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Abstract
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are briefly surveyed. Certain unique features of these algorithms and their advantages are sketched for use with boundary 

element and finite element methods. 
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1. Introduction

A mathematically well-posed analysis problem is 

considered solvable when provided governing equation(s), 

shape(s) and size(s) of the domain(s), boundary and initial 

conditions, material properties of the media contained 

in the domain, and internal sources and external forces 

or inputs. When any this information is missing, the field 

problem becomes incompletely defined (ill-posed) and 

is of an indirect (or inverse) type [1]. The inverse problems 

can therefore be classified as determination of unknown 

governing equations, shapes and sizes, boundary/initial 

values, material properties, and sources and forces. The 

inverse problems can be solved if sufficient amount and 
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type of additional information is provided. Following 

is a very brief survey of some of the solution methods 

for multidisciplinary inverse problems that have been 

researched in the Multidisciplinary Analysis, Inverse Design, 

Robust Optimization and Control (MAIDROC) Laboratory at 

FIU.

2 Aerodynamic Shape Inverse Design

Aerodynamic shape inverse design involves the ability 

to determine the shape of an aerodynamic configuration 

that will satisfy the governing flow-field equation(s) while 

enforcing specified (desired or target) surface pressure 

distribution and certain geometric constraints. 

Aerodynamic shape optimization design involves 

the ability to determine the shape of an aerodynamic 

configuration that will satisfy the governing flow-field 

equation(s) while extremizing global aerodynamic 

parameters (coefficients of lift, drag, moment) and satisfying 

certain geometric and/or flow-field constraints [2-12].  

Aerodynamic shape inverse design methods typically 

require significantly fewer analyses of flow-fields during 

the iterative design process than are typically required 

when using an aerodynamic shape optimization approach. 

However, aerodynamic shape inverse design methods 

require designers with adequate experience to specify a 

good surface target pressure distribution. 

2.1 Choosing Target Surface Pressure Distribution

Aerodynamic shape inverse design enforces desired 

pressure distribution on the unknown object’s surface often 

without any direct evaluation criterion available to judge the 

effects of this pressure distribution on the corresponding 

global design objectives such as lift, drag, and moment. 

Since the inverse shape design enforces the specified (target) 

surface pressure distribution, the common dilemma is the 

choice of the "best" target pressure distribution. 

Specifically, it would be desirable to specify such pressure 

distribution on the surface of the yet unknown three-

dimensional object so that it maximizes the aerodynamic 

efficiency by minimizing the aerodynamic drag. Therefore, 

any candidate target surface pressure distribution should 

first be checked for possibly causing flow separation before it 

is actually enforced in the aerodynamic shape inverse design 

process. A number of approaches have been published 

to detect flow separation utilizing information from the 

computed viscous boundary layer parameters [13]. These 

flow separation detection methods are based mainly on 

two-dimensional, laminar, incompressible boundary layer 

analysis. Thus, they require knowledge of the pattern of 

streamlines on a three-dimensional body surface which 

is impossible to determine in an a priori fashion since the 

shape of the body is yet unknown. A typical approach has 

been to calculate an inviscid flow around an initially guessed 

shape of the three-dimensional body, determine surface 

streamlines, apply a two-dimensional boundary layer 

calculation in a strip fashion along each three-dimensional 

streamline, and then use one of these known boundary layer 

separation detection criteria. However, it would be very 

desirable to avoid a need for boundary layer calculations 

altogether and use only the information from an inviscid 

flow analysis in order to detect locations of flow separation.

2.2 Sih’s Concept for Detecting Flow Separation

One very fast method for detecting flow separation in 

case of incompressible and compressible, two-dimensional 

and three-dimensional, steady and unsteady flows is based 

on the postulate that “separation occurs at the location 

near the boundary where the rate of increase of potential 

energy density is a local maximum” [14]. Actually, it is more 

practical to search for locations where the rate of change 

of flow kinetic energy reaches its minimum [14] since the 

surface flow kinetic energy variation can be calculated from 

the surface pressure distribution by assuming that pressure 

does not change across a viscous boundary layer.

The following general analytic formulation (Eq. 1) is valid 

for flow separation detection based on a minimum variation 

of the kinetic energy rate [15] in case of multi-dimensional, 

isothermal, adiabatic, steady and unsteady, compressible 

and incompressible. Here, Ek is the kinetic energy per unit 

volume, t is the time, s is the streamline-following coordinate 

originating at the leading edge stagnation point, M is the 

local Mach number, M* is the local critical Mach number, ρ is 

the fluid density and  is the ratio of specific heats.

