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Abstract

The characteristics of the SBAS satellite orbit and clock corrections are highly affected by the narrow network size in the 

Korean peninsula, which is expected to have an important role in the future dual frequency SBAS. The correlation between 

satellite corrections can be analyzed in terms of the spatial decorrelation effect which should be analyzed to keep the service 

area as wide as possible. In this paper, the characteristics of satellite error corrections for the potential Korean dual frequency 

SBAS were analyzed, and an optimal filter design approach is proposed to maximize the service area.
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1. Introduction

WADGPS (Wide Area Differential GPS) or its international 

standard the SBAS (Satellite Based Augmentation System) 

is designed to overcome the spatial decorrelation problem 

of the LADGPS (Local Area Differential GPS) by enhancing 

the number of reference stations and to provide integrity 

for avionic applications. However this does not mean that 

the SBAS removes the spatial decorrelation perfectly from 

the system. Actually we can observe rapid performance 

degradation at the reference station network boundary in 

various papers [1], [2]. Technically it comes from a strong 

correlation between the orbit and clock corrections as we can 

expect from the SISRE (Signal-In-Space Range Error) equation 

previously described [3]. By processing the WAAS (Wide Area 

Augmentation System) and IGS (International GNSS Service) 

data, we can observe that the WAAS corrected UREs (User 

Range Error) have better performance than individual WAAS 

corrected satellite orbit or clock errors described elsewhere 

[4].

The spatial decorrelation effect in the SBAS corrections 

will be a more notable issue in the Korean SBAS (e.g. Korea 

Augmentation Satellite System, a.k.a. KASS) due to the 

relatively narrow network size in the Korean peninsula. 

In the near future, SBAS implementations such as WAAS 

and EGNOS (European Geostationary Navigation Overlay 

Service) are expected to be upgraded to a dual-frequency 

system. Possibly, the KASS might have a plan to support 

the L1-L5 dual frequency after its successful certification. 

In the dual-frequency SBAS, the spatial decorrelation of 

satellite related corrections will be a major key to limiting 

the service area.  

In this paper we analyzed the characteristics of the satellite 

orbit and clock corrections of the Korean SBAS and suggested 

a filter design approach to minimize the spatial decorrelation 

in the future dual-frequency application. For the simulation, 

we used the high rate GPS RINEX (Receiver Independent 

Exchange Format) data from the USUD IGS station in Japan 

and from several reference stations belonging to the National 

Geographic Information Institute (NGII) in Korea.

2. Characteristics of SBAS/GBAS corrections

2.1 GBAS corrections

In the GBAS (Ground-based Augmentation System) such 

as the U.S. LAAS (Local Area Augmentation System) or 

Korean National wide DGPS, correction data are generated 
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from a single reference station in the form of a scalar value 

assuming the user is collocated with the reference station. 

The corrections or common errors become spatially 

decorrelated as the user moves away from the collocated site. 

As previously described [5], the error in the correction 

from the separation between the user and the reference 

station is simplified to equation (1), assuming an elevation 

angle greater than 10° and that the separation is less than 

1,000 km.

Figure 1. Satellite orbit correction in the GBAS

As previously described [5], the error in the correction from the separation between the user and the 

reference station is simplified to equation (1), assuming an elevation angle greater than 10° and that 

the separation is less than 1,000 km.
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Here, the estimated satellite position error is εs, the distances of the user to the satellite is d, and the 

distance between the reference station and the user is p, and the elevation angle is Φ. Equation (1) 

corresponds to euser2ᆞδxsv - euser1ᆞδxsv in Fig. 1. Based on this simplified model for the GBAS, the 

range accuracy degradation due to the spatial decorrelation is limited to a few centimeter in rms 

within the Korean peninsula. However it is impossible to uncorrelate the satellite orbit error from the 

others in the GBAS correction data; thus, the service area limitation due to the spatial effect is still the 

main drawback of the system. 

2.2 SBAS corrections in the Korean peninsular

2.2.1 Minimum variance estimator
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, where Λ0 is the true a priori covariance; Λ is the true a posteriori covariance; H is the 

observation matrix; W is the weight matrix, and δρ is the observation data vector. The observation 

matrix is assumed as a known and nonrandom function of time. The observation vector corresponds to 

the residual pseudo range in the SBAS and is assumed as zero-mean random noise. If the noise is the 

Gaussian, the MV is also the maximum likelihood estimator.

