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Abstract

According to the requirement of wing weight estimation and frequent adjustments during aircraft conceptual design, a wing 

weight estimation method considering the constraints of structural strength and stiffness is proposed to help designers 

make wing weight estimations rapidly and accurately. This method implements weight predictions on the basis of structure 

weight optimization with stiffness constraints and strength constraints, which include achievement of wing shape parametric 

modeling, rapid structure layout, finite element (FE) model automated generation, load calculation, structure analysis, 

weight optimization, and weight computed based on modeling. A software tool is developed with this wing weight estimation 

method. This software can realize the whole process of wing weight estimation with the method and the workload of wing 

weight estimation is reduced because much of the work can be completed by the software. Finally, an example is given to 

illustrate that this weight estimation method is effective.
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1. Introduction

Aircraft conceptual design is one of the most important 

phases during the aircraft design process and each decision 

in this phase has significant effects on aircraft performance 

and cost [1-3]. Thus, it is important to improve the quality 

of conceptual design. Weight estimation is a key step in the 

aircraft design process because of its direct influence on 

further analyses and aircraft performance evaluation [4]. Thus, 

accurate weight predictions are important, and beneficial for 

the exact assessment of aircraft design quality and design 

decision impact. Allowing for the aircraft conceptual design 

process including a large number of variable changes and 

trade studies [5-7], aircraft mass properties needs to be 

recalculated frequently with changes in design. Research on 

more accurate, rapid, practical, and design-sensitive weight 

estimation method remains a focus in the field of aircraft 

conceptual design [7-10].

As an important component, the wing provides lift force 

and bears aerodynamic loading. Because the wings account 

for almost a third of total aircraft structure weight [11] and 

have great influence on the total weight and the center of 
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gravity position of an aircraft, improving the accuracy of 

wing weight prediction is important for aircraft conceptual 

design.

Traditional methods of weight estimation during 

conceptual design have been based mostly on the use of 

statistical data and basic performance equations [8, 10]. 

Such methods are quick and simple, but not sufficiently 

precise, especially in current circumstances where more new 

materials and new types of structures are applied in aircraft. 

On the other hand, such methods must also have enough 

sensitivity or they may not fully reflect a change in design.

One method, that uses a physics-based analysis instead 

of statistical data, appeared in the 1990s. This method 

was studied by many scholars, such as Droegkamp[12], 

Bindolino[13], Laban[14], Hurlimann[15], and 

Sensmeier[16]. Such methods are generally based on finite 

element analysis to size the various components of the 

primary structure and compute their weight with material 

density and volume information[10]. These methods are 

obviously more exact. However, they are not used widely 

in aircraft conceptual design because it is  time-consuming 

to prepare a FE model and perform the analysis, as well as 

their requirement for much detailed geometry information, 

which is likely unobtainable in the early design stage.

This paper presents a method for wing weight estimation, 

that is suitable for use in the conceptual design phase. 

This method, using parametric modeling of the wing, 

incorporates the process of structural weight optimization 

with strength and stiffness as constraints. The analyses 

and calculations are based completely on the wing CAD 

model, so this method can be used with conventional 

and non-conventional layouts. A wing weight estimation 

software was developed with the method to make weight 

estimation work quick and accurate. This software can 

generate finite element models and perform the analyses 

largely automatically. It also can quickly update the model 

and data when the design changes, which is well-adapted 

to engineering applications.

2. Overall Idea

The process for weight estimation by this method is shown 

in Fig. 1.

The specific steps are as follows:

1) ��Wing shape model creation according to parameters of 

the wing shape.

2) ��Wing structure and wing tank layout in accordance with 

the wing shape.

3) ��Wing structure FE model generation and wing 

aerodynamic characteristics computation.

4) ��Inertial and aerodynamic loads computation and 

concentrated loads setting.

5) ��Wing structure analysis with finite element technique 

and wing structure geometric parameters optimization 

for lighter weight.

6) ��After optimization, the weight and center of gravity of 

each component was calculated to obtain the weight 

characteristics of the wing.

3. ��Parameterized Modeling of Wing Shape 
Surface

3.1. Coordinate systems

 

Figure 1. Weight estimation process 

 

3. Parameterized Modeling of Wing Shape Surface 

3.1. Coordinate systems 

Fig. 1. ��Weight estimation process

  

 

Figure 2. Coordinate systems 

 

The coordinate systems shown in Figure 2 were adopted in this research. The absolute 

coordinate system of the design space is Oxyz with its origin at the most anterior point of the 

aircraft nose. The coordinate system of the wing is O’x’y’z’ and its origin point is at the 

leading edge of the root. O’’ cs, with its origin at the same O’x’y’z’, is a dimensionless 

two-dimensional coordinate system of the wing. The coordinate ‘s’ represents relative 

position in the span-wise direction; the coordinate ‘c’ shows the relative position in the 

chord-wise direction.  

