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Abstract

In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic 

orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged 

spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each 

direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we 

can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the 

components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The 

numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which 

may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored 

for passive control.
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1. Introduction

An important aspect of the attitude dynamics of a 

spacecraft is the control of its attitude motion. Recently, a 

novel attitude orientation and formation flying concept using 

electrostatic propulsion has been proposed in [1], [2], and 

[3]. The charge of the spacecraft is controlled, to generate 

inter-spacecraft Coulomb forces. Such forces can be used to 

re-orient, or attract or repel the spacecraft from each other, 

and thus control their relative attitude motion. Studying the 

electrostatic charging data of the geostationary SCATHA 

spacecraft 7, it became evident that it is possible to generate 

forces of the order of 10–1000

2 
 

to generate inter-spacecraft Coulomb forces. Such forces can be used to re-orient, or attract or 

repel the spacecraft from each other, and thus control their relative attitude motion. Studying 

the electrostatic charging data of the geostationary SCATHA spacecraft 7, it became evident 

that it is possible to generate forces of the order of 10–1000 N [4]. The phenomenon of 

spacecraft surface charging was discovered after the launch of an artificial satellite, and 

therefore the orbital motion of a charged artificial satellite affected by Lorentz force was 

studied by [5], [6] and [7]. Therefore, the Lorentz force is a possible means for charging, and 

thus controlling spacecraft orbits, without consuming propellant. The work in [8] was the first 

to introduce a control scheme using Lorentz augmented orbits. The spacecraft orbits 

accelerated by the Lorentz force are termed Lorentz-augmented orbits, because the Lorentz 

force cannot completely replace the traditional rocket propulsion. After [9], a series of papers 

[10-13] applied charged control techniques to the utilization of Lorentz forces for satellite 

orbit control. 

In [14], the author studied the stability of the equilibrium position due to Lorentz torque, in 

the case of a uniform magnetic field, and cylindrical shape of an artificial satellite, moving in 

circular orbit. In [15], the author investigated the attitude motion of a charged pendulum 

satellite moving in circular orbit, having the shape of a dumbbell pendulum, due to Lorentz 

torque. Their studies of the stability of equilibrium points focused only on pitch position, 

within the equatorial plane. 

In this paper, we develop a new model for the torque due to the Lorentz force, for the general 

shape of a spacecraft moving in an elliptic orbit, in the Earth’s magnetic field. We assume 

that the the Earth’s magnetic field is acting as a dipole. The main objective of this work is to 

study the possibility of using Lorentz force as a source of attitude stabilization. We developed 

components of the Lorentz torque, as functions of orbital elements. This allows us to study 

the relation between translation motion and rotational motion of the spacecraft, which is not 

possible in the case of [15], who considers the spacecraft moving in circular orbit only. The 

equations of motion for the attitude orientation are developed, using Euler-Poisson Equations. 

We investigate the equilibrium positions and its stability separately in the pitch, roll and yaw 

directions. Studying all the three directions is important, because it is not guaranteed that if 

the spacecraft is stable at an equilibrium in one direction, then it will be stable in another 

direction as well, for example the roll direction or yaw direction. In addition, sometimes it is 

also possible to achieve a maneuver in different directions, and therefore the one which 

[4]. The phenomenon of 

spacecraft surface charging was discovered after the launch 

of an artificial satellite, and therefore the orbital motion of 

a charged artificial satellite affected by Lorentz force was 

studied by [5], [6] and [7]. Therefore, the Lorentz force is a 

possible means for charging, and thus controlling spacecraft 

orbits, without consuming propellant. The work in [8] 

was the first to introduce a control scheme using Lorentz 

augmented orbits. The spacecraft orbits accelerated by the 

Lorentz force are termed Lorentz-augmented orbits, because 

the Lorentz force cannot completely replace the traditional 

rocket propulsion. After [9], a series of papers [10-13] applied 

charged control techniques to the utilization of Lorentz forces 

for satellite orbit control.

In [14], the author studied the stability of the equilibrium 

position due to Lorentz torque, in the case of a uniform 

magnetic field, and cylindrical shape of an artificial satellite, 

moving in circular orbit. In [15], the author investigated the 
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attitude motion of a charged pendulum satellite moving in 

circular orbit, having the shape of a dumbbell pendulum, due 

to Lorentz torque. Their studies of the stability of equilibrium 

points focused only on pitch position, within the equatorial 

plane.

In this paper, we develop a new model for the torque due 

to the Lorentz force, for the general shape of a spacecraft 

moving in an elliptic orbit, in the Earth’s magnetic field. We 

assume that the the Earth’s magnetic field is acting as a dipole. 

