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Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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for tail-controlled missiles. The inner loop is an adaptive angle-of-attack tracking loop and the outer loop is the traditional PI 

controller for error compensation. A systematic low-pass filter design procedure is provided for minimum phase system and 

is applied to the inner loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under various conditions.

Key words: 

1

Missile two-loop acceleration autopilot design based on 1L

adaptive output feedback control

He Shao-ming1

Beijing Institute of Technology, Beijing, People’s Republic of China 

Lin De-fu2

Beijing Institute of Technology, Beijing, People’s Republic of China 

Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.

Key words: 1L adaptive output feedback control, Autopilot, low-pass filter

1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-

                                                          
1 Graduate Student, Corresponding author: shaoming.he.cn@gmail.com
2 Associate Professor 

Received: January 8, 2014  Revised : March 7, 2014  Accepted: March  15, 2014 

 adaptive output feedback control, Autopilot, low-pass filter

1. Introduction

Due to the wide parameter variation and stringent 

performance requirements, missile autopilot design is a 

challenging task. The traditional method of guaranteeing 

stability in the presence of aerodynamic parameter variation 

or uncertainty is the gain scheduling control strategy. Modern 

air-to-air or surface-to-air missiles need large and uncertain 

flight envelopes, for which accurate aerodynamic parameters 

are difficult or extremely expensive to obtain from wind 

tunnel tests; also, the gain scheduling controllers need more 

operating points. The control objective for these missiles is to 

ensure accurate interception, with guaranteed robustness, 

without sacrificing maneuverability. For this purpose, many 

advanced modern control theories have been extensively 

studied by numerous researchers to address this problem.

The authors in [1] designed an adaptive angle-of-attack 

missile autopilot based on Model Reference Adaptive Control 

(MRAC) and a neural network. However, this scheme cannot 

compensate for unmatched uncertainties. Some 
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aerodynamic parameters are difficult or extremely expensive to obtain from wind tunnel tests; also, 

the gain scheduling controllers need more operating points. The control objective for these missiles is 

to ensure accurate interception, with guaranteed robustness, without sacrificing maneuverability. For 

this purpose, many advanced modern control theories have been extensively studied by numerous 

researchers to address this problem. 

The authors in [1] designed an adaptive angle-of-attack missile autopilot based on Model Reference 

Adaptive Control (MRAC) and a neural network. However, this scheme cannot compensate for 

unmatched uncertainties. Some H  design schemes are also offered in [2], but these autopilots may 

not have satisfactory performance in some operational points, since H  method considers the ‘worst 

case’ in the design procedure.. In [3], the authors designed a novel dynamic inversion (DI) 

architecture through output redefinition (i.e., a combination of angle of attack and pitch rate as output 

instead of the typical acceleration), which they augmented using a neural network. Based on two-time 

scale separation, the authors in [4] designed a 1L  adaptive state feedback augmented DI autopilot. In 

[5], the time-delay control and nonlinear observer were adopted for the design of a new angle-of-

attack autopilot. Using sliding mode control theory and a PI controller, the authors in [6] designed a 

two-loop acceleration autopilot, where the inner loop is a sliding mode control (SMC) based angle-of-

attack tracking loop and the outer loop is the PI acceleration tracking loop. In [7], adaptive SMC 

theory is used to design a model-following missile pitch autopilot to reject model uncertainty and 

disturbance, and the well-known classical PI-type autopilot is constructed as the reference model. In 

[8], the authors designed a new robust autopilot based on predictive functional control (PFC) to deal 

with the high nonlinearity of agile missiles while considering the control constraints. A new 

backstepping autopilot, which guarantees the uniform ultimate boundness, has also been proposed [9]. 