(1)

This exceptionally fast and versatile flow separation 

detection concept was tested against experimental results 

for a low Reynolds number incompressible flow over a 

rectangular wing at different angles of attack [16]. The 

experimental results are summarized in Fig. 1 where S and R 

designate separation and reattachment points, respectively 

[16]. The corresponding plots of quasi two-dimensional 

variation of the kinetic energy rate are shown in Fig. 2  [15] 
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demonstrating the validity of Sih's concept [14] for detection 

of separation points since locations of minima of the kinetic 

energy rate along each airfoil section corresponds to the 

locations of separation observed during the wind tunnel   

experiment. 

It should be pointed out that Fig. 2 indicates existence of 

narrow laminar separation along the leading edge. This was 

not mentioned in the original report by the experimentalists 

[16], but was afterwards privately acknowledged as actually 

observed.

Additional comparisons between the experimentally 

measured flow separation locations and the flow 

separation locations were presented by Dulikravich [15] for 

incompressible flows around circular and elliptic cylinders 

at different Reynolds numbers, and around a transonic 

airfoil with a shock induced separation and a narrow leading 

edge separation due to manufacturing imperfection when 

building the airfoil that was experimentally tested.

2.3 Elastic Membrane Motion Concept for Inverse 
Determination of Unknown Shapes

There are many algorithms for inverse determination 

of unknown shapes, but they are almost always highly 

specialized for a particular mathematical model. Besides, 

many of the existing methods require that initially guessed 

shape be quite close to the finally determined shape. 

Furthermore, they are often not applicable to three-

dimensional configurations and cannot make use of the 

commercially available analysis software because such 

licensed software cannot be altered, while the ultimate need 

of a shape designer is to utilize the existing field analysis 

commercial software in the inverse shape design with no 

need for modifications of such software. Consequently, 

an acceptable approach to inverse shape design is to 

use a simple, fast and robust master code that calculates 

corrections to the iteratively evolving shape of an object, 

while utilizing a commercially available field analysis code 

to evaluate each intermediate shape. 

One such concept of inverse shape design will be briefly 

demonstrated in case of an inverse shape design of an airplane 

wing at arbitrary speed. The basic idea due to Garabedian 

and McFadden [17] is that surface of the aerodynamic 

flight vehicle that should have a specified surface pressure 

distribution can be heuristically modeled as damped elastic 

membranes subject to time-dependent forcing functions. 

If each point of the wing surface membrane is loaded with 

a point-force, , proportional to the local difference 

between the calculated and the specified coefficient of 

surface pressure, the wing surface membrane will iteratively 

deform until it assumes a steady position that experiences 

zero forcing function at each of the membrane points. The 

governing equations for an elastic membrane could be of 

the standard spring-damper-mass forced vibration type and 

have traditionally been discretized using finite differences 

and integrated numerically [18-20]. However, when using 

non-linear flow-field analysis such as Navier-Stokes solvers, 

this iterative inverse shape design method converges slowly. 

A semi-analytical method for integration of such differential 

equations has been developed that is based on Fourier series 

and converges much faster [21-23].

Fig. 1.  Experimental results [16] for coefficient of pressure distribu-
tions on upper and lower surface of a rectangular wing at 18 
degrees angle of attack in a free stream Mach number M = 0.1 
and Reynolds number Re = 80,000. Letters S, T and R designate 
observed locations of flow separation, transition and reattach-
ment. 

Fig. 2.  Calculated variations of the rate of change of kinetic energy of 
surface flow obtained from Eq. 1 using surface pressure mea-
surements shown in Fig. 1where strong minima indicate flow 
separation.
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2.3.1 Three-Dimensional Elastic Membrane Con-
cept with Fourier Series Integration

This formulation will be explained for the case of inverse 

shape design of an isolated three-dimensional airplane wing 

at arbitrary flight speed. Wing surface can be described by 

two surface coordinates, s and t. The s-coordinate starts at 

the lower trailing edge point and follows an airfoil shape in a 

clockwise direction ending at the upper trailing edge point. 

The second surface-following coordinate, t, begins at the 

wing root and goes span wise to the wing tip and then returns 

along the upper surface of the wing back to the wing root. 

The surface following coordinates should be scaled so that 

the line s =  occurs at the leading edge of the wing, the line 

s = 2  occurs at the trailing edge of the wing, and the line t = 

 occurs at the wing tip. Notice that coordinate directions s 

and t are not necessarily orthogonal to each other. Evolution 

model of the top surface of the wing can then be assumed to 

be of the form [21-23]

(2)

with a similar evolution model of the bottom surface of the 

wing. Here, coefficients  are the user specified constants 

controlling the rate of damping and convergence to the 

steady state solution. The arbitrarily varying globally periodic 

aerodynamic forcing function, , can 

be represented using the Fourier series expansion of the form

(3)

The particular solutions of the linear partial differential 

equations (19) and (20) can be assumed to be of the similar 

Fourier series form.