The main objective of this work is to study the possibility of 

using Lorentz force as a source of attitude stabilization. We 

developed components of the Lorentz torque, as functions of 

orbital elements. This allows us to study the relation between 

translation motion and rotational motion of the spacecraft, 

which is not possible in the case of [15], who considers the 

spacecraft moving in circular orbit only. The equations of 

motion for the attitude orientation are developed, using 

Euler-Poisson Equations. We investigate the equilibrium 

positions and its stability separately in the pitch, roll and yaw 

directions. Studying all the three directions is important, 

because it is not guaranteed that if the spacecraft is stable 

at an equilibrium in one direction, then it will be stable in 

another direction as well, for example the roll direction or 

yaw direction. In addition, sometimes it is also possible to 

achieve a maneuver in different directions, and therefore the 

one which consumes less energy will be chosen. Therefore, 

it is important to know stable equilibriums in all three 

directions. We also identify attitude stabilization parameters, 

and determine the parameter of passive control, using 

Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of 

stabilization, in addition to the components of the radius 

vector of the charge center of a spacecraft, relative to the 

center of mass of the spacecraft. Numerical analysis are is 

used to identify stable and unstable equilibrium positions.

2.  Spacecraft model and Torque due to Lo-
rentz force

2.1 Spacecraft model

A rigid spacecraft is considered, whose center of mass 

moves in the Newtonian central gravitational field of the 

earth, in an elliptic orbit. We suppose that the spacecraft is 

equipped with an electrostatic charged protective shield, 

having an intrinsic magnetic moment. The rotational 

motion of the spacecraft about its center of mass is analyzed, 

considering the influence of gravity gradient torque TG, and 

the torque TL due to Lorentz forces, respectively. The torque   

TL results from the interaction of the geomagnetic field with 

the charged screen of the electrostatic shield.

The rotational motion of the satellite relative to its center 

of mass is investigated in the orbital coordinate system Cx0y0z0
, 

with Cx0
 tangential to the orbit in the direction of motion, 

Cy0
 lying along the normal to the orbital plane, and Cz0 

 lying 

along the radius vector r of the point OE, relative to the center 

of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the 

inertial system, with the angular velocity Ω. The system OXYZ 

is taken as an inertial coordinate system, whose axis OZ(k) is 

directed along the axis of the Earth’s rotation, the axis OX(i) 

is directed toward the ascending node of the orbit, and the 

plane coincides with the equatorial plane. Also, we assume 

that the satellite’s principal axes of inertia Cxbybzb
 are rigidly 

fixed to the satellite (ib, jb, kb). The satellite’s attitude may be 

described in several ways; in this paper, the attitude will be 

described by the angle of yaw 
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consumes less energy will be chosen. Therefore, it is important to know stable equilibriums 

in all three directions. We also identify attitude stabilization parameters, and determine the 

parameter of passive control, using Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of stabilization, in addition to the 

components of the radius vector of the charge center of a spacecraft, relative to the center of 

mass of the spacecraft. Numerical analysis are is used to identify stable and unstable 

equilibrium positions. 

2. Spacecraft model and Torque due to Lorentz force 

2.1   Spacecraft model 

A rigid spacecraft is considered, whose center of mass moves in the Newtonian central 

gravitational field of the earth, in an elliptic orbit. We suppose that the spacecraft is equipped 

with an electrostatic charged protective shield, having an intrinsic magnetic moment. The 

rotational motion of the spacecraft about its center of mass is analyzed, considering the 

influence of gravity gradient torque GT , and the torque LT  due to Lorentz forces, 

respectively. The torque LT  results from the interaction of the geomagnetic field with the 

charged screen of the electrostatic shield. 

The rotational motion of the satellite relative to its center of mass is investigated in the orbital 

coordinate system 
0zoyoxC , with 

oxC  tangential to the orbit in the direction of motion, 
oyC

lying along the normal to the orbital plane, and 
ozC  lying along the radius vector r  of the 

point EO , relative to the center of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the inertial system, with the angular 

velocity  . The system XYZO  is taken as an inertial coordinate system, whose axis )(kOZ

is directed along the axis of the Earth’s rotation, the axis )(iOX  is directed toward the 

ascending node of the orbit, and the plane coincides with the equatorial plane. Also, we 

assume that the satellite’s principal axes of inertia 
bzbybxC  are rigidly fixed to the satellite 

),,( bbb kji . The satellite’s attitude may be described in several ways; in this paper, the attitude 

will be described by the angle of yaw  , the angle of pitch  , and the angle of roll  ,

between the axes 
bzbybxC  and XYZO . The three angles are obtained by rotating satellite axes 

, the angle of pitch 
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consumes less energy will be chosen. Therefore, it is important to know stable equilibriums 

in all three directions. We also identify attitude stabilization parameters, and determine the 

parameter of passive control, using Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of stabilization, in addition to the 

components of the radius vector of the charge center of a spacecraft, relative to the center of 

mass of the spacecraft. Numerical analysis are is used to identify stable and unstable 

equilibrium positions. 

2. Spacecraft model and Torque due to Lorentz force 

2.1   Spacecraft model 

A rigid spacecraft is considered, whose center of mass moves in the Newtonian central 

gravitational field of the earth, in an elliptic orbit. We suppose that the spacecraft is equipped 

with an electrostatic charged protective shield, having an intrinsic magnetic moment. The 

rotational motion of the spacecraft about its center of mass is analyzed, considering the 

influence of gravity gradient torque GT , and the torque LT  due to Lorentz forces, 

respectively. The torque LT  results from the interaction of the geomagnetic field with the 

charged screen of the electrostatic shield. 