In [10], the extended observer is utilized to increase the robustness of the input-output linearization 

based controller 

This article considers 1L  adaptive output feedback control [11, 12], in missile acceleration autopilot 
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augmented DI autopilot. In [5], the time-delay control and 

nonlinear observer were adopted for the design of a new 

angle-of-attack autopilot. Using sliding mode control theory 

and a PI controller, the authors in [6] designed a two-loop 

acceleration autopilot, where the inner loop is a sliding mode 

control (SMC) based angle-of-attack tracking loop and the 

outer loop is the PI acceleration tracking loop. In [7], adaptive 

SMC theory is used to design a model-following missile pitch 

autopilot to reject model uncertainty and disturbance, and 

the well-known classical PI-type autopilot is constructed as 

the reference model. In [8], the authors designed a new robust 

autopilot based on predictive functional control (PFC) to deal 

with the high nonlinearity of agile missiles while considering 

the control constraints. A new backstepping autopilot, which 

guarantees the uniform ultimate boundness, has also been 

proposed [9]. In [10], the extended observer is utilized to 

increase the robustness of the input-output linearization 

based controller
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[11, 12], in missile acceleration autopilot design. The key 

feature of 
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 adaptive control is that it allows fast adaptation 

without losing robustness. The speed of this architecture is 

only limited by the available hardware, while robustness 

is maintained by introducing a low-pass filter. Therefore, 

this architecture can guarantee transient performance as 

well as robustness without introducing any high frequency 

chattering in the control signal in the presence of large 

adaptation gain. The major difference between output 

feedback and state feedback [4] architectures is that the 

uncertainty is not decoupled and enters directly into the 

underlying transfer functions; therefore, the output feedback 

scheme has the potential to relax the matching uncertainty 

assumption. For tail-controlled missiles, the dynamics 

which describe a missile acceleration are known to be non-

minimum phase. Although the 
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controller can be applied to these systems, the low-pass 

filter and reference model selection that satisfy the closed-

loop stability criteria are quite limited and the performance 

cannot be guaranteed. In order to avoid this problem, 

we presented a two-loop architecture autopilot, which 

contains an adaptive angle-of-attack tracking inner loop 

and an acceleration tracking outer loop. For the inner loop, 

a systematic low-pass filter design procedure is provided. 

The stability of the 
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 adaptive controller is verified through 

Kharitonov theorem. For the outer loop, the traditional PI 

controller is introduced to compensate the acceleration 

error. The simulation results under various conditions show 

that the proposed autopilot is more advantageous in the 

presence of external time-varying disturbances.

This paper is organized as follows. Sec. 2 provides the 

missile model and some preliminaries of 
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 adaptive control. 

A systematic low-pass filter procedure is presented in Sec. 3. 

Sec. 4 gives the details of the autopilot design process while 

Sec. 5 shows some numerical simulations. Finally, some 

conclusions are offered in Sec. 6.

2. Problem Formulation

2.1 Missile Model

For tail-controlled, aerodynamic symmetrical, skid-to-

turn, cruciform-type missiles, under the small perturbation 

assumption, their pitch channel equations can be formulated 

as [13]:

y

b b
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where α denotes the angle-of-attack, ϑ the body pitch angle, γ the flight path angle, δ the 

actuator deflection angle, ya the missile lateral acceleration, the definitions of aerodynamic 

coefficients can be seen in [13].

2.2 Preliminaries of 1L  Output Feedback Control

Consider the following single-input-single-output (SISO) system:

( ) ( ) ( ) ( )( )y s A s u s d s= +                                                            (2)

where ( )y s and ( )u s are the Laplace transforms of the system’s output and input signals, 

respectively, ( )A s is a strictly proper unknown transfer function with known relative degree, 

( )d s is the Laplace transform of the time-varying uncertainties ( ) ( )( ),d t f t y t= , for which there 

exist constants and L , 0L , 1L , 2L , 3L , such that
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The control objective is to find a control law such that ( ) ( ) ( )y s M s u s≈ , where ( )M s  

denotes the reference model. Note that the system in (1) can be rewritten in terms of reference model:

( ) ( ) ( ) ( )( )y s M s u s sσ= +                                                           (4)

where ( ) ( ) ( )( ) ( ) ( ) ( ) ( )/s A s M s u s A s d s M sσ  = − +  . Let ( ), , T
m m mA b c be the minimum 

realization of. Further, since mA  is Hurwitz, there exists 0TP P= >  that satisfies the following 

Lyapunov function:

T
m mA P PA Q+ = − , 0TQ Q= >                                                        (5)
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 
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problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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where ( )1 sTγ and ( )2 sTγ are computable bound, which can be reduced arbitrarily small by 

decreasing the sampling time sT .
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Consider the following general form of a low-pass filter: 
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where 0   is the time constant of the low-pass filter; ,k l  are positive integers subject to 

0l k  ; and 0 0a b .