The true a priori covariance matrix Λ0 has a relationship with the employed a priori covariance 

matrix Λ’0 shown in equation (4) [7].

EΛΛ += −− 1
0
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Here, E is an inverse error term in the employed a priori covariance matrix for which the size is p-

by-p. Equation (3) becomes the true a posteriori covariance matrix ignoring the error in the a priori 
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Here, the estimated satellite position error is εs, the distances of the user to the satellite is d, and the 
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PRC of user1 calculated from the estimated corrections has the same value as that of the true error. 
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is in the spatial error.

3.  Kinematic filter for satellite orbit and clock 
error estimation

In this paper, we used the Kalman filter in the form of 

the full vector as suggested previously [9], [10] to estimate 

satellite related errors. The state vector is defined as follows:
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correction estimation and the ODTS problem is whether the reference station network is global. 

The geometrical size of the reference station network of the SBAS is relatively small compared to 

that of the global GPS monitoring station network, which causes error in the estimated orbit and clock 

correction. Especially, the network size in the Korean peninsula is too narrow in terms of satellites 

orbiting in a 20,000 km radius, which causes an observation matrix that is extremely sensitive to noise, 

i.e., mathematically results in a bad DOP (Dilution of Precision) or bad condition number. Because 

the bad DOP can increase the correction data up to the km level, the use of the MV estimator is 

inevitable in the Korean network mentioned in section 2.2.1. However, we would like to highlight that 

the MV estimator output to reduce the very large correction data for the SBAS standard message size 

is absolutely not optimum and might be far from true error. As described in Fig. 2, the more different 

the estimated orbit parameters are from the true data, the greater the increase is in the spatial error.
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, where the Imm is a m-by-m identity matrix. Ii has unit values at i-th column and zero at others. For 

the simulation a linear kinematic Kalman filter was used with equations (11) and (12). In equation 

(12), In is defined as zero because the relative clock bias will be estimated in the filter.

Within the framework of this research, the FOM (Figure of Merit) to evaluate the spatial 

decorrelation effects upon the users is the positioning (horizontal) error. However, as an indirect 

evaluation method, the integrity information including the user location effects can be used, and we

decided to use the UDRE (User Differential Range Error) related values.
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Equation (13) is defined to be broadcasted from a GEO satellite in the form of the UDREI, and a 

detailed description can be found in the SBAS standard [11]. The implementation and definition of 

equation (14) are based on a description previously reported [12]. In equation (14) the covariance 

matrix C is defined to be broadcasted from a GEO as the message type 28.

4. Service area extension for the fast/long term corrections 

The extreme cases explained in section 2.2.1 and the descriptions for Fig. 2 in section 2.2.2 are very 
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satellite in the form of the UDREI, and a detailed description 

can be found in the SBAS standard [11]. The implementation 

and definition of equation (14) are based on a description 

previously reported [12]. In equation (14) the covariance 

matrix C is defined to be broadcasted from a GEO as the 

message type 28.

4.  Service area extension for the fast/long 
term corrections

The extreme cases explained in section 2.2.1 and the 

descriptions for Fig. 2 in section 2.2.2 are very helpful to 

understand the characteristics of the SBAS correction when 

implemented with the minimum variance estimator. If the 

a priori covariance has an error in the matrix, definitely the 

estimates from equation (2) are not optimum. The non-

optimum correction data from the SBAS might cause a 

performance degradation due to the spatial decorrelation, 

which is dependent on the error in the a priori covariance. 

Because it is impossible to know the true a priori data for 

all epochs, we defined two representative scenarios in this 

paper to check the effect of the a priori data on the spatial 

decorrelation in the SBAS.