(4)

with a similar expression for the bottom surface of the 

wing. Substitution of Eq. 3 and Eq. 4 into Eq. 2 for the top 

surface of the wing yields

(5)

with the similar expression for the lower surface of the wing. 

Here,

(6)

For the special case where the pressure distribution and wing 

deformation are symmetrical about the wing root symmetry 

plane, t = 0, it follows that . 

Thus, t-direction damping should not be used ( ) for 

span wise symmetric configurations. Consequently,

(7)

The differing Fourier coefficients in the particular 

solutions on the upper and lower surfaces give rise to a gap 

formation along the leading and trailing edges of the wing. 

There will also be a slope discontinuity that develops at the 

leading and trailing edges. Series of homogeneous solutions 

to the shape evolution Eq. 2 and its counterpart on the 

lower surface of the wing are used to overcome these gaps. 

Specifically, on the top surface of the wing, the homogeneous 

solution should satisfy

(8)

Then, on the upper surface of the wing, the y-coordinate 

correction due to the homogeneous solution is

(9)

where qm and rm are analytic functions of the b coefficients 

and the mode number, m. Similarly, on the bottom surface 

of the wing,

(10)

Combining the boundary conditions (equal values 

of homogeneous solutions and slopes given by the 

homogeneous solutions at the leading edge and the trailing 

edge points) results in analytic equations for E and F 

coefficients in each mode, m. 

(11)

(12)

(13)

(14)



409

George S. Dulikravich    Inverse Problems in Aerodynamics, Heat Transfer, Elasticity and Materials Design

http://ijass.org

Finally, after combining homogeneous and particular 

solutions, analytic expressions for geometry corrections are

(15)

(16)

An example of application [22] of the Fourier series 

formulation of the solution of the elastic surface membrane 

concept is given in Fig. 3. The objective was to test the Fourier 

technique’s ability to simultaneously modify a transonic 

wing’s span wise distribution of thickness, camber, twist, 

and dihedral seeking to design a fully subsonic wing from a 

wing with an initial shock wave at the flight Mach number 

M = 0.8. The wing planform had a taper ratio of 0.5, leading 

edge sweep angle of 14.03 degrees, zero trailing edge sweep, 

and semi-span of two times the root chord length. The initial 

guess had a NACA 0012 airfoil shape at +5.0 degrees angle 

of attack. The target pressure distribution corresponded to a 

non-lifting wing with a NACA 0009 airfoil. 

This shape inverse design method converges 

monotonically to a smooth shape even for a very irregular 

specified distribution of surface pressures and for a 

significantly wrong initial guess for the geometry. Thus, 

it is much more cost effective to use the optimization 

algorithms for actual constrained optimization of the global 

aerodynamic parameters such as coefficients of lift, drag and 

moment, instead of using optimization to achieve inverse 

shape design by enforcing user specified surface pressure 

distributions. Notice that this inverse shape design method 

can readily be applied not only in aerodynamics/fluid 

dynamics, but also in three-dimensional heat conduction 

[24], elasticity, magnetostatics and electrostatics fields.
 

2.4. Determining Number, Sizes, Shapes and Loca-
tions of Inclusions

During the past two decades, our research team has 

been developing a unique inverse shape determination 

methodology that utilizes an optimization algorithm as 

a tool to determine the proper number, sizes, locations 

and shapes of inclusions in heat conduction and elasticity 

problems [25-30]. For example, the designer needs to 

specify both the desired temperatures and heat fluxes on 

Fig. 3. A shocked transonic wing was redesigned [22] into a shock-free wing using Fourier series formulation of the elastic membrane concept and 
            a flow-field analysis code solving Euler equations.
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the hot surface, and either temperatures or convective 

heat coefficients on the guessed internal coolant passage 

walls. The designer must also provide an initial guess to the 

total number, sizes, shapes, and locations of the internal 

coolant flow passages. Afterwards, the design process uses a 

constrained optimization algorithm [31, 32] to minimize the 

difference between the specified and computed hot surface 

heat fluxes by automatically relocating, resizing, reshaping 

and reorienting the initially-guessed coolant passages. All 

unnecessary coolant flow passages will be automatically 

reduced to very small sizes and eliminated while honouring 

the specified minimum distances between the neighbouring 

passages and between any passage and the thermal barrier 

coating if such exists. This type of computer code is highly 

economical, reliable, and geometrically flexible, especially 

when it utilizes the boundary element method (BEM) 

that does not require generation of the interior grid and 

is non-iterative. The methodology has been successfully 

demonstrated on coated and non-coated turbine blade 

airfoils, scramjet combustor struts, three-dimensional 

coolant passages in the walls of rocket engine combustion 

chambers and axial gas turbine blades [25-30].  