 

3.2. Parameterized description of wing shape 

Wing shape is a constraint on structure layout. Thus, the description and modeling method of 

the wing shape directly affect the implementation of subsequent modeling and analyses. 

According to Ref. [17] and Ref. [18], the wing is composed of several wing segments in this 

paper. Wing segment is divided into two categories by its plane geometry: those where the 

leading edge and trail edge are straight and those where the edges are curved. The description 

parameters are shown in Table 1 and some of them, marked with “√” are controllable. The 
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The coordinate systems shown in Fig. 2 were adopted in 

this research. The absolute coordinate system of the design 

space is Oxyz with its origin at the most anterior point of the 

aircraft nose. The coordinate system of the wing is O’x’y’z’ 

and its origin point is at the leading edge of the root. O’’ cs, 

with its origin at the same O’x’y’z’, is a dimensionless two-

dimensional coordinate system of the wing. The coordinate 

‘s’ represents relative position in the span-wise direction; the 

coordinate ‘c’ shows the relative position in the chord-wise 

direction. 

3.2. Parameterized description of wing shape

Wing shape is a constraint on structure layout. Thus, 

the description and modeling method of the wing shape 

directly affect the implementation of subsequent modeling 

and analyses. According to Ref. [17] and Ref. [18], the wing 

is composed of several wing segments in this paper. Wing 

segment is divided into two categories by its plane geometry: 

those where the leading edge and trail edge are straight 

and those where the edges are curved. The description 

parameters are shown in Table 1 and some of them, marked 

with “√” are controllable. The description parameters are 

similar to those in Ref. [17], Ref. [18], and Ref. [20]. Airfoil 

group information includes the data of points on the airfoil 

curves and the span wise location on the plane where the 

airfoil is.

3.3. Shape modeling method

The process of wing shape modeling is stated as follows. 

First, the leading edge and trailing edge are generated 

with the plane shape of the wing, the incidence, and 

the anhedral and twist angles. Then, the airfoil curve is 

generated according to airfoil group data. Finally, model 

the wing shape with airfoil curves as sections and edges as 

guidelines.

4. ��Wing Structure Rapid Layout and FE Mod-
el Automated Generation

4.1. Parameterized modeling of wing structures

Wing structure modeling uses the same coordinate 

system as that used in wing shape modeling. Wing structures 

include six elements: spar, wall, rib, reinforcing rib, stringer, 

and skin.

1) Spar

The spar is composed of web and flanges. The description 

parameters of a spar include profile, material, and 

arrangement points list that set the position of the spar. The 

modeling process is divided into four steps: obtaining actual 

arrangement points on the surface according to arrangement 

parameters, choosing profiles, scaling profiles to actual 

profiles of structure, and generating a model according to 

the profiles.

2) Wall

The description parameters and modeling method for the 

wall are the same as for the spar.

3) Rib

The rib, maintaining the shape of wing, has the following 

parameters: starting and stopping point of rib arrangement, 

shape and area of flange, web thickness, material, and 

reinforcing rib or ordinary rib. Ribs are grouped for 

Table 1. Description parameters of wing segment
 

  Table 1. Description parameters of wing segment 

Parameter leading edge and trail edge are 

straight 

leading edge and 

trail edge are 

Curved first wing panel  Other wing panels

Taper ratio √ √  

Sweep angle √ √  

Root chord √  √ 

Span √ √ √ 

Incidence angle √  √ 

Twist angle √ √ √ 

Dihedral angle √ √ √ 

coordinate of  

leading edge Root 
√  √ 

Airfoil group √ √ √ 
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manageability; parameters of every group include the amount 

of ribs, type of arrangement, and the number of spar/wall 

perpendicular to ribs in the group. Boolean operation is used 

to combine web models and flange models with rib models. 

The modeling process has three steps: obtaining the actual 

shape of the rib profile, generating the upper flange, lower 

flange, and web, and combining the flanges and the web to 

the rib.

4) Stringer

The stringer is between the skin and ribs; its parameters 

are starting and stopping point of arrangement, relative 

height at arrangement point, profile, and material. Stringer 

modeling steps are similar with spar/wall; the only difference 

is that the stringer clings to skin instead of connecting upper 

and lower skins.

5) Skin

The description parameters of the skin are the root 

thickness, tip thickness, and material. A skin model is 

generated by contacting the surface, based on thickness.

Moreover, on the basis of the wing structures having been 

modeled, it is convenient to complete the layout of a wing 

tank, which can be determined with these structures as a 

sealed boundary. The description parameters of each tank 

include the starting spar/wall number, the stopping spar/

wall number, starting rib number, and stopping rib number. 