Scenario 1 :  set the a posteriori covariance matrix similar to 

the real covariance

Scenario 2 :  set the a priori covariance matrix similar to the 

real covariance

Regarding scenario 1, the idea is that the range accuracy 

degradation due to the spatial decorrelation is small in the 

GBAS discussed in section 2.1. In section 2.2.1, we described 

that as E → ∞, the minimum variance estimator assumes that 

the satellite navigation system has a negligible broadcast 

orbit error. It implies that the a posteriori covariance in 

scenario 1 would be relatively small. Scenario 2 is designed 

to provide an a priori covariance similar to or larger than 

the statistical data if possible. We expect that the currently 

operational SBAS implementation such as the WAAS uses 

the latter configuration.

To compare the two scenarios above, we used real GPS 

observation data to simulate possible Korean SBAS messages. 

The observation data from five NGII reference stations were 

downloaded to estimate the correction data and to encode 

the standard SBAS message. The selected stations were 

located at Jindo, Sejong, Busan, Inje, and Ganghwa. Our 

concern was to extend the service area of the SBAS user 

by minimizing the certified SBAS algorithm modification 

when it starts the dual frequency service in the near future. 

To analyze the effect on the service area extension, an IGS 

station outside of the service area was selected as a user 

under test. Among the IGS stations in the East Asia area, the 
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only IGS station providing high rate data is the USUD station 

in Japan. The selected station provides L1/L2 dual frequency 

observables as 1-Hz in the form of the RINEX. 

In Fig. 4, the estimation results for the satellite orbit 

errors are plotted in meters assuming the scenario 1 

configuration. A priori information for the orbit error is 

assumed approximately 0.05 m per each coordinate axis, 

which means that the filter assigned a very high confidence 

to the GPS broadcast ephemeris. The post processing 

results for 18 hours of RINEX data were used for all visible 

satellites. The results show that the a posteriori covariance 

element has a higher value than that of the a priori at 

approximately 0.4 m, which is similar to the rms error of the 

current block vehicles. In Fig. 4, a few outliers reaching up to 

about 4 ~ 5 m are the filter outputs from the rising satellites, 

i.e., values before the converging. Except for the peaks, the 

estimated orbit errors mostly stay within a two-meter level. 

The satellite orbit error estimate results in Fig. 5 follow the 

scenario 2 configuration. For the a priori covariance of 

the second configuration, the orbit errors are assumed to 

be approximately 3 m per each coordinate, which is a few 

times larger than the statistics of the GPS satellite orbit 

error shown in Fig. 3. In Fig. 5, the results show that the a 

posteriori error is 11.7 m, which is a very large error and 

is relative to that of the statistics in Fig. 3. Except for a few 

outliers corresponding to rising satellites, the estimated 

orbit errors are within about 100 m. Because the orbit 

correction value per each axis has an effective range of ±128 

m by the SBAS standard [11], the outliers should be cut off 

at the effective range limit before composing the correction 

message. 

In Fig. 6 and Fig. 7, the estimated satellite clock corrections 

are shown for each scenario. The results show that the a 

posteriori errors are 0.1 m and 0.4 m each. For both of the 

cases, the clock error statistics are lower than those of the SIS 

statistics in Fig. 3. The erective range of the clock correction 

in the SBAS standard is -256 ~ 255.875 m. In both scenarios, 

there was no saturation in the clock estimates which can be 

seen in the figures. Although there were some outliers from 

Fig. 4 to Fig. 7, it does affect the SBAS operation because 

the SBAS correction message composer will not include 

corrections corresponding rising satellites for a given time.

The residual error associated with the fast and long-term 

corrections is characterized by the σflt which is defined as 

equation (15) in the SBAS standard [11].

Figure 7. Satellite clock corrections estimated – scenario 2

The residual error associated with the fast and long-term corrections is characterized by the σflt
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Here. the epsilon ε denotes the degradation factor. As described in the previous sub-section, the 

Kalman filter is defined in the form of the full vector, which means the root square sum RSSUDRE is 

zero. In the simulation, the degradation factors are assumed as zero because integrity is outside of the 

scope of this paper. Assuming zero degradation factors, the variation σflt is a function of the broadcast 

UDRE σUDRE and the location specific modifier δUDRE. Therefore, we can use equation (15) as an 

indirect measure to analyze the spatial decorrelation effects of the SBAS correction messages in this 

paper. 