This type of inverse problems requires that numerical 

error be reduced until it becomes at least one or two orders 

of magnitude lower than in case of solving a related forward 

(analysis) problem. Otherwise, an illusion of non-unique 

solutions can be created, while these solutions are merely 

a consequence of the under-iterated process of minimizing 

the least square difference between the target over-specified 

boundary conditions and the calculated conditions (Eq. 17).

(17)

where ε is a very small real number. Figure 4 eloquently 

demonstrates this problem of illusory non-unique solutions 

[27] caused by insufficient convergence of the minimization 

algorithm (Fig. 4).

When guessing that there should be three smaller holes 

(left figure) and enforcing the overspecified boundary 

conditions (constant temperature and constant heat flux 

on the outer – hot boundary, two holes shrunk to points 

indicated by arrows, while third hole grew and positioned 

itself in the correct central location. Results in the left figure 

correspond to a solution that converged to 0.1 percent of 

integrated flux error. Results on the right show the same 

three-hole initial configuration and their locations and 

sizes corresponding to the integrated heat flux error of 1.86 

percent [27].

3. Determination of Steady Boundary Condi-
tions on Inaccessible Boundaries

3.1 Determining Steady Boundary Conditions Using 
Boundary Element Method

In elastostatics, a problem is well-posed when the 

geometry of the three-dimensional object is known and 

either displacement vectors, {u}, or surface traction vectors, 

{p}, are specified everywhere on the surface of the object. 

The elastostatic problem becomes ill posed when either a 

part of the object's geometry is not known or when both {u} 

and {p} are unknown on certain parts of the surface. Both 

types of inverse problems can be solved if both {u} and {p} 

are simultaneously provided on certain surfaces of the body 

[33].

Similarly, determination of unknown steady thermal 

boundary conditions when temperature, heat flux, or 

heat transfer coefficient data are unavailable on certain 

boundaries is a common class of inverse problem [34-37]. 

The missing boundary conditions can be found if both 

temperature and heat flux are available on other, accessible 

boundaries or at a finite number of points within the domain. 

A very simple non-iterative approach to solving such inverse 

problems is possible when using Boundary Element Method 

(BEM) to solve the governing equations. We will sketch the 

BEM in case of heat conduction equation for the steady-state 

temperature distribution; T(x), in a solid isotropic domain Ω 
bounded by the boundary Γ is given by

(18)

Here, k(T) is the temperature-dependent coefficient of 

thermal conductivity, x is the position vector, and S(x) is a 

function representing arbitrarily distributed heat sources 

(or sinks) per unit volume. Eq. 18 can be subject to the 

Dirichlet (temperature, T) boundary conditions on some 

parts of the boundary, the Neumann (heat flux, Q) boundary 

conditions on the other parts of the boundary, radiation 

heat flux conditions on yet another part of the boundary, 
Fig. 4. Example of a disk with a thick coating and a single, centrally 
            located hole. Initial guess was 3 small holes.
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and, when a boundary is exposed to a moving fluid, the 

Robin (convective heat transfer) boundary conditions on the 

remaining boundary, Γconv, are

(19)

Here, n is the direction of the outward normal to 

the boundary, hconv is the local convective heat transfer 

coefficient, and Tamb is the ambient fluid temperature. After 

discretization of Eq. 18 using BEM, there will be NBN+NINT 

boundary integral equations, one for each boundary node 

NBN plus one for every internal temperature measurement 

NINT. The resulting discretized version of the BEM can be 

represented in matrix form as 

(20)

where [H], [G] and [R] are the geometric coefficient 

matrices. For example, if at two vertices (1 and 3) of a 

quadrilateral surface panel both  and  are known, 

while at the remaining two vertices (2 and 4) neither quantity 

is known, the BIE equation set begins as [33]

(21)

For a well-posed boundary condition problem, every 

point on the boundary is given either one Dirichlet, one 

Neumann or one Robin boundary condition assuming 

that internal heat source distribution is known. Additional 

equations may be added to this equation set if temperature 

measurements are known at certain locations within the 

domain. The known nodal variables are then multiplied by 

their respective coefficient matrix terms and transferred to 

the right hand side [33-37]. Similarly, all unknown nodal 

variables are multiplied by their respective coefficient matrix 

terms and transferred to the left hand side. 

(22)

Notice that the entire right hand side is known and can be 

condensed into a vector {F}. The result is a standard linear 

matrix problem of the general type [A]{X}={F}. In general, 

the geometric coefficient matrix [A] will be non-square 

and highly ill-conditioned. Singular Value Decomposition 

(SVD) methods [38], are widely used for solving linear least 

squares problems of this type. Thus, by using an SVD type 

algorithm and truncating singular values that are corrupted 

by round-off error, it is possible to solve for the unknown 

surface temperatures and heat fluxes simultaneously, very 

accurately, and non-iteratively. 