The rotational motion of the satellite relative to its center of mass is investigated in the orbital 

coordinate system 
0zoyoxC , with 

oxC  tangential to the orbit in the direction of motion, 
oyC

lying along the normal to the orbital plane, and 
ozC  lying along the radius vector r  of the 

point EO , relative to the center of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the inertial system, with the angular 

velocity  . The system XYZO  is taken as an inertial coordinate system, whose axis )(kOZ

is directed along the axis of the Earth’s rotation, the axis )(iOX  is directed toward the 

ascending node of the orbit, and the plane coincides with the equatorial plane. Also, we 

assume that the satellite’s principal axes of inertia 
bzbybxC  are rigidly fixed to the satellite 

),,( bbb kji . The satellite’s attitude may be described in several ways; in this paper, the attitude 

will be described by the angle of yaw  , the angle of pitch  , and the angle of roll  ,

between the axes 
bzbybxC  and XYZO . The three angles are obtained by rotating satellite axes 

, and 

the angle of roll 
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consumes less energy will be chosen. Therefore, it is important to know stable equilibriums 

in all three directions. We also identify attitude stabilization parameters, and determine the 

parameter of passive control, using Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of stabilization, in addition to the 

components of the radius vector of the charge center of a spacecraft, relative to the center of 

mass of the spacecraft. Numerical analysis are is used to identify stable and unstable 

equilibrium positions. 

2. Spacecraft model and Torque due to Lorentz force 

2.1   Spacecraft model 

A rigid spacecraft is considered, whose center of mass moves in the Newtonian central 

gravitational field of the earth, in an elliptic orbit. We suppose that the spacecraft is equipped 

with an electrostatic charged protective shield, having an intrinsic magnetic moment. The 

rotational motion of the spacecraft about its center of mass is analyzed, considering the 

influence of gravity gradient torque GT , and the torque LT  due to Lorentz forces, 

respectively. The torque LT  results from the interaction of the geomagnetic field with the 

charged screen of the electrostatic shield. 

The rotational motion of the satellite relative to its center of mass is investigated in the orbital 

coordinate system 
0zoyoxC , with 

oxC  tangential to the orbit in the direction of motion, 
oyC

lying along the normal to the orbital plane, and 
ozC  lying along the radius vector r  of the 

point EO , relative to the center of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the inertial system, with the angular 

velocity  . The system XYZO  is taken as an inertial coordinate system, whose axis )(kOZ

is directed along the axis of the Earth’s rotation, the axis )(iOX  is directed toward the 

ascending node of the orbit, and the plane coincides with the equatorial plane. Also, we 

assume that the satellite’s principal axes of inertia 
bzbybxC  are rigidly fixed to the satellite 

),,( bbb kji . The satellite’s attitude may be described in several ways; in this paper, the attitude 

will be described by the angle of yaw  , the angle of pitch  , and the angle of roll  ,

between the axes 
bzbybxC  and XYZO . The three angles are obtained by rotating satellite axes 

, between the axes Cxbybzb
 and OXYZ. The three 

angles are obtained by rotating satellite axes from an attitude 

coinciding with the reference axes, to describe the attitude in 

the following way:

-  The angle of precession 
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consumes less energy will be chosen. Therefore, it is important to know stable equilibriums 

in all three directions. We also identify attitude stabilization parameters, and determine the 

parameter of passive control, using Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of stabilization, in addition to the 

components of the radius vector of the charge center of a spacecraft, relative to the center of 

mass of the spacecraft. Numerical analysis are is used to identify stable and unstable 

equilibrium positions. 
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gravitational field of the earth, in an elliptic orbit. We suppose that the spacecraft is equipped 

with an electrostatic charged protective shield, having an intrinsic magnetic moment. The 

rotational motion of the spacecraft about its center of mass is analyzed, considering the 

influence of gravity gradient torque GT , and the torque LT  due to Lorentz forces, 

respectively. The torque LT  results from the interaction of the geomagnetic field with the 

charged screen of the electrostatic shield. 

The rotational motion of the satellite relative to its center of mass is investigated in the orbital 

coordinate system 
0zoyoxC , with 

oxC  tangential to the orbit in the direction of motion, 
oyC

lying along the normal to the orbital plane, and 
ozC  lying along the radius vector r  of the 

point EO , relative to the center of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the inertial system, with the angular 

velocity  . The system XYZO  is taken as an inertial coordinate system, whose axis )(kOZ

is directed along the axis of the Earth’s rotation, the axis )(iOX  is directed toward the 

ascending node of the orbit, and the plane coincides with the equatorial plane. Also, we 

assume that the satellite’s principal axes of inertia 
bzbybxC  are rigidly fixed to the satellite 

),,( bbb kji . The satellite’s attitude may be described in several ways; in this paper, the attitude 

will be described by the angle of yaw  , the angle of pitch  , and the angle of roll  ,

between the axes 
bzbybxC  and XYZO . The three angles are obtained by rotating satellite axes 

 is taken in the plane orthogonal 

to the Z-axis.