This program obtains geometric data through these numbers 

to generate a wing tank model.

4.2. FE model automated generation

To realize further weight optimization with the structural 

analysis data as a constraint, it is necessary to build the 

structure finite element model automatically. According 

to the characteristics of wing structure and the description 

method of a finite element model, the wing structure 

components are replaced by shell and beam elements. 

The spar flanges, wall flanges, rib flanges, and stringers 

are replaced by beam elements. The spar web, wall web, 

rib web, and skin are replaced by shell elements. Because 

this method is used mainly in the early aircraft design 

stage, it only deals with the actual structure nodes, without 

considering further refinement of the finite element mesh. 

The details of implementing process are specified in Ref. 

[19].

4.3. Automated adjustment

The procedure for the wing structure rapid layout and 

finite element model automatic build is illustrated in Fig. 3. 

The process is divided into three steps:

1) The upper layer is wing surface modeling. The inputs for 

modeling are the parameters of wing shape.

2) The intermediate level is wing structure modeling. The 

structure-modeling inputs are the parameters of the wing 

structure and wing surface.

3) The final step is the generation of the structure finite 

element model and tank modeling. The inputs for finite 

element model generation are all the models of the wing 

structures. The tank modeling inputs are the numbers and 

parameters of these structures used as seal components.

Based on this process, the system can realize the automatic 

adjustment in two layers:

① When the structure’s geometry changes, the structural 

finite element model will be rebuilt in accordance with the 

new geometric information of the structure and the tank 

model will automatically update as well as volume data, 

according to the changes.

② Because the structure arrangement parameters 

are managed with relative coordinates, these layout 

parameters are not affected by the actual parameters of the 

wing. To adjust to a surface change, the structure model 

will be regenerated automatically and structure weight will 

be recalculated as well as the center of gravity, moment 

of inertia, and other data. Uniting with ①, automatic 

adjustment of finite element model and wing tank is 

completed.

5. Weight Calculation Based on Modeling

The weight and center of gravity are calculated with the 

weight estimation method based on parameterization 

modeling (Ref. [20]). Weight, center of gravity, and moment 

of inertia can be directly obtained from the model and 

material information for these parts and components is 

modeled in the software.

 

4.3. Automated adjustment 

The procedure for the wing structure rapid layout and finite element model automatic build is 

illustrated in Figure 3. The process is divided into three steps: 

1) The upper layer is wing surface modeling. The inputs for modeling are the parameters of 

wing shape. 

2) The intermediate level is wing structure modeling. The structure-modeling inputs are the 

parameters of the wing structure and wing surface. 

3) The final step is the generation of the structure finite element model and tank modeling. 

The inputs for finite element model generation are all the models of the wing structures. The 

tank modeling inputs are the numbers and parameters of these structures used as seal 

components. 

 

 

Figure 3. Process of wing structure layout and finite element model generation 

Based on this process, the system can realize the automatic adjustment in two layers: 

(1) When the structure’s geometry changes, the structural finite element model will be rebuilt 

in accordance with the new geometric information of the structure and the tank model will 

Fig. 3. ��Process of wing structure layout and finite element model gen-
eration
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5.1. ��Mass characteristics computational method for 
rigid body

In this paper, wing weight characteristics are computed 

with the computational method of rigid body mass 

characteristics. Mass property parameters of rigid body 

include mass, center of mass, moment of inertia, and product 

of inertia.

The moment of inertia of a rigid body about the x, y, and z 

axes can be calculated with following formula.

automatically update as well as volume data, according to the changes. 

(2) Because the structure arrangement parameters are managed with relative coordinates, 

these layout parameters are not affected by the actual parameters of the wing. To adjust to a 

surface change, the structure model will be regenerated automatically and structure weight 

will be recalculated as well as the center of gravity, moment of inertia, and other data. 

Uniting with (1), automatic adjustment of finite element model and wing tank is completed. 

 

5. Weight Calculation Based on Modeling 

The weight and center of gravity are calculated with the weight estimation method based on 

parameterization modeling (Ref. [20]). Weight, center of gravity, and moment of inertia can 

be directly obtained from the model and material information for these parts and components 

is modeled in the software. 

 

5.1. Mass characteristics computational method for rigid body 

In this paper, wing weight characteristics are computed with the computational method of 

rigid body mass characteristics. Mass property parameters of rigid body include mass, center 

of mass, moment of inertia, and product of inertia. 

The moment of inertia of a rigid body about the x, y, and z axes can be calculated with 

following formula. 
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The following formula shows the calculation of the 

product of inertia for a rigid body.