3.1.1 Inverse Determination of Spatially Varying Heat 
Convection Coefficient

As a very useful by-product of this inverse method, 

the inversely determined surface temperatures and heat 

fluxes yield values of previously unknown convective heat 

transfer coefficients (see Eq. 19). Thus, rather than trying to 

evaluate the surface variation of the convective heat transfer 

coefficient by using flow-field analyses, it is possible to treat 

the heat convection coefficient determination problem as an 

ill-posed heat conduction problem solved only in the solid 

that is in contact with the moving fluid. Here, no thermal 

data needs to be available on parts of the boundary exposed 

to a moving fluid, while temperatures and heat fluxes are 

available on other boundaries or inside the solid. Results 

were excellent for Biot numbers from 0.01 to 100 [39]. 

3.2 Determination of Steady Boundary Conditions 
Using Finite Elements

The same general concept used with BEM formulation 

is also applicable when using the FEM formulation in 

simultaneous prediction of steady thermal and elasticity 

boundary conditions. FEM formulation with Galerkin’s 

method [40-43] after assembling all element equations 

results in two linear algebraic systems that could be 

expressed (in case of no heat sources) as

(23)

Here, [Kc] is the stiffness matrix for the thermal problem 

and [K] is the stiffness matrix for the elasticity problem. 

Similarly, {u} is the vector of unknown Kirchoff’s temperature 

functions and  {δ} is the vector of the unknown deformations 

(displacements). Both of these systems are typically large 

and sparse, but they are also symmetric and positive definite. 

For example, thermal problem formulation results in

(24)

In the case of an ill-posed problem, thermal and elasticity 

boundary conditions will not be known on some parts of 

the boundary. For example, in three-dimensional heat 

conduction while using a tetrahedral (three-dimensional) 

finite element, one could specify both the temperature, us, 
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and the heat flux, qs, at node 1, flux only at nodes 2 and 3, and 

assume the boundary conditions at node 4 as unknown. The 

original system of linear algebraic equations is modified by 

adding a row and a column corresponding to the additional 

equation for the over-specified flux at node 1 and the 

additional unknown due to the unknown boundary flux at 

node 4 [40-43].

(25)

A similar procedure is also applied to the elasticity system 

of equations [40-43] where thermal stresses are accounted 

for in the vector {F}. These linear systems will remain 

sparse (since FEM creates sparse matrix problems), but 

will be non-symmetric and possibly rectangular depending 

on the ratio of the actual number of known to unknown 

boundary conditions. These systems can be solved by a 

variety of methods, but sparse solvers are usually required 

for minimizing memory requirements. Resulting systems 

are usually ill-conditioned due to the nature of the inverse 

problem. The degree of ill-conditioning depends on the 

geometry, ratio of the number of known to unknown 

boundary values, level of noise in the boundary data 

provided, etc. 

3.3 Regularization Formulations

In any iterative solution algorithm, such as FEM, if the 

iterative matrix is highly ill-conditioned, a regularization 

method needs to be applied to the solution of the systems of 

equations in an attempt to increase the method’s tolerance 

to possible measurement errors in the over-specified 

boundary conditions. Here, we consider the regularization 

of the inverse heat conduction problem. The general form of 

a regularized system is given as [40]

(26)

Solving Eq. 26 in a least squares sense minimizes the 

following error function.

(27)

This represents the least squares minimization of the 

residual plus a penalty term. The form of the damping matrix 

determines what penalty is used and the damping parameter,  

, weights the penalty for each equation. These weights 

should be determined according to the error associated with 

the respective equation. Notice that [D] = [I] corresponds 

to traditional Tikhonov’s regularization. If it is explicitly 

stated that  = 0 for all equations involving only interior 

points while [D] = [I] is used only for equations involving the 

unknown boundary values, then the results will be smooth 

and the error explicitly introduced by the regularization will 

be small [40-42]. 

In order to minimize the error in the domain of the object, 

this regularization method uses Laplacian smoothing of 

the unknown temperatures and displacements only on the 

boundaries where the boundary conditions are unknown. 

A penalty term can be constructed such that curvature of 

the solution on the unknown boundaries where boundary 

conditions are unknown is minimized along with the 

residual.

(28)

For problems that involve unknown vector fields, such 

as displacements, Eqn. 28 is modified to smooth a certain 

component of the field.

(29)

Here, the normal component of the vector displacement 

field {δ} is minimized at the unknown boundary. The 

Laplacian operator in the Eq. 28 and Eq. 29 can be discretized 

on the object’s surface mesh using the method of weighted 

residuals. This leads to the damping matrix, [D]. For heat 

conduction, this results in the following expression.