- 
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consumes less energy will be chosen. Therefore, it is important to know stable equilibriums 

in all three directions. We also identify attitude stabilization parameters, and determine the 

parameter of passive control, using Lorentz force for each direction. The analytical solution 

confirms that the charge-to-mass ratio is the main key of stabilization, in addition to the 

components of the radius vector of the charge center of a spacecraft, relative to the center of 

mass of the spacecraft. Numerical analysis are is used to identify stable and unstable 

equilibrium positions. 
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gravitational field of the earth, in an elliptic orbit. We suppose that the spacecraft is equipped 

with an electrostatic charged protective shield, having an intrinsic magnetic moment. The 
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influence of gravity gradient torque GT , and the torque LT  due to Lorentz forces, 

respectively. The torque LT  results from the interaction of the geomagnetic field with the 

charged screen of the electrostatic shield. 

The rotational motion of the satellite relative to its center of mass is investigated in the orbital 

coordinate system 
0zoyoxC , with 

oxC  tangential to the orbit in the direction of motion, 
oyC

lying along the normal to the orbital plane, and 
ozC  lying along the radius vector r  of the 

point EO , relative to the center of the Earth. The investigation is carried out assuming the 

rotation of the orbital coordinate system, relative to the inertial system, with the angular 

velocity  . The system XYZO  is taken as an inertial coordinate system, whose axis )(kOZ

is directed along the axis of the Earth’s rotation, the axis )(iOX  is directed toward the 

ascending node of the orbit, and the plane coincides with the equatorial plane. Also, we 

assume that the satellite’s principal axes of inertia 
bzbybxC  are rigidly fixed to the satellite 
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 is the notation angle between the axes Z and z0

- 

4 
 

from an attitude coinciding with the reference axes, to describe the attitude in the following 

way:

- The angle of precession  is taken in the plane orthogonal to the Z -axis.

-   is the notation angle between the axes Z and .0z

-   is the angle of self -rotation around the Z -axis 

According to [16], we can write the relationship between the reference frames 
bzbybxC  and 

0zoyoxC  as given by the matrix A, which is the matrix of the direction cosines iii  ,, ,
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3. Torque due to Lorentz Force 

We use spherical coordinates to describe the magnetic and gravitational fields, and the 

spacecraft trajectory, as shown in Figure 1; and the x , ,y and z  axes form a set of 

Inertial Cartesian coordinates. The Earth is assumed to rotate about the z -axes. The 

magnetic dipole is not tilted, and is therefore, axi-symmetric. The spherical coordinates 
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3. Torque due to Lorentz Force 
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spacecraft trajectory, as shown in Figure 1; and the x , ,y and z  axes form a set of 
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3. Torque due to Lorentz Force

We use spherical coordinates to describe the magnetic 

and gravitational fields, and the spacecraft trajectory, as 

shown in Figure 1; and the x, y and z axes form a set of Inertial 

Cartesian coordinates. The Earth is assumed to rotate about 

the z-axes. The magnetic dipole is not tilted, and is therefore, 

axi-symmetric. The spherical coordinates consist of radius r, 

colatitude angle 

5 
 

consist of radius r, colatitude angle  , and azimuth from the x  direction  (see Figure 

1).

Figure 1:  Spherical coordinates used in the derivation of the equations of motion

The magnetic field is expressed as 
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where,
m
q  is the charge-to-mass ration of the spacecraft, and relV


 is the velocity of the 

spacecraft relative to the magnetic field of the Earth. The Lorentz force (per unit mass) can be 

written as follows: 
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where, V


 is the inertial velocity of the spacecraft, and  e
 is the angular velocity vector of 

the Earth. According to [11], we use  

, and azimuth from the x direction 
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Figure 1:  Spherical coordinates used in the derivation of the equations of motion
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where,
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q  is the charge-to-mass ration of the spacecraft, and relV


 is the velocity of the 

spacecraft relative to the magnetic field of the Earth. The Lorentz force (per unit mass) can be 

written as follows: 
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where, V


 is the inertial velocity of the spacecraft, and  e
 is the angular velocity vector of 

the Earth. According to [11], we use  

Fig. 1.  Spherical coordinates used in the derivation of the equations 
of motion
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It is assumed that the spacecraft is equipped with a charged surface (screen) of area S , with 

electric charge dSq
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=  distributed over the surface, with density  . Therefore, as in [1], 
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4. Analysis of the attitude motion 

The Euler-Poisson equations are used to describe the attitude dynamics of a rigid spacecraft. 
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4.1 Attitude motion in the pitch direction 

Assume the attitude motion of the charged spacecraft in the pitch direction, i.e. 

0.0,==   Applying this condition in the Euler equation of the attitude motion of the 
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2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=1, k=z0=2. In the first case, the equilibrium points are at
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

; and in the second case, the equilibrium 

points are at 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=0.013, 1.55, 3.12, 4.69, 6.26. They are shown in 

Figure 2 (a) and Figure 2 (b), respectively, which look almost 

identical. For higher or negative values of 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

 (charge to mass 

ratio), or higher values of z0, the position and stability of the 

equilibrium points change significantly, see Figures 3 to 5. 

