analyzed. This date is selected because the geomagnetic 

activity on this date is close to the daily mean value and the 

24 hour ionospheric variation is close to the overall variation.   

Figure 3 illustrates the ionospheric delay distribution 

of East Asia at 6 universal time (UT) on Semptember 8, 

2014. The local time is 15 Korea standard time (KST), and 

the ionospheric delay is close to its peak. In the South, 

the equatorial anomaly is passing and it causes a high 

5. RESULTS

Three extrapolation methods, BHS, LSR, and NN, are tested for the evaluating the estimation 

accuracy. One-day data is analyzed to figure out the characteristics of each method, and then one-year 

data is analyzed to compute statistical values.

5.1 Single-day analysis

Extrapolation error characteristics on September 8, 2014 are analyzed. This date is selected 

because the geomagnetic activity on this date is close to the daily mean value and the 24 hour 

ionospheric variation is close to the overall variation.  

Fig. 3. Ionospheric delay distribution of East Asia (6UT, September 8, 2014, unit= TECU)

Figure 3 illustrates the ionospheric delay distribution of East Asia at 6 universal time (UT) on 

Semptember 8, 2014. The local time is 15 Korea standard time (KST), and the ionospheric delay is 

close to its peak. In the South, the equatorial anomaly is passing and it causes a high ionospheric delay 

in the South region. The North-South direction has a large ionospheric spatial gradient in the daytime 

while the East-West direction has a small gradient [16].

Fig. 3.  Ionospheric delay distribution of East Asia (6UT, September 8, 
2014, unit= TECU)
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ionospheric delay in the South region. The North-South 

direction has a large ionospheric spatial gradient in the 

daytime while the East-West direction has a small gradient 

[16]. 

Figure 4 shows the TEC variation during a 24 hour period 

on September 8, 2014. This TEC value is labeled as ‘signal’ and 

plotted for each direction. The TEC values at the midpoint of 

each 5° extrapolation area is presented for every two hours. 

The midpoints of North, South, East, and West are (N55°, 

E125°), (N20°, E125°), (N40°, E105°), and (N40°, E150°), 

respectively. The TEC has a maximum value at 6 or 8 UT and 

has a minimum value around 20 UT. The South point shows 

the largest TEC and the North point shows the smallest TEC. 

The ionospheric delay computed from the GPS broadcast is 

presented for reference. The difference between the signal 

TEC and broadcast TEC represents the ionospheric model 

error of the broadcast model. The estimated TEC using 

extrapolation methods should provide better results than 

this broadcasted TEC. 

Figure 5 compares the estimation errors using the three 

methods. One of the extrapolation points at the 5° area is 

selected for evaluation. The evaluation point is located at 

(N20°, E125°) which is the center of the South extrapolation 

area. Since the South area has the largest TEC values and the 

largest extrapolation error, this South point is selected for the 

evaluation. The extrapolated TEC value is subtracted from 

the true IGS TEC value in order to compute the estimation 

error. BHS yields the largest TEC error while NN yields the 

smallest TEC error. The RMS error is 13.88 TECU for BHS 

and 40.04 TECU for NN, respectively. The RMS error of the 

LSR error is 5.581 TECU, between the two methods. The 

maximum error occurs between 12 and 14 UT when the TEC 

level is decreasing from the peak at around 6 UT.

Figure 6 compares the estimation errors at the 10˚ 

extrapolation area. The center of the South 10˚ area is selected 

for evaluation. Similar to the results found at 5˚, the NN 

shows the smallest error level. The BHS error reaches up to 

25 TECU, and one can conclude that BHS is not appropriate 

for the 10˚ extrapolation area.

The estimation error depends on the TEC variation, and 

the ionospheric errors in each direction are presented in Fig. 

7. The estimation errors by NN are plotted. The midpoint 

of each 5˚ extrapolation area is selected for evaluation. The 

South point yields the largest error. The North point yields 

the second largest error; larger than the East or West point. 