(30)

 three-dimensional problems, [Kc] is computed by 

integrating over surface elements on the boundaries that 

have unknown boundary conditions. The damping matrix is 

essentially an assembly of boundary elements that make up 

the boundary of the object where the boundary conditions 

are unknown. The local matrix for each element is formed by 

discretizing the Laplacian operator by the Galerkin weighted 

residual method. The main advantage of this method is its 

ability to smooth the solution vector without necessarily 

driving its components to zero and away from the true 

solution.

For each boundary element on unknown boundary we 

transform Laplace’s equation to natural surface-following 

coordinates, discretize Laplace’s equation using Galerkin’s 

method, compute local damping matrix [D], and assemble 

[D] into a global damping matrix. Standard sparse solvers 
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can be used to solve these normalized systems, but such 

systems are usually highly ill-conditioned. Iterative 

methods are difficult to use in practice since they require 

good preconditioners for fast convergence. Use of static 

condensation method for decreasing the sparseness of the 

matrix and then use of a dense rectangular solver such as 

SVD to solve for the unknowns on the boundary is also an 

option [42].

3.4 Inverse Determination of Unsteady Surface 
Temperature on a Three-dimensional Object

An unsteady version of the same spectral finite element 

code for determination of steady temperatures and heat 

fluxes on inaccessible surfaces has also been successfully 

demonstrated [43]. 

In an example where a strong laser beam is impinging on 

a top surface of a square plate and travels steadily along the 

diagonal (Fig. 6), temperature on the top surface is so high 

that it could melt surface temperature sensors. Therefore, 

temperature is safely measured on the bottom surface of 

the plate. From the known heat flux distribution on the 

top surface and the measured unsteady temperature field 

on the bottom surface, an unsteady three-dimensional 

temperature filed can be calculated (assuming that side 

walls are adiabatic). As a byproduct, we also get the unsteady 

temperature distribution on the top surface. This well-posed 

analysis problem can then be converted into an inverse 

Fig. 5.  An example of inverse determination of temperatures on surfaces of interior holes and in the entire three-dimensional cylinder when outer 
surface temperatures and heat fluxes are known, but nothing is known onside the cylinder nor on the surfaces of the four holes: finite ele-
ment grid (left), calculated isotherms when temperature is known on outer and inner surfaces (middle), calculated isotherms when only 
outer surface temperatures and heat fluxes are known (right) [42].

Fig. 6. Actual temperature evolution on the bottom surface of the plate (top figures) and inversely determined temperature distribution on the 
bottom of the plate (bottom figures) in case when unsteady temperature and heat flux were specified on the top surface and nothing was 
known on the bottom surface of the plate. Test case assumed no measurement errors [43].
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problem where nothing is known on the bottom surface, 

while top surface has specified unsteady temperature and 

heat flux distributions.

4. Inverse Determination of Physical Proper-
ties of the Media

An increasingly important application of inverse 

methodologies is the determination of physical properties 

(thermal conductivity, electric conductivity, specific heat, 

thermal diffusivity, viscosity, magnetic permittivity, etc.) of 

the media. These properties could depend on certain field 

variables (temperature, pressure, density, frequency, etc.). 

Many applications do not allow the destruction of an object 

in order to extract and test a specifically shaped and sized 

test sample. Thus, inverse determination of the physical 

properties is very popular in the non-destructive evaluation 

community.

4.1 Inverse Problem Formulation for Determining 
Modulus of Elasticity Variation

In this section, we consider the inverse determination of 

a spatially varying modulus of elasticity in a load bearing 

structure. For simplicity, we will work with a 1.0 m x 1.0 m 

plate that is fixed on two ends and under two transverse 

point loads as shown in Fig. 7. The plate thickness is 0.2 

m. The forward (analysis) problem can be solved with a 

straightforward application of the finite element method. 

In our case, this involved discretizing the plate with 16 

four-node isoparametric elements of the shear deformable 

displacement formulation (Mindlin plate elements) [44] as 

shown in Fig. 7. The modulus of elasticity, E, was assumed 

to be a bilinear function of x and y. This function was 

parameterized by using the modulus value at each of the 

four corners of a finite element as shown in the equation 

below

(31)

The forward (analysis) problem was created by setting {E} 

={2.0 MPa, 3.0 MPa, 6.0 MPa, 8.0 MPa}. In the inverse problem, 

the objective was to determine the values of {E} = {E1, E2, E3, 

E4} such that the finite element model produces responses 

that match measured values of reaction forces and moments 

on the fixed boundaries. The reaction force, Fz, and the 

reaction bending moment, M, at four boundary points were 

taken from the forward solution as simulated measurements. 