(15)
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where 0   is the time constant of the low-pass filter; ,k l  are positive integers subject to 
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where 0   is the time constant of the low-pass filter; ,k l  are positive integers subject to 
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Consider the following general form of a low-pass filter: 
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where 0   is the time constant of the low-pass filter; ,k l  are positive integers subject to 

0l k  ; and 0 0a b .
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Consider the following general form of low-pass filter:
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where 0τ > is the time constant of the low-pass filter; ,k l are positive integers subject to 

0l k− > ; and 0 0a b= .

7 

(19)

where τ>0 is the time constant of the low-pass filter; k, l are 

positive integers subject to 1-k>0; and a0=b0.

From Eq. 18, it can be found that 
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rejection. Also, from the form of Eq. 19, one can imply that  
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In [14], the authors reveal that the architecture of the 1L  adaptive output feedback control is 

equivalent to that of the disturbance observer (DOB). Therefore, the necessary and sufficient robust 

stability criteria of DOB in [15] can be applied to the low-pass filter design of the 1L  adaptive output 

feedback control, which is summarized in the following lemma. 

Lemma 2. Let  A s  belong to the following transfer function set: 
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where ,n r  are positive integers and , , ,li ui li ui     are known constants that satisfy  0 ,li ui 

and  0 ,li ui  . A constant 0    exists such that for all 0     ,  H s  is stable if the 

following two conditions hold:

i)  M s  and  A s P  are minimum phases and have the same relative degree; 

ii)      
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 is a Hurwitz equation for all 

 A s P .

where  ;1dC s  and  ;1nC s  denote the denominator and the numerator of the low-pass filter for 

1  , respectively. 

Proof. See the proof of Theorem 3 in [15]. 

From Eq. 19 and Lemma 2, one can imply that a positive constant 0   always exists, such that 

condition (11) holds. In order to compute the exact value of 0 , we introduced the well-known 

Kharitonov theorem: 
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Based on the above analysis, the systematic low-pass filter design procedure is summarized as:

Step 1: Choosing a possible candidate low-pass filter and checking the Hurwitz condition of ( )fp s ;

Step 2: Using Lemma 3 and MATLAB polynomial toolbox [17] to calculate the value of τ ∗ ;

Step 3: Decreasing τ from τ ∗ to obtain the exact value of 0τ such that condition (11) holds. 

4. Autopilot Design

For tail-controlled missiles, the transfer function from fin deflection to lateral acceleration has 

right-half-plane (RHP) zeros, thus, it is a non-minimum phase system and the condition i) in Lemma 2 

is violated. Therefore, in order to use the above procedure to design the missile acceleration autopilot,

a novel two-loop autopilot architecture which has a 1L  angle-of-attack tracking inner loop and a PI 

outer loop is introduced. The block is shown in Fig.1.

4.1 Inner Loop Design

Assumption 1. For angle-of-attack tracking, we omit the term bδδ in equation (32). Note that, in 

most cases, the actuator deflection is used to produce moment to control the missile attitude, hence 

bδδ is very small [10, 13].
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Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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 angle-of-attack tracking inner loop and a PI outer loop is 

introduced. The block is shown in Fig. 1.

4.1 Inner Loop Design

Assumption 1. For angle-of-attack tracking, we omit 

the term bδδ in equation (32). Note that, in most cases, the 

actuator deflection is used to produce a moment to control 

the missile attitude, hence bδδ is very small [10, 13].

After some algebra calculations, we have

10 

 
   2

s a
s s a b s a a b



    







   
                (23) 

The reference model for angle-of-attack tracking is selected as 

  2
1

2 1m

m m

M s
s s
 


 

  
 

                  (24) 

where the natural frequency and damping ratio are set as 8 and 0.707 , respectively. 
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where  and  are the two tuning parameters. Note that a more complex low-pass filter can be 

chosen to improve the closed-loop performance, which is an open problem. 