Considering the lowest TEC level in the North area, this 

error level is not expected because the extrapolation error 

is usually proportional to the TEC level. One of the possible 

causes of the relatively large error is the ionospheric spatial 

gradient. The North-South direction has a larger gradient 

than the East-West direction does. The gradient implies 
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Figure 5 compares the estimation errors using the three methods. One of the extrapolation points at the 

5° area is selected for evaluation. The evaluation point is located at (N20°, E125°) which is the center 

of the South extrapolation area. Since the South area has the largest TEC values and the largest 

extrapolation error, this South point is selected for the evaluation.  The extrapolated TEC value is 

subtracted from the true IGS TEC value in order to compute the estimation error. BHS yields the 

largest TEC error while NN yields the smallest TEC error. The RMS error is 13.88 TECU for BHS

and 40.04 TECU for NN, respectively. The RMS error of the LSR error is 5.581 TECU, between the 

two methods. The maximum error occurs between 12 and 14 UT when the TEC level is decreasing 

from the peak at around 6 UT.
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Figure 6 compares the estimation errors at the 10˚ extrapolation area. The center of the South 10˚ area 

is selected for evaluation. Similar to the results found at 5˚, the NN shows the smallest error level. The 

BHS error reaches up to 25 TECU, and one can conclude that BHS is not appropriate for the 10˚

extrapolation area.

Fig. 6.  Estimation error variation on September 8, 2014 (10o extension)
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(September 8, 2014, 5 ﾟ extension)

The estimation error depends on the TEC variation, and the ionospheric errors in each direction are

presented in Fig. 7. The estimation errors by NN are plotted. The midpoint of each 5˚ extrapolation 

area is selected for evaluation. The South point yields the largest error. The North point yields the

second largest error; larger than the East or West point. Considering the lowest TEC level in the North 

area, this error level is not expected because the extrapolation error is usually proportional to the TEC 

level. One of the possible causes of the relatively large error is the ionospheric spatial gradient. The 

North-South direction has a larger gradient than the East-West direction does. The gradient implies a

spatial difference and the large gradient magnifies the extrapolation error. Both the North and South 

points have positive errors, which imply the estimated TEC is larger than the true TEC.

5.2 One year analysis

One year of estimation error is analyzed by using the three methods. The estimation period is from 

January 1, 2014 to December 31, 2014. Similar to like the single-day analysis, 11 years of data from 

2003 to 2011 are used for training the NN and LSR. Year 2014 is near the Solar maximum and its 

daily TEC level is higher than that of preceding years, close to 2003 when many severe ionosphere 

storms happened.

Fig. 7.  Estimation error variation for each direction by the NN method 
(September 8, 2014,  5o extension)
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a spatial difference and the large gradient magnifies the 

extrapolation error. Both the North and South points have 

positive errors, which imply the estimated TEC is larger than 

the true TEC.

5.2 One year analysis

One year of estimation error is analyzed by using the three 

methods. The estimation period is from January 1, 2014 to 

December 31, 2014. Similar to like the single-day analysis, 11 

years of data from 2003 to 2011 are used for training the NN 

and LSR. Year 2014 is near the Solar maximum and its daily 

TEC level is higher than that of preceding years, close to 2003 

when many severe ionosphere storms happened.

Figure 8 compares the daily estimation error variations 

at the South of the 5˚ extrapolation area in 2014. A 

midpoint at (N55˚, E125˚) is selected for computing the 

daily RMS errors. Similar to the single-day results, the NN 

outperforms the other two methods. The one-year averages 

of the RMS errors are 1.70 TECU for LSR, and 1.47TECU for 

NN, respectively. The difference between the BHS and the 

other methods becomes significant in Spring and Fall. This 

seasonal error variation corresponds to the seasonal TEC 

variation. During the high TEC period, the BHS error level 

is very proportional to the TEC level, and its error grows 

significantly.

Figure 9 shows the daily estimation error variation at 

the North of 5˚ extrapolation area in 2014. The overall error 

level and the difference between the BHS and the others 

are not significant at the North area. From these plots, 

one can conclude that the BHS error level depends on the 

signal (TEC) magnitude. Actually, in Fig. 10, the ionospheric 

delay is high at Spring and Autumn, but low at Summer and 

Winter. The variation of the true TEC value is similar to the 

BHS error variation. During high ionospheric delay periods, 

the BHS is not appropriate for the extrapolation, although it 

is still better than the GPS broadcast model.
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Figure 8 compares the daily estimation error variations at the South of the 5˚ extrapolation area in 