In Figure 3 (left), there are two equilibrium positions at 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=2.68 rad (stable)and 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=5.03(unstable), for 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=5 and z0=7. 

In Figure 3 (right), there are four equilibrium positions at 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=1.75rad (unstable), 3.54rad (stable), 4.37rad (unstable), 

6.04 rad (stable), for, 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

=-4 and z0=4. A comparison of Figure 

2 and Figure 3 clearly shows the effect of changing values of 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

 and z0, as both the position and stability of equilibrium 

positions are affected.

To further analyze the effects of parameters 
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.cos)(sin)(cossin1))(3(= 0000
2

2

2


LLLL TzNyTyNzBC

dt
dA   (31) 

Let

,= 00 zky  (32) 

where,���is arbitrary number. Here � � �, corresponds to the spherical shape of satellite, 

� � �  corresponds to complex shapes, and � � �  corresponds to a cylindrical shape 

satellite. Then, equation (31) takes the following form: 

.cos)(sin)(cossin1))(3(= 00
2

2

2


LLLL TkNzkTNzBC

dt
dA   (33) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

while the second and third terms represent the Lorentz torque. 

4.1.1 Numerical simulations in the pitch direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the pitch 

direction, using two specific examples. The stability of the derived equilibrium solutions will 

be discussed using the phase diagrams. By putting the values of orbital elements � �
������� � � ����� � � ��°� � � ��°������� � ��� � ������������ � � �������� � �
������� and �� � ����� � �������� in equation (33), we get the following equation: 

     .2sin0.9990.0110.006sin0.0110.006cos= 02

2


 kkz

dt
dA  (34) 

where, � � �
�����  is the charge-to-mass ratio. For a very small value of   and 

3,,0 0  zk  the equilibrium points are close to 2/n (Figure 2 (a)). Equilibrium points 

close to n  are stable (black dots in Figure 2), and equilibrium points close to 
2

12 n

are unstable (red dots in Figure 2). Two typical examples are given for 

mzkkgC 1=,1=,/0.001= 0  and 2==1,= 0zk . In the first case, the equilibrium points 

are at  ,2
2

3,,
2

0, ; and in the second case, the equilibrium points are at 

,6.26.,3.12,4.690.013,1.55  They are shown in Figure 2 (a) and Figure 2 (b), respectively, 

which look almost identical. For higher or negative values of   (charge to mass ratio), or 

 and k on the 

existence and stability of equilibrium points, we take another 

example, with B=240kg/m2 and C=250kg/m2. In this case, the 

differential equation in the pitch direction becomes:
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Figure 3: Trajectory in the � � ��
�� phase plane, when � � ������� � � ����� � � ��°� � � ��°  (Left): � � �� � � �� �� � �� � �

��� � � ��� � � ��. (Right): � � ��� � � �� �� � �� � � ��� � � ��� � � ��. Black dots correspond to stable equilibrium points, and 

red dots correspond to unstable equilibrium points. 

To further analyze the effects of parameters   and k  on the existence and stability of 

equilibrium points, we take another example, with 2/240= mkgB  and ./250= 2mkgC  In 

this case, the differential equation in the pitch direction becomes: 

Figure 4: Trajectory in the � � ��
�� phase plane, when � � ������� � � �. ���� � � ��°� � � ��°   (Left): � � �. ���� � � �� �� �

�� � � ���� � � ���.  (Centre): � � �� � � �� �� � �� � � ���� � � ���. (Right): � � ��� � � �� �� � �� � � ���� � � ���. Black

dots correspond to stable equilibrium points, and red dots correspond to unstable equilibrium points. 

� ���
��� � ������0.006  � 0.011��λz� � 10����� � �0.01  � 0.006��λz�����.            

(35)      

(35)

In this case for 
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In this case for ,20    there are five equilibrium points at � � �, �
� , �, ��
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higher values of 0z , the position and stability of the equilibrium points change significantly, 

see Figures 3 to 5. In Figure 3 (left), there are two equilibrium positions at 

� � �.�� ��� �stable�and � � 5.�3�unstable�, for � � 5 and �� � �. In Figure 3 (right), 

there are four equilibrium positions at 

� � �.�5rad �unstable�, 3.54rad �stable�, 4.3�rad �unstable�, �.�4 rad �stable� , for, 

� � �4 and  �� � 4. A comparison of Figure 2 and Figure 3 clearly shows the effect of 

changing values of � and ��, as both the position and stability of equilibrium positions are 

affected.

Figure 2: Trajectory in the � � ��
�� phase plane, when � � ������, � � ����, � � ��°, � � ��°  (Left): � � �. ���, � � �� � �, � �

��, � � ��, � � ��. (Right): � � �, � � �� � �, � � ��, � � ��, � � ��. Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

Fig. 2. Trajectory in the θ-

10 
 

higher values of 0z , the position and stability of the equilibrium points change significantly, 

see Figures 3 to 5. In Figure 3 (left), there are two equilibrium positions at 

� � �.�� ��� �stable�and � � 5.�3�unstable�, for � � 5 and �� � �. In Figure 3 (right), 

there are four equilibrium positions at 

� � �.�5rad �unstable�, 3.54rad �stable�, 4.3�rad �unstable�, �.�4 rad �stable� , for, 

� � �4 and  �� � 4. A comparison of Figure 2 and Figure 3 clearly shows the effect of 

changing values of � and ��, as both the position and stability of equilibrium positions are 

affected.