In Fig. 8 and Fig. 9 snapshot of the residual σflt is plotted for each scenario. We can see that there is 

negligible residual variation in Fig. 8 while the estimated correction error in and out of the network 

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
x 105

-40

-20

0

20

40

60

80

Sa
te

lli
te

 c
lo

ck
 c

or
re

ct
io

ns
 [m

]

GPS Time(sec)

13 

(15)

Here. the epsilon ε denotes the degradation factor. As described 

in the previous sub-section, the Kalman filter is defined in the 

form of the full vector, which means the root square sum RSSUDRE 

is zero. In the simulation, the degradation factors are assumed 
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Fig. 4.  Satellite orbit corrections estimated – Scenario 1

Figure 5. Satellite orbit corrections estimated – scenario 2

In Fig. 6 and Fig. 7, the estimated satellite clock corrections are shown for each scenario. The 

results show that the a posteriori errors are 0.1 m and 0.4 m each. For both of the cases, the clock error 

statistics are lower than those of the SIS statistics in Fig. 3. The erective range of the clock correction 

in the SBAS standard is -256 ~ 255.875 m. In both scenarios, there was no saturation in the clock 

estimates which can be seen in the figures. Although there were some outliers from Fig. 4 to Fig. 7, it 

does affect the SBAS operation because the SBAS correction message composer will not include 

corrections corresponding rising satellites for a given time.

Figure 6. Satellite clock corrections estimated – scenario 1
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Fig. 5.  Satellite orbit corrections estimated – scenario 2

Figure 5. Satellite orbit corrections estimated – scenario 2

In Fig. 6 and Fig. 7, the estimated satellite clock corrections are shown for each scenario. The 

results show that the a posteriori errors are 0.1 m and 0.4 m each. For both of the cases, the clock error 

statistics are lower than those of the SIS statistics in Fig. 3. The erective range of the clock correction 

in the SBAS standard is -256 ~ 255.875 m. In both scenarios, there was no saturation in the clock 

estimates which can be seen in the figures. Although there were some outliers from Fig. 4 to Fig. 7, it 

does affect the SBAS operation because the SBAS correction message composer will not include 

corrections corresponding rising satellites for a given time.

Figure 6. Satellite clock corrections estimated – scenario 1
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Fig. 6.  Satellite clock corrections estimated – scenario 1

Figure 7. Satellite clock corrections estimated – scenario 2

The residual error associated with the fast and long-term corrections is characterized by the σflt

which is defined as equation (15) in the SBAS standard [11].
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Here. the epsilon ε denotes the degradation factor. As described in the previous sub-section, the 

Kalman filter is defined in the form of the full vector, which means the root square sum RSSUDRE is 

zero. In the simulation, the degradation factors are assumed as zero because integrity is outside of the 

scope of this paper. Assuming zero degradation factors, the variation σflt is a function of the broadcast 

UDRE σUDRE and the location specific modifier δUDRE. Therefore, we can use equation (15) as an 

indirect measure to analyze the spatial decorrelation effects of the SBAS correction messages in this 

paper. 

In Fig. 8 and Fig. 9 snapshot of the residual σflt is plotted for each scenario. We can see that there is 

negligible residual variation in Fig. 8 while the estimated correction error in and out of the network 
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Fig. 7.  Satellite clock corrections estimated – scenario 2
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of the broadcast UDRE σUDRE and the location specific modifier 

δUDRE. Therefore, we can use equation (15) as an indirect 

measure to analyze the spatial decorrelation effects of the SBAS 

correction messages in this paper. 

In Fig. 8 and Fig. 9 snapshot of the residual σflt is plotted 

for each scenario. We can see that there is negligible residual 

variation in Fig. 8 while the estimated correction error in and 

out of the network has a larger value by about 0.1 m in Fig. 9. 

Please note that a change in covariance of the observables 

and satellite geometry could affect the values of σflt, and 

the variation might be larger than this snapshot example. 

From Fig. 8 and Fig. 9 we can infer that the position error of 

scenario 2 could be larger than that of scenario 1.