This inverse problem can then be formulated as

(32)

The initial guess for the values of the modulus of elasticity 

was {E} = {5.0 MPa, 5.0 MPa, 5.0 MPa, 5.0 MPa}. By iteration 

100, the objective function was less than 10-9. At that point, 

the design variables reached E = {1.96 MPa,2.94 MPa,5.88 

MPa,7.84 MPa}. Thus, the maximum error in the predicted 

E(x,y) is 2.0% (Fig. 8 and Fig. 9). For practical applications, 

this method would require regularization as physical 

measurements are likely to have errors greater than 1%. 

Fig. 8.  Distribution of E(x, y) used for the forward solution [44]

Fig. 7.  Loaded Mindlin plate.

Fig. 9.  Predicted E(x, y) using measured Fz and M on the boundaries 
[44]
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4.2 Inverse Determination of Temperature-depen-
dent Thermal Conductivity

If measured values of heat fluxes (or convection heat 

transfer coefficients) are available everywhere on the surface 

of an arbitrarily shaped solid, then Kirchhoff’s transformation 

can be used to convert the governing steady heat conduction 

equation with temperature-dependent thermal conductivity 

into a linear boundary value problem that can be solved 

via BEM for the unknown Kirchhoff’s heat functions on 

the boundary [45]. Given several boundary temperature 

measurements, these heat functions are then inverted to 

obtain the temperature variation of thermal conductivity at 

the points where the over-specified (temperature and heat 

flux) measurements were taken. Several different inversion 

procedures were attempted, including regularization, finite 

differencing, and least squares fitting with a variety of basis 

functions. The program is very accurate when the data is 

without error, and it does not excessively amplify input 

temperature measurement errors when those errors are less 

than 5% standard deviation. The algorithm was found to be 

less sensitive to measurement errors in heat fluxes than to 

errors in temperatures. The accuracy of the algorithm was 

greatly increased with the use of a priori knowledge about 

the thermal conductivity basis functions.

The experimental part of this inverse method requires one 

temperature probe and one heat flux probe that need to be 

moved from point-to-point on the surface of an arbitrarily 

shaped and sized specimen (Fig. 10). Thus, this method 

is directly applicable to field testing, since special test 

specimens do not need to be manufactured. This inherently 

multi-dimensional method could still use temperature 

measurements at interior points if additional accuracy is 

desired (Fig. 11). 

4.3 Bayesian Approach to Inverse Determination of 
Temperature-Dependent Thermal Conductivity

The solution of the inverse problems within the Bayesian 

framework can be recast in the form of statistical inference 

from the posterior probability density, which is the model 

for the conditional probability distribution of the unknown 

parameters given the measurements. The measurement 

model incorporating the related uncertainties is called 

the likelihood, that is, the conditional probability of the 

measurements given the unknown parameters. By assuming 

that the measurement errors are Gaussian random variables, 

with zero means and known covariance matrix W and that 

the measurement errors are additive and independent of 

the parameters P, the likelihood function can be expressed 

as [46]

(33)

where Y is the measurements and T(P) is the solution of the 

direct (forward) problem. The model for the unknowns that 

reflects all the uncertainty of the parameters without the 

information conveyed by the measurements is called the 

prior model. The formal mechanism to combine the new 

information (measurements) with the previously available 

information (prior) is known as the Bayes’ theorem. 

Therefore, the term Bayesian is often used to describe the 

statistical inversion approach, which is stated as [46]

(34)

where posterior(P) is the posterior probability density, (P) 

is the prior density, (Y|P) is the likelihood function and 

Fig. 10. Isotherms predicted by a non-linear BEM based on surface 
measurements of temperature and heat flux for a keyhole 
shaped object that was internally heated and made of cop-
per [45].

Fig. 11. Inversely calculated variation of thermal conductivity for the 
specimen from Fig. 10. Results with zero measurement errors 
and with 10 percent standard deviation measurement error 
[45].
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(Y) is the marginal probability density of the measurements, 

which plays the role of a normalizing constant. In practice, 

such normalizing constant is difficult to compute and 

numerical techniques, like Markov Chain Monte Carlo 

Methods (MCMC), are required in order to obtain samples 

that accurately represent the posterior probability density. In 

order to implement the Markov Chain, a density q(P*,P(t-1)) 

is required, which gives the probability of moving from 

the current state in the chain P(t-1) to a new state P*. The 

Metropolis-Hastings algorithm can be used to implement 

the MCMC method. Results are presented in Fig. 12 for the 

estimation of the thermal conductivity components PT = [k1, 

k2 , k3] in a non-isotropic solid with the Metropolis Hastings 

algorithm, by using 20000 samples. A uniform distribution 

was used as prior information for the thermal conductivity 

components. The unknowns were assumed [46] to be in the 

intervals given by 0.1≤k1≤50, 0.1≤k2≤50, 0.1≤k3≤50. Notice that 

the prior distributions assumed for the parameters are non-

informative, that is, the intervals in which the parameters 

are uniformly distributed encompass most of engineering 

materials, ranging from mild insulators to metals. 