Figure 2: Trajectory in the � � ��
�� phase plane, when � � ������, � � ����, � � ��°, � � ��°  (Left): � � �. ���, � � �� � �, � �

��, � � ��, � � ��. (Right): � � �, � � �� � �, � � ��, � � ��, � � ��. Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

 phase plane, when a=6900km, e=0001, i=51°, f=60°(Left): λ=0.001, k=z0=1, A=53, B=55, C=57. (Right): λ=1, k=z0=2, 
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Figure 3: Trajectory in the � � ��
�� phase plane, when � � ������� � � ����� � � ��°� � � ��°  (Left): � � �� � � �� �� � �� � �
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red dots correspond to unstable equilibrium points. 

To further analyze the effects of parameters   and k  on the existence and stability of 

equilibrium points, we take another example, with 2/240= mkgB  and ./250= 2mkgC  In 

this case, the differential equation in the pitch direction becomes: 

Figure 4: Trajectory in the � � ��
�� phase plane, when � � ������� � � �. ���� � � ��°� � � ��°   (Left): � � �. ���� � � �� �� �

�� � � ���� � � ���.  (Centre): � � �� � � �� �� � �� � � ���� � � ���. (Right): � � ��� � � �� �� � �� � � ���� � � ���. Black

dots correspond to stable equilibrium points, and red dots correspond to unstable equilibrium points. 
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differential equation of the motion in the roll direction.
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and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
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Figure 3: Trajectory in the � � ��
�� phase plane, when � � ������� � � ����� � � ��°� � � ��°  (Left): � � �� � � �� �� � �� � �

��� � � ��� � � ��. (Right): � � ��� � � �� �� � �� � � ��� � � ��� � � ��. Black dots correspond to stable equilibrium points, and 

red dots correspond to unstable equilibrium points. 

To further analyze the effects of parameters   and k  on the existence and stability of 

equilibrium points, we take another example, with 2/240= mkgB  and ./250= 2mkgC  In 

this case, the differential equation in the pitch direction becomes: 

Figure 4: Trajectory in the � � ��
�� phase plane, when � � ������� � � �. ���� � � ��°� � � ��°   (Left): � � �. ���� � � �� �� �

�� � � ���� � � ���.  (Centre): � � �� � � �� �� � �� � � ���� � � ���. (Right): � � ��� � � �� �� � �� � � ���� � � ���. Black

dots correspond to stable equilibrium points, and red dots correspond to unstable equilibrium points. 

� ���
��� � ������0.006  � 0.011��λz� � 10����� � �0.01  � 0.006��λz�����.            

(35)      

Fig. 4. Trajectory in the θ-
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higher values of 0z , the position and stability of the equilibrium points change significantly, 

see Figures 3 to 5. In Figure 3 (left), there are two equilibrium positions at 

� � �.�� ��� �stable�and � � 5.�3�unstable�, for � � 5 and �� � �. In Figure 3 (right), 

there are four equilibrium positions at 

� � �.�5rad �unstable�, 3.54rad �stable�, 4.3�rad �unstable�, �.�4 rad �stable� , for, 

� � �4 and  �� � 4. A comparison of Figure 2 and Figure 3 clearly shows the effect of 

changing values of � and ��, as both the position and stability of equilibrium positions are 

affected.

Figure 2: Trajectory in the � � ��
�� phase plane, when � � ������, � � ����, � � ��°, � � ��°  (Left): � � �. ���, � � �� � �, � �

��, � � ��, � � ��. (Right): � � �, � � �� � �, � � ��, � � ��, � � ��. Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

 phase plane, when a=6900km, e=0001, i=51°, f=60°(Left): λ=0.001, k=1, z0=1, A=53, B=250, C=240. (Center): λ=1, k=1, 

Fig. 4.  z0=1, B=240, C=250. (Right): λ=20, k=1, z0=7, B=240, C=250. Black dots correspond to stable equilibrium points, and red dots correspond to 
unstable equilibrium points.
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4.2 Attitude motion in the roll direction 

In this section, we study the attitude motion of the charged spacecraft in the roll direction, i.e. 

0.0,==   Applying this condition to the Euler equation of the attitude motion of the 

Fig. 5.  Family of equilibrium solutions in the pitch direction when z0=1, a=6900km, e=0001, i=51°, f=60° (Left)  B=55, C=57, (Right) B=250, C=240.
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3rad/sec, B0=-8×10-15Wbm, A=53kg/m2 and B=55kg/m2. 
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Figure 6: Trajectory in the � � ��
��  phase plane, when �� � �� � � ������� � � �� ���� � � ��°� � � ��° (Left): � � �� � � ��� � �

���  (Centre): � � ���� � � ��� � � ��. (R): � � ��� � � ��� � � ���  Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.
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2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 and 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 are stable, and the remaining 

two are unstable. They are shown in Figure 6 (left). In the 

cases of non-zero 

13 
 

spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 i.e. charged spacecraft, there are only 

two equilibrium positions where one of them is stable, and 

another one is unstable. Two typical examples are shown 

in Figure 6 (centre) and Figure 6 (right), for 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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=-10C/kg and 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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=10C/kg, respectively. The numerical value of 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :

.
sincos

)(2sin103.5=
3





 

 (40) 

 has a 

significant effect on the location or nature of the equilibrium 

point. For 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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>0, the two equilibrium points are found at 

around 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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=2.28rad(stable) and 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :

.
sincos

)(2sin103.5=
3





 

 (40) 

=5.57rad(unstable). For 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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<0, the locations of equilibrium points remain the same, 

while their nature is reversed.