2014. A midpoint at (N55˚, E125˚) is selected for computing the daily RMS errors. Similar to the 

single-day results, the NN outperforms the other two methods. The one-year averages of the RMS 

errors are 1.70 TECU for LSR, and 1.47TECU for NN, respectively. The difference between the BHS

and the other methods becomes significant in Spring and Fall. This seasonal error variation

corresponds to the seasonal TEC variation. During the high TEC period, the BHS error level is very 

proportional to the TEC level, and its error grows significantly.
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Fig. 8.  Daily RMS error variation at the South midpoint in 2014 (5o ex-
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Figure 8 compares the daily estimation error variations at the South of the 5˚ extrapolation area in 

2014. A midpoint at (N55˚, E125˚) is selected for computing the daily RMS errors. Similar to the 

single-day results, the NN outperforms the other two methods. The one-year averages of the RMS 

errors are 1.70 TECU for LSR, and 1.47TECU for NN, respectively. The difference between the BHS

and the other methods becomes significant in Spring and Fall. This seasonal error variation

corresponds to the seasonal TEC variation. During the high TEC period, the BHS error level is very 

proportional to the TEC level, and its error grows significantly.
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Figure 9 shows the daily estimation error variation at the North of 5˚ extrapolation area in 2014. The 

overall error level and the difference between the BHS and the others are not significant at the North 

area. From these plots, one can conclude that the BHS error level depends on the signal (TEC) 

magnitude. Actually, in Fig. 10, the ionospheric delay is high at Spring and Autumn, but low at 

Summer and Winter. The variation of the true TEC value is similar to the BHS error variation. During 

high ionospheric delay periods, the BHS is not appropriate for the extrapolation, although it is still 

better than the GPS broadcast model.
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Fig. 10.  Daily mean variation of IGS TEC map at the North midpoint in 
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Figure 9 shows the daily estimation error variation at the North of 5˚ extrapolation area in 2014. The 

overall error level and the difference between the BHS and the others are not significant at the North 

area. From these plots, one can conclude that the BHS error level depends on the signal (TEC) 

magnitude. Actually, in Fig. 10, the ionospheric delay is high at Spring and Autumn, but low at 

Summer and Winter. The variation of the true TEC value is similar to the BHS error variation. During 

high ionospheric delay periods, the BHS is not appropriate for the extrapolation, although it is still 

better than the GPS broadcast model.
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The error reduction by either NN or LSR is magnified in Fig. 11, which shows the daily estimation 

error variation at the West of 5˚ extrapolation area in 2014. Both the NN and LSR have a very low 

level of RMS error while the BHS has a high level of RMS error, even greater than the North point 

error. This plot proves that either the NN or LSR is efficient where the spatial ionospheric gradient is 

low. The estimation error at East point shows the similar results as the West point.

0

10

20

30

40

50

60

0 61 122 183 244 305 366

BHS
LSR
NN

Io
no

. D
el

ay
 E

rr
or

 (T
EC

U
)

Time(Day of year)

(N20o, E125o)
2014        South        10o

Fig. 12. Daily RMS error variation at the South midpoint in 2014 (10 ﾟ extension)

Figure 12 shows the daily estimation error variation at the South of 10˚ extrapolation area in 2014.

The pattern of the error variation and relative error difference is similar to the 5˚ results in Fig. 8. The 

error magnitude is approximately twice of the 5˚ results.

Table 1. One-year mean of daily estimation RMS errors by the extrapolation methods and GPS 

broadcast message (unit=TECU)

Estimation 

region

5 ˚ 10 ˚

BRDC BHS LSR NN BRDC BHS LSR NN

Fig. 12.  Daily RMS error variation at the South midpoint in 2014 (10o 
extension)
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The error reduction by either NN or LSR is magnified in 

Fig. 11, which shows the daily estimation error variation 

at the West of 5˚ extrapolation area in 2014. Both the NN 

and LSR have a very low level of RMS error while the BHS 

has a high level of RMS error, even greater than the North 

point error. This plot proves that either the NN or LSR is 

efficient where the spatial ionospheric gradient is low. The 

estimation error at East point shows the similar results as 

the West point.

Figure 12 shows the daily estimation error variation at 

the South of 10˚ extrapolation area in 2014. The pattern of 

the error variation and relative error difference is similar to 

the 5˚ results in Fig. 8. The error magnitude is approximately 

twice of the 5˚ results.