4.2 Outer Loop Design 

Although the exact relation between angle-of-attack and lateral acceleration can be derived, the 

exact missile model is difficult to obtain. In order to compensate the acceleration errors, the traditional 

PI controller in conjunction with Particle Swarm optimization (PSO) algorithms [18] is adopted, 

where the cost function is selected as 
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where 1 2 3, , 0k k k  , such that 1 2 3 1k k k   , st  denotes the settling time and sdt  denotes the desire

d settling time. 

5. Simulation Results 

In this section, the performance of the proposed adaptive autopilot is verified via numerical 

simulations. The missile aerodynamic parameters are taken from [19] and are 1.6b  , 0.23b  ,

250a  , 280a  , and 1.5a  . The scaling factors in the cost function are selected as 

(23)
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where τ and α are the two tuning parameters. Note that a 

more complex low-pass filter can be chosen to improve the 

closed-loop performance, which is an open problem.
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4.2 Outer Loop Design

Although the exact relation between angle-of-attack and 

lateral acceleration can be derived, the exact missile model 

is difficult to obtain. In order to compensate the acceleration 

errors, the traditional PI controller in conjunction with 

Particle Swarm optimization (PSO) algorithms [18] is 

adopted, where the cost function is selected as
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where k1, k2, k3>0, such that k1+k2+k3=0, ts denotes the settling 

time and tsd  denotes the desired settling time.

5. Simulation Results

In this section, the performance of the proposed adaptive 

autopilot is verified via numerical simulations. The missile 

aerodynamic parameters are taken from [19] and are bα=1.6,  

bδ=0.23, aα=250, aδ=280 and aω=1.5. The scaling factors 

in the cost function are selected as k1=0.2, k2=0.6, k3=0.2 

and the sampling time Ts is set as 0.001s. Based on the 

design procedure given in Sec. 3 and the multi-objective 

optimization problem presented in Sec. 4.2, the low-pass 

filter and PI controller are obtained as:
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where pK  and IK  denote the proportional constant and integral constant, respectively.  

4.1 Inner Loop Performance 

First, the effectiveness of the inner angle-of-attack tracking loop is demonstrated in the presence of 

aerodynamic parameter uncertainty. The angle-of-attack response and control effort are plotted in Figs. 

2 and 3, respectively, where K denotes +K perturbation in a , b , and a , and –K perturbation in 

a  and b . These figures show that the proposed inner loop has a satisfactory tracking performance 

in the presence of model uncertainties. 

Next, the simulations are carried out in the presence of nonlinear disturbances, wherein the 

following form of disturbance is selected: 
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Figs. 4 and 5 present the angle-of-attack response and control effort profiles, respectively. It can be 

seen that the fast adaptation of the 1L  adaptive controller guarantees smooth and uniform transient 

performance in the presence of time-varying disturbance. Furthermore, the frequency in the control 

signal matches the frequency of the selected time-varying disturbance for which the controller is 

intended to compensate. 

Finally, the effects of sampling rate and bandwidth of the low-pass filter on the closed-loop 

performance are investigated. Figs. 6 and 7 present the angle-of-attack response and tracking error for 

different sampling rates. It can be seen that the tracking error can be reduced by decreasing the 

sampling rate if hardware is available. However, the improvement of the tracking error is very limited 

when the sampling rate is less than 0.001s; therefore, 0.001s is selected in the above simulations. 

(27)

where Kp and KI denote the proportional constant and 

integral constant, respectively. 

5.1 Inner Loop Performance

First, the effectiveness of the inner angle-of-attack tracking 

loop is demonstrated in the presence of aerodynamic 

parameter uncertainty. The angle-of-attack response and 

control effort are plotted in Figs. 2 and 3, respectively, 

where K denotes +K perturbation in aα, bα, and aω, and 

–K perturbation in aδ and bδ. These figures show that the 

proposed inner loop has a satisfactory tracking performance 

in the presence of model uncertainties.