To further analyze the effect of the parameters 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 on the 

existence and stability of equilibrium points, we take another 

example with A=230 and B=240. In this case, the equation of 

motion in the roll direction becomes:

14 
 

Conversely, there exists at least two equilibrium points for each value of .  One of these 

equilibrium points is stable, and one of them is unstable. In the special case of 0,=  which 

corresponds to a satellite without charge, there are five equilibrium points at 
2

3,,
2

0,= 

and .2  The equilibrium points 0,  and 2  are stable, and the remaining two are 

unstable. They are shown in Figure 6 (left). In the cases of non-zero   i.e. charged 

spacecraft, there are only two equilibrium positions where one of them is stable, and another 

one is unstable. Two typical examples are shown in Figure 6 (centre) and Figure 6 (right), for 

kgC /10=   and kgC /10= , respectively. The numerical value of   has a significant 

effect on the location or nature of the equilibrium point. For 0> , the two equilibrium 

points are found at around rad2.28=  (stable) and rad5.57=  (unstable). For 0< ,

the locations of equilibrium points remain the same, while their nature is reversed. 

Figure 6: Trajectory in the � � ��
��  phase plane, when �� � �� � � ������� � � �� ���� � � ��°� � � ��° (Left): � � �� � � ��� � �

���  (Centre): � � ���� � � ��� � � ��. (R): � � ��� � � ��� � � ���  Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

To further analyze the effect of the parameters   on the existence and stability of 

equilibrium points, we take another example with 230=A  and 240=B . In this case, the 

equation of motion in the roll direction becomes: 

 .)(2sin10056.)cossin(103.49= 64
2

2

  
dt
dC  (41) 

As in the first case, to have an equilibrium, the following relationship between   and 

must hold, which shows the existence of a continuous family of equilibrium solutions from 

0  to 2 , except at 2.356=  and 5.497.=

(41)

As in the first case, to have an equilibrium, the following 

relationship between 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 and 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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 must hold, which shows the 

existence of a continuous family of equilibrium solutions 

from 0 to 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
215

0
3 /53=,108=,sec/101.1= mkgAWbmBrad   , and 2/55= mkgB .  Then, the 

differential equation in the roll direction becomes: 

 ,2sin101.21)cossin(103.49= 64
2

2

  
dt
dC  (39) 

where, kgC
m
q /=  is the charge-to-mass ratio. It is straightforward to show that for each 

value of  , there exists at least one   at which 0.=2

2

dt
d   Therefore, to have an 

equilibrium, the following relationship between   and   must hold, which shows the 

existence of a continuous family of equilibrium solutions from 0  to 2 , except at 

2.356=  and 5.497= :
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, except at 
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spacecraft in Eq (28), we obtain the second order differential equation of the motion in the 

roll direction. 

.cos)(sin)(cossin)(= 0000
2

2

2


LLLL RyTxTyRxBA

dt
dC   (36) 

Let

.= 00 kxy  (37) 

Then, equation (36) takes the form:  

 cos)(sin)(cossin)(= 00
2

2

2

LLLL kRTxRkTxBA
dt
dC   (38) 

In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 
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It is clear from the equation of motion in the yaw direction 

that the values of A, B, C and z0 have no effect on the 
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Conversely, there exists at least two equilibrium points for each value of .  One of these 

equilibrium points is stable, and one of them is unstable. In the special case of 0,=  which 

corresponds to a satellite without charge, there are five equilibrium points at 
2

3,,
2

0,= 

and .2  The equilibrium points 0,  and 2  are stable, and the remaining two are 

unstable. They are shown in Figure 6 (left). In the cases of non-zero   i.e. charged 

spacecraft, there are only two equilibrium positions where one of them is stable, and another 

one is unstable. Two typical examples are shown in Figure 6 (centre) and Figure 6 (right), for 

kgC /10=   and kgC /10= , respectively. The numerical value of   has a significant 

effect on the location or nature of the equilibrium point. For 0> , the two equilibrium 

points are found at around rad2.28=  (stable) and rad5.57=  (unstable). For 0< ,

the locations of equilibrium points remain the same, while their nature is reversed. 