In Fig. 10 and Fig. 11, the horizontal errors are plotted 

to directly compare the performance. The legend written as 

L1/L2 SBAS in the two figures means that the ionospheric 

delay is removed by the dual frequency technique without 

applying the SBAS ionospheric correction. Because 

the ionospheric delay can be assumed to be canceled 

out by 99% or more, we can infer that the performance 

difference between the two figures comes from the 

spatial decorrelation effect of the satellite orbit and clock 

correction only. The horizontal errors (CEP) in scenario 1 

and scenario 2 are 0.62 m and 1.09 m each. The elevation 

mask is set to 10 degrees for user.

Detailed positioning performance is listed in Table 1 for 

comparison. Due to the carrier smoothing process in the 

user navigation module and the high quality of the RINEX 

observables, the USUD IGS station standalone performance 

is quite good in the horizontal. However, we can see that the 

vertical position error is relatively large due to the ionospheric 

delay error of the Klobuchar model. For both of the scenarios, 

the performance of the SBAS positioning is clearly better than 

that of the Standalone positioning. From the table, we can see 

that the positioning errors of scenario 2 are poor and have twice 

the w.r.t. compared to the scenario 1 results in all directions. 

From results, we can conclude that the a priori covariance of the 

filter should be configured to make the a posteriori covariance 

close to the SIS statistics to reduce the effects of the spatial 

decorrelation for the SBAS of the Korean peninsula.

5. Conclusion

In this paper, the characteristics of the satellite orbit 

and clock corrections of the WADGPS were analyzed, and has a larger value by about 0.1 m in Fig. 9. Please note that a change in covariance of the observables 

and satellite geometry could affect the values of σflt, and the variation might be larger than this 

snapshot example. From Fig. 8 and Fig. 9 we can infer that the position error of scenario 2 could be 

larger than that of scenario 1.

Figure 8. σflt w/o degradation factor – scenario 1

Figure 9. σflt w/o degradation factor – scenario 2
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Fig. 8.  σflt w/o degradation factor – scenario 1

has a larger value by about 0.1 m in Fig. 9. Please note that a change in covariance of the observables 

and satellite geometry could affect the values of σflt, and the variation might be larger than this 

snapshot example. From Fig. 8 and Fig. 9 we can infer that the position error of scenario 2 could be 

larger than that of scenario 1.

Figure 8. σflt w/o degradation factor – scenario 1

Figure 9. σflt w/o degradation factor – scenario 2
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Fig. 9.  σflt w/o degradation factor – scenario 2

legend written as L1/L2 SBAS in the two figures means that the ionospheric delay is removed by the 

dual frequency technique without applying the SBAS ionospheric correction. Because the ionospheric 

delay can be assumed to be canceled out by 99% or more, we can infer that the performance 

difference between the two figures comes from the spatial decorrelation effect of the satellite orbit and 

clock correction only. The horizontal errors (CEP) in scenario 1 and scenario 2 are 0.62 m and 1.09 m 

each. The elevation mask is set to 10 degrees for user.

Figure 10. Horizontal error in ENU – scenario 1

Figure 11. Horizontal error in ENU – scenario 2
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Fig. 10.  Horizontal error in ENU – scenario 1

legend written as L1/L2 SBAS in the two figures means that the ionospheric delay is removed by the 

dual frequency technique without applying the SBAS ionospheric correction. Because the ionospheric 

delay can be assumed to be canceled out by 99% or more, we can infer that the performance 

difference between the two figures comes from the spatial decorrelation effect of the satellite orbit and 

clock correction only. The horizontal errors (CEP) in scenario 1 and scenario 2 are 0.62 m and 1.09 m 

each. The elevation mask is set to 10 degrees for user.
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Fig. 11.  Horizontal error in ENU – scenario 2

Table 1. Positioning performance comparison

Detailed positioning performance is listed in Table 1 for comparison. Due to the carrier smoothing 

process in the user navigation module and the high quality of the RINEX observables, the USUD IGS 

station standalone performance is quite good in the horizontal. However, we can see that the vertical 

position error is relatively large due to the ionospheric delay error of the Klobuchar model. For both 

of the scenarios, the performance of the SBAS positioning is clearly better than that of the Standalone 

positioning. From the table, we can see that the positioning errors of scenario 2 are poor and have 

twice the w.r.t. compared to the scenario 1 results in all directions. From results, we can conclude that 

the a priori covariance of the filter should be configured to make the a posteriori covariance close to 

the SIS statistics to reduce the effects of the spatial decorrelation for the SBAS of the Korean 

peninsula.