Next, the simulations are carried out in the presence 

of nonlinear disturbances, wherein the following form of 

disturbance is selected:
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Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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1 2 30.2, 0.6, 0.2k k k    and the sampling time sT  is set as 0.001s. Based on the design procedure 

given in Sec. 3 and the multi-objective optimization problem presented in Sec. 4.2, the low-pass filter 

and PI controller are obtained as: 

  2
1
1.582 1

250 250

C s
s s


    
 

, 5=1.417 10pK  , 0.003871IK              (27) 

where pK  and IK  denote the proportional constant and integral constant, respectively.  

4.1 Inner Loop Performance 

First, the effectiveness of the inner angle-of-attack tracking loop is demonstrated in the presence of 

aerodynamic parameter uncertainty. The angle-of-attack response and control effort are plotted in Figs. 

2 and 3, respectively, where K denotes +K perturbation in a , b , and a , and –K perturbation in 

a  and b . These figures show that the proposed inner loop has a satisfactory tracking performance 

in the presence of model uncertainties. 

Next, the simulations are carried out in the presence of nonlinear disturbances, wherein the 

following form of disturbance is selected: 

       0.1sin 100 0.05sin 150 0.5 degd t t t y t                  (28) 

Figs. 4 and 5 present the angle-of-attack response and control effort profiles, respectively. It can be 

seen that the fast adaptation of the 1L  adaptive controller guarantees smooth and uniform transient 

performance in the presence of time-varying disturbance. Furthermore, the frequency in the control 

signal matches the frequency of the selected time-varying disturbance for which the controller is 

intended to compensate. 

Finally, the effects of sampling rate and bandwidth of the low-pass filter on the closed-loop 

performance are investigated. Figs. 6 and 7 present the angle-of-attack response and tracking error for 

different sampling rates. It can be seen that the tracking error can be reduced by decreasing the 

sampling rate if hardware is available. However, the improvement of the tracking error is very limited 

when the sampling rate is less than 0.001s; therefore, 0.001s is selected in the above simulations. 

(28)

Figs. 4 and 5 present the angle-of-attack response and 

control effort profiles, respectively. It can be seen that the fast 

adaptation of the 
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 adaptive controller guarantees smooth 

and uniform transient performance in the presence of time-

varying disturbance. Furthermore, the frequency in the 

control signal matches the frequency of the selected time-

varying disturbance for which the controller is intended to 

compensate.

Finally, the effects of sampling rate and bandwidth of the 

low-pass filter on the closed-loop performance are investigated. 

Figs. 6 and 7 present the angle-of-attack response and tracking 

error for different sampling rates. It can be seen that the 

tracking error can be reduced by decreasing the sampling 

rate if hardware is available. However, the improvement of the 

tracking error is very limited when the sampling rate is less than 

0.001s; therefore, 0.001s is selected in the above simulations. 

Then, another low-pass filter is selected as:

12 

Then, another low-pass filter is selected as: 

 1 2
1

1.4 1
120 120

C s
s s


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 

                        (29) 

Figs. 8 and 9 give the bode diagram and the angle-of-attack response in both low-pass filters. It can 

be seen that the closed-loop performance under  C s  is superior. Since the bandwidth of  C s  is 

larger than that of  1C s , more errors can be canceled out. However, if the chosen bandwidth of the 

low-pass filter is too small, the robustness of the closed loop adaptive controller will reduce 

significantly. 

4.1 Outer Loop Performance 

In order to investigate the performance of the proposed autopilot, some comparisons with the 

classical three-loop autopilot [20] are made in this part, where the parameters of the three-loop 

autopilot are selected as: time constant 0.2s, second order damping ratio 0.9, and crossover frequency 

45rad/s.

Figs. 10 and 11 provide the acceleration response for both autopilots in the nominal case and in the 

presence of time-varying disturbance and 20% aerodynamic parameter uncertainty, respectively, 

where the time-varying disturbance is chosen arbitrarily as: 

     0.5sin 100 0.3sin 150 degd t t t                    (30) 

As shown in these two figures, both autopilots show satisfactory performance in the nominal case, 

and the 1L  adaptive autopilot shows nearly the same response as that in the nominal case while the 

classical three-loop autopilot, not surprisingly, shows a different response since, unlike the adaptive 

autopilot, the classical three-loop autopilot does not have an estimation loop to estimate the external 

disturbance. Note that  d t  is only restricted in the Lipschitz norm; therefore, the 1L  adaptive 

autopilot is more advantageous in the presence of actuator failures and other exogenous disturbances. 