The estimation error is computed at all 24 extrapolation 

points and then RMS error is computed at each point. The 

extrapolation points are grouped into four directions and 

5˚/10˚ area. One-year average of each group’s RMS error 

is presented in Table 1. The broadcast model error is also 

presented for comparison. All three methods outperform the 

broadcast model and it demonstrates the usefulness of the 

methods. The NN yields the smallest error in both 5˚ and 10˚ 

area. The total error reduction by the NN over the LSR is 20% 

for 5˚ area and 23% for 10˚ area. The differences between LSR 

and NN are 0.040 m for South 5˚, 0.140 m for South 10˚, 0.024 

m for 5˚ extrapolation area, and 0.080 m for 10˚ extrapolation 

area. These errors cannot be ignored depending on the 

applications e.g. SBAS application which acceptable error 

is less than 0.4 m. The South area shows the largest error 

among the four directions. The standard deviation of the 

RMS error, not shown in the table, has the largest value at the 

South area. Therefore, irregularity of the RMS error is most 

significant at the South area. 

6. Conclusions

The coverage area of GNSS regional ionospheric correction 

model is mainly determined by the distribution of GNSS 

ground monitoring stations. Extending the coverage area is 

tested by applying extrapolation techniques. We proposed 

an extrapolation methodology combining two types of input 

data, observed TEC and environmental parameters. Three 

methods, BHS, LSR, and NN, are tested to evaluate the 

extrapolation accuracy of the ionospheric delay corrections 

outside the correction coverage area. IGS ionosphere map 

data is used to simulate the corrections and to compute 

the extrapolation error statistics. The observed TEC and 

environmental parameters are used for training the NN and 

for fitting the LSR. One solar cycle data, i.e. 11 years of data, 

is used for the training and fitting. 

Among the three methods, NN method yields the best 

accuracy. One year average of daily RMS error is 0.60 TECU 

at 5˚ extrapolation area and 1.69 TECU at 10˚ extrapolation 

area. The LSR’s accuracy level is lower than the NN but 

significantly better than the BHS. The BHS error level is 

proportional to the observed TEC level, but the NN or LSR 

error level shows less correlation with the observed TEC 

level. The estimation error is increased during Spring and 

Fall. The error has a large value in South and North sides. 

All the three methods outperform the GPS broadcast 

ionospheric model. 
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The error reduction by either NN or LSR is magnified in Fig. 11, which shows the daily estimation 

error variation at the West of 5˚ extrapolation area in 2014. Both the NN and LSR have a very low 

level of RMS error while the BHS has a high level of RMS error, even greater than the North point 

error. This plot proves that either the NN or LSR is efficient where the spatial ionospheric gradient is 

low. The estimation error at East point shows the similar results as the West point.
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Figure 12 shows the daily estimation error variation at the South of 10˚ extrapolation area in 2014.

The pattern of the error variation and relative error difference is similar to the 5˚ results in Fig. 8. The 

error magnitude is approximately twice of the 5˚ results.

Table 1. One-year mean of daily estimation RMS errors by the extrapolation methods and GPS 

broadcast message (unit=TECU)

Estimation 

region

5 ˚ 10 ˚

BRDC BHS LSR NN BRDC BHS LSR NN

North 6.99 1.20 0.40 0.32 6.88 4.39 1.27 0.98

West 9.01 1.89 0.20 0.19 9.11 5.04 0.61 0.58

South 21.70 3.94 1.27 1.00 22.97 13.43 3.65 2.78

East 8.02 1.71 0.19 0.21 8.11 4.44 0.52 0.54

Total 11.85 2.68 0.75 0.60 12.61 8.83 2.19 1.69

 

The estimation error is computed at all 24 extrapolation points and then RMS error is computed at 

each point. The extrapolation points are grouped into four directions and 5˚/10˚ area. One-year 

average of each group’s RMS error is presented in Table 1. The broadcast model error is also 

presented for comparison. All three methods outperform the broadcast model and it demonstrates the 

usefulness of the methods. The NN yields the smallest error in both 5˚ and 10˚ area. The total error 

reduction by the NN over the LSR is 20% for 5˚ area and 23% for 10˚ area. The differences between 

LSR and NN are 0.040 m for South 5o, 0.140 m for South 10o, 0.024 m for 5o extrapolation area, and 

0.080 m for 10o extrapolation area. These errors cannot be ignored depending on the applications e.g. 

SBAS application which acceptable error is less than 0.4 m. The South area shows the largest error 

among the four directions. The standard deviation of the RMS error, not shown in the table, has the 

largest value at the South area. Therefore, irregularity of the RMS error is most significant at the 

South area. 
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