Table 1 Positioning performance comparison

RMS East [m] North [m] Up [m]
Standalone 1.12 1.52 5.42

SBAS (scenario1) 0.56 0.54 1.45
SBAS (scenario2) 0.93 1.00 3.29

5. Conclusion 

In this paper, the characteristics of the satellite orbit and clock corrections of the WADGPS were 

analyzed, and a filter design approach was proposed to minimize the spatial decorrelation effect of the 

satellite error corrections. A simulation was conducted with the high rate RINEX data from the 

National Geographic Information Institute and the IGS. Positioning and integrity results show that 

dual-frequency users can keep accurate navigation performance in the service area boundary by 

optimizing the a priori information of the filter. In case the a priori covariance is close to the SIS 

statistics, SBAS corrections experience large spatial decorrelations. However, the spatial effects are 

reduced well when the a posteriori covariance is close to the SIS statistics.
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large spatial decorrelations. However, the spatial effects are 

reduced well when the a posteriori covariance is close to the 

SIS statistics.

References

[1] Yun, H., Kee, C. and Kim, D., “Korean Wide Area 

Differential Global Positioning System Development Status 

and Preliminary Test Results”, International Journal of 

Aeronautical and Space Science, Vol. 12, No. 3, 2011, pp. 274-

282.

[2] Yun, H., Han, D. and Kee, C., “A Preliminary Study 

of Korean Dual-Frequency SBAS”, Journal of Positioning, 

Navigation, and Timing, Vol. 3, No. 1, 2014, pp. 11-16.

[3] Montenbruck, O., Gill, E. and Kroes, R., “Rapid 

orbit determination of LEO satellites using IGS clock and 

ephemeris products”, GPS Solution, Vol. 9, 2005, pp. 226-235.

[4] Rho, H. and Langley, R., “The Usefulness of WADGPS 

Satellite Orbit and Clock Corrections for Dual-Frequency 

Precise Point Positioning”, Proceeding of the 20th 

International Technical Meeting of the Satellite Division of 

The Institute of Navigation, Fort Worth, TX, September 2007, 

pp.939-949.

[5] Kaplan, E. D., Understanding GPS, Principles and 

Applications, Artech House, 1996.

[6] Tsai, Y. J., Wide Area Differential Operation of the Global 

Positioning System: Ephemeris and Clock Algorithms, Ph.D. 

thesis, Aug., 1999, Stanford University

[7] Soong, T., “On A Priori Statistics in Minimum Variance 

Estimation Problems”, Transaction of ASME, Series D, 

Journal of Basic Engineering, Vol. 87, 1965, pp. 109-112.

[8] Heng, L., Gao, G. X., Walter, T. and Enge, P., 

“Statistical Characterization of GPS Signal-In-Space Errors”, 

International Technical Meeting 2011

[9] Kee, C., Walter, T., Chao, Y., Tsai, Y., Enge, P. and 

Pakinson, W., “Comparison of Master Station and User 

Algorithms for Wide-Area Augmentation System”, Journal 

of Guidance, Control, and Dynamics, Vol. 20, No. 1, January-

February 1997.

[10] Han, D., Yun, H. and Kee, C., “Performance analysis of 

WA-DGNSS in Korea with the selection of reference stations”, 

Journal of Port Res. Vol. 37, No. 4, 2013, pp. 367-373.

[11] MOPS, Minimum Operational Performance Standards 

for Global Positioning System / Wide Area Augmentation 

System Airborne Equipment, RTCA DO-229D, Dec. 13, 2006, 

RTCA, Inc.

[12] Walter, T., Hansen, A. and Enge, P., “Message Type 28”, 

Proceedings of the 2001 National Technical Meeting of The 

Institute of Navigation, Lone Beach, CA, January 2001, pp. 

522-532.

(73~79)15-129.indd   79 2016-03-29   오후 7:27:48