6. Conclusion 

This paper considers 1L  adaptive output feedback control theory to the application of autopilot 

(29)

Figs. 8 and 9 give the bode diagram and the angle-of-

attack response in both low-pass filters. It can be seen that 

the closed-loop performance under C(s) is superior. Since 

the bandwidth of C(s) is larger than that of C1(s), more errors 

can be canceled out. However, if the chosen bandwidth of 

the low-pass filter is too small, the robustness of the closed 

loop adaptive controller will reduce significantly.

5.2 Outer Loop Performance

In order to investigate the performance of the proposed 

autopilot, some comparisons with the classical three-loop 

autopilot [20] are made in this part, where the parameters of 

the three-loop autopilot are selected as: time constant 0.2s, 

second order damping ratio 0.9, and crossover frequency 

45rad/s.

Figs. 10 and 11 provide the acceleration response for 
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of time-varying disturbance and 20% aerodynamic 
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autopilot are selected as: time constant 0.2s, second order damping ratio 0.9, and crossover frequency 

45rad/s.

Figs. 10 and 11 provide the acceleration response for both autopilots in the nominal case and in the 

presence of time-varying disturbance and 20% aerodynamic parameter uncertainty, respectively, 

where the time-varying disturbance is chosen arbitrarily as: 

     0.5sin 100 0.3sin 150 degd t t t                    (30) 

As shown in these two figures, both autopilots show satisfactory performance in the nominal case, 

and the 1L  adaptive autopilot shows nearly the same response as that in the nominal case while the 

classical three-loop autopilot, not surprisingly, shows a different response since, unlike the adaptive 

autopilot, the classical three-loop autopilot does not have an estimation loop to estimate the external 

disturbance. Note that  d t  is only restricted in the Lipschitz norm; therefore, the 1L  adaptive 

autopilot is more advantageous in the presence of actuator failures and other exogenous disturbances. 

6. Conclusion 

This paper considers 1L  adaptive output feedback control theory to the application of autopilot 

(30)

As shown in these two figures, both autopilots show 

satisfactory performance in the nominal case, and the 
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Abstract 

This article documents the design of a novel two-loop acceleration autopilot based on 1L adaptive

output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack 

tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic 

low-pass filter design procedure is provided for minimum phase system and is applied to the inner 

loop design while the parameters of the outer loop are obtained from the multi-objective optimization 

problem. The effectiveness of the proposed autopilot is verified through numerical simulations under 

various conditions.
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1. Introduction 

Due to the wide parameter variation and stringent performance requirements, missile autopilot 

design is a challenging task. The traditional method of guaranteeing stability in the presence of 

aerodynamic parameter variation or uncertainty is the gain scheduling control strategy. Modern air-to-
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 adaptive autopilot shows nearly the same response as 

that in the nominal case while the classical three-loop 

autopilot, not surprisingly, shows a different response 

since, unlike the adaptive autopilot, the classical three-loop 

autopilot does not have an estimation loop to estimate the 

external disturbance. Note that d(t) is only restricted in the 

Lipschitz norm; therefore, the 
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 adaptive autopilot is more 

advantageous in the presence of actuator failures and other 

exogenous disturbances.

6. Conclusion

This paper considers 
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 adaptive output feedback control 

theory to the application of autopilot design for tail-controlled 

missiles. The proposed architecture has two loops: the inner 

loop is an adaptive angle-of-attack tracking loop and the 

outer loop is the traditional PI controller loop. Numerical 

simulation results show that the 
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 adaptive autopilot is more 

advantageous in the presence of time-varying disturbances. 

However, since the closed-loop adaptive system is nonlinear 

and time-varying, classical stability criteria such as a phase 

margin cannot be applied to the stability analysis. Although 

some time-delay margin calculation algorithms exist [21-

23], many of these are conservative and the exact value of 

time-delay is difficult to calculate, which is the main limit for 

the practical application of adaptive control.
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