4.4 Inverse Design of Metallic Alloys for Specified 
Performance

Inversely designing new alloys for specific applications 

involves determining concentrations of alloying elements 

that will provide, for example, specified tensile strength at a 

specified temperature for a specified length of time [47-49]. 

This represents an inverse problem which can be formulated 

as a multi-objective optimization problem with a given set 

of equality constraints. This approach allows a materials 

design engineer to design a precise chemical composition 

of an alloy that is needed for building a particular object. 

This inverse method uses a multi-objective constrained 

evolutionary optimization algorithm [50, 51] to determine 

not one, but a number of alloys (Pareto front points) each 

of which will satisfy the specified properties while having 

different concentrations of each of the alloying elements. 

This provides the user of the alloy with an additional 

flexibility when creating such an alloy, because he/she 

can use the chemical composition which is made of the 

most readily available and the most inexpensive chemical 

elements. It should be pointed out that the inverse problem 

of determining alloy chemical composition is different from 

a direct optimization problem of designing alloys that will 

have extreme properties. This alloy design methodology 

does not require knowledge of metallurgy or crystallography 

and is directly applicable to alloys having arbitrary number 

of alloying elements. 

A design example is presented for Ni-based steel alloys, 

although the method is applicable to inversely designing 

chemical concentrations of arbitrary alloys. In this example, 

a maximum of 17 candidate alloying elements were 

considered (Cr, Ni, C, S, P, Mn, Si, Cu, Mo, Pb, Co, Cb, W, 

Sn, Al, Zn, Ti). The following three desired properties of 

the alloys were specified: tensile strength σspec=4000 kpsi, 

temperature Tspec=1800 F, time until rupture Hspec=6000 

hours. These specified alloy properties were then treated 

as three equality constraints (satisfy accuracy of the three 

specified properties to within one percent). The inverse alloy 

design was formulated as a multi-objective optimization 

problem, that is, minimize simultaneously the following ten 

objectives: (σ-σspec)2, (T-Tspec)2, (H-Hspec)2, and concentrations 

of each of the most expensive alloying elements Ni, Cr, Nb, 

Co, Cb, W, Ti in order to minimize cost of the raw material 

[49].

Results of this multi-objective constrained optimization 

task are given in Fig. 13 by presenting five Pareto optimized 

alloys on the left hand side in terms of their concentrations 

of Ni and Cr, and the concentrations of the remaining 15 

candidate alloying elements for each of the five Pareto 

optimized alloys given on the right hand side. Each of the five 

inversely designed alloys satisfies the three specified alloy 

properties, while providing Pareto-optimized minimum 

use of seven alloying elements. It is fascinating to realize 

Fig. 12. States of the Markov chain with standard deviation σ = 0.05 for inversely determined components k1 (left), k2 (middle) and k3 (right) of the 

orthotropic heat conduction coefficient [46].
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that optimized concentrations of some of the remaining 15 

candidate alloying elements were found to be negligible 

although they are currently widely used in such alloys, 

thus eliminating these elements as potential candidates 

for forming these types of steel alloys. Consequently, the 

number of alloying elements that actually needs to be used to 

create an alloy with the three specified properties could be as 

low as 7 instead of 15 (in addition to Ni and Cr). This is highly 

attractive for practical applications where regular supply, 

storage, and application of a large number of different pure 

elements are considered impractical, costly and financially 

risky.

5. Summary and Recommendations

A number of concepts and applications have been briefly 

exposed for formulating and solving a variety of seemingly 

unsolvable (ill-posed) problems. A common result of 

most of these analytical formulations and their discretized 

versions are highly ill-conditioned matrices representing 

systems of linear algebraic equations. Boundary element 

methods typically result in dense ill-conditioned matrices 

and finite element methods typically result in sparse ill-

conditioned matrices. Existing algorithms for solution 

of both types of ill-conditioned matrix problems are not 

sufficiently fast and accurate when applied to arbitrary 

three-dimensional domains, unsteady problems, and 

especially multidisciplinary problems. Another persistent 

issue in the numerical solution of inverse problems is the 

control of numerical errors in the iterative solution methods. 

Further innovative research is needed in the development of 

appropriate regularization concepts that do not deteriorate 

the accuracy of the solution and that are applicable to large 

initial and boundary data errors. 
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