Figure 6: Trajectory in the � � ��
��  phase plane, when �� � �� � � ������� � � �� ���� � � ��°� � � ��° (Left): � � �� � � ��� � �

���  (Centre): � � ���� � � ��� � � ��. (R): � � ��� � � ��� � � ���  Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

To further analyze the effect of the parameters   on the existence and stability of 

equilibrium points, we take another example with 230=A  and 240=B . In this case, the 

equation of motion in the roll direction becomes: 

 .)(2sin10056.)cossin(103.49= 64
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dt
dC  (41) 

As in the first case, to have an equilibrium, the following relationship between   and 

must hold, which shows the existence of a continuous family of equilibrium solutions from 

0  to 2 , except at 2.356=  and 5.497.=

Fig. 6. Trajectory in the θ-
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higher values of 0z , the position and stability of the equilibrium points change significantly, 

see Figures 3 to 5. In Figure 3 (left), there are two equilibrium positions at 

� � �.�� ��� �stable�and � � 5.�3�unstable�, for � � 5 and �� � �. In Figure 3 (right), 

there are four equilibrium positions at 

� � �.�5rad �unstable�, 3.54rad �stable�, 4.3�rad �unstable�, �.�4 rad �stable� , for, 

� � �4 and  �� � 4. A comparison of Figure 2 and Figure 3 clearly shows the effect of 

changing values of � and ��, as both the position and stability of equilibrium positions are 

affected.

Figure 2: Trajectory in the � � ��
�� phase plane, when � � ������, � � ����, � � ��°, � � ��°  (Left): � � �. ���, � � �� � �, � �

��, � � ��, � � ��. (Right): � � �, � � �� � �, � � ��, � � ��, � � ��. Black dots correspond to stable equilibrium points, and red 

dots correspond to unstable equilibrium points.

 phase plane, when a=6900km, e=0001, i=51°, f=60°(Left): λ=0, A=53, B=55. (Center): λ=-10, A=53, B=55(Right) : λ=10, 

Fig. 4. A=53, B=55. Black dots correspond to stable equilibrium points, and red dots correspond to unstable equilibrium points.
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Let z0=1, a=6900km, e=0.001, i=51°,and f=60°; then, 

equation (46) takes the following form:
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 has no effect on 

the existence of equilibrium positions. For each k∈(0, 

0.6126), there is one equilibrium point; and for k∈(0.6126, 

0.8435), there are two equilibrium points. For all other 

values of k, there are no equilibrium points. For a complete 

list of these points, see Figure 7, which shows the above 

mentioned intervals for the existence of one and two 

equilibrium positions. Figure 7 also confirms that there are 

no equilibrium positions for k>0.8.

Using the same procedure used for the roll and pitch 

directions, it can easily be shown that the equilibrium 

positions that exist when 0<k<0.6126 is a source node or 

unstable node. Similiarly, one of the two equilibria that exist 

when 0.6126<k<0.8435 is a source node, and the second 

one is a stable centre. An example is given in Figure 8, for 

fixed values of k=0.3 and k=0.8. When k=0.3, Figure 8 (left), 

there is only one equilibrium position at 
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Using the same procedure used for the roll and pitch directions, it can easily be shown that 
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at � � ��������  which is unstable; and at � � ��� , Figure 8 (right), there are two 
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while the second one is stable. As opposed to the other two directions, the only parameter that 

affects the existence of equilibrium positions is �, which is connected to components of the 

radius vector ����� of the charged center of the spacecraft, relative to the center of mass of 
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� � �� ��  Black dots correspond to stable equilibrium points, and red dots correspond to unstable equilibrium points. 
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stable and unstable equilibrium positions. It is shown through numerical simulations that the 
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directions. The charge-to-mass ratio has no role to play in either the existence, or the stability, 
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direction is ���. It is also shown that there will be no equilibrium solution, if the � �
component of ��� is greater than ��. Therefore, monitoring the level of charge on the 

spacecrafts’ surface is important, in the sense that it can be used as passive control for the 
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range of -1 to 1 will be the easiest to achieve. Higher values of � are theoretically possible, 
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In the right hand side of this equation, the first term represents the gravity gradient torque, 

and the second and third terms represent the Lorentz torque. 

4.2.1   Numerical simulations in the roll direction 

In this section, the equilibrium solutions for the spacecraft will be studied in the roll direction, 

using two specific examples, in the same way as has been done for the pitch direction. This 

will allow us to make comparisons, wherever possible. The stability of the derived 

equilibrium solutions will be discussed, using the phase diagrams. Let 
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using Euler-Poisson Equations. We investigated the existence of equilibrium positions, and 
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the source for attitude stablization of a general shape spacecraft. We identified attitude 

stablization parameters for each direction (pitch, roll and yaw), and determined specific 

values of the aforementioned parameters. The numerical results show the exact location of 

stable and unstable equilibrium positions. It is shown through numerical simulations that the 

charge-to-mass ratio, and the radius vector ����� of the charged center of the spacecraft 

relative to the center of mass of the spacecraft, work as a passive control, in the pitch and roll 

directions. The charge-to-mass ratio has no role to play in either the existence, or the stability, 

of equilibrium positions in the yaw direction. The only parameter of stability in the yaw 

direction is ���. It is also shown that there will be no equilibrium solution, if the � �
component of ��� is greater than ��. Therefore, monitoring the level of charge on the 
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