 

Figure 4. Moment of inertia calculation 
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It is often required to compute the moment of inertia and the product of inertia about other 

coordinate systems. Two coordinate systems are shown in Figure 5 and the moment of inertia 

can be computed with Eq. (3). 
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5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

 is the transformation matrix, where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

 is 

the translation vector from the origin of coordinate xyz to 

the origin of coordinate x'y'z'. In the rotation transformation 

matrix, 

where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

, 

where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

, 

where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

 

are the unit vectors of the x-axis, y-axis, and z-axis of 

coordinate x'y'z' in coordinate .

In the coordinate systems used in this paper, transformation 

from the coordinate x'y'z' to coordinate xyz is a translation 

transformation and the axes of coordinate x'y'z' are parallel 

to and in the same direction as the axes of the coordinate xyz. 

In this case, the rotation transformation matrix is 

where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

. 

The expressions of the moment of inertia and product of 

inertia according to the transformation between these two 

coordinates are:

where
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u
u u u
u u u

 
 
 
  

 is the transformation matrix, 
0

0

0

x
y
z

 
 
 
  

 is the translation vector from the 

origin of coordinate xyz  to the origin of coordinate x y z   . In the rotation transformation 

matrix, 1 1 1x y zu u u   , 2 2 2x y zu u u   , 3 3 3x y zu u u    are the unit vectors of the 

x-axis, y-axis, and z-axis of coordinate x y z    in coordinate xyz . 

In the coordinate systems used in this paper, transformation from the coordinate x y z    to 

coordinate xyz  is a translation transformation and the axes of coordinate x y z    are parallel 

to and in the same direction as the axes of the coordinate xyz . In this case, the rotation 

transformation matrix is 
1 0 0
0 1 0
0 0 1

 
 
 
  

. The expressions of the moment of inertia and product of 

inertia according to the transformation between these two coordinates are: 

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 2
0 0 0 0

0 0 0 0

2 2

2 2

2 2

x i i i i i i i i i i

y i i i i i i i i i i

z i i i i i i i i i i

xy i i i i i i i i

yz

I m y m z m y m z y m y z m z

I m x m z m x m z x m x z m z

I m x m y m x m y x m x y m y

I m x y m x y y m x x m y

I m

        

        

        

      



     
     
     
   

0 0 0 0

0 0 0 0

i i i i i i i i

xz i i i i i i i i

y z m y z y m z z m y

I m x z m x z x m z z m x








      
       

   
   

 (4) 

 

5.2. Weight characteristic computation of parts 

The steps to obtain the weight characteristics of a part are: 

1) Determine the weight characteristics of the part at a standard density of 31000 /kg m . 

2) Multiply the mass, moment of inertia, and product of inertia by the ratio of the actual 

density to 31000 /kg m . Then, the actual weight characteristics are acquired. 

 

(4)

5.2. Weight characteristic computation of parts

The steps to obtain the weight characteristics of a part are:

1) Determine the weight characteristics of the part at a 

standard density of 1000kg/m3.

2) Multiply the mass, moment of inertia, and product of 

inertia by the ratio of the actual density to 1000kg/m3. Then, 

the actual weight characteristics are acquired.

5.3. ��Weight characteristic computation for compo-
nents

The weight characteristics of components are computed 

with expressions of mass characteristics computation for a 

rigid body.

The mass of a component equals the sum of the masses of 

the subcomponents or parts.

The computational expression of the center of gravity is:

 

Figure 4. Moment of inertia calculation 

 

The following formula shows the calculation of the product of inertia for a rigid body. 

 

 
 
 

xy i i i

xz i i i

yz i i i

I m x y

I m x z

I m y z

 
 
 





 (2) 

It is often required to compute the moment of inertia and the product of inertia about other 

coordinate systems. Two coordinate systems are shown in Figure 5 and the moment of inertia 

can be computed with Eq. (3). 
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5.3. Weight characteristic computation for components 

The weight characteristics of components are computed with expressions of mass 

characteristics computation for a rigid body. 

The mass of a component equals the sum of the masses of the subcomponents or parts. 

The computational expression of the center of gravity is: 
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where cgx , cgy , and cgz  are the gravity center coordinates of the component in the 
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gravity center coordinates of the ith subcomponent of the part in the coordinates xyz . 

The moments of inertia and products of inertia of component are computed by this method: 

   

   

   
  
  
  

2 2

2 2

2 2

x xi i i cg i i cg

y yi i i cg i i cg

z zi i i cg i i cg

xy xyi i i cg i cg

xz xyi i i cg i cg

yz xyi i i cg i cg

I I W y y W z z

I I W x x W z z

I I W x x W y y

I I W x x y y

I I W x x z z

I I W y y z z

         


        
         
       
       


      










 (6) 

where xI , yI , zI , xyI , xzI , and yzI  are the moments of inertia and products of inertia of a 

component in its barycentric coordinate system, xiI , yiI , ziI , xyiI , xziI , and yziI  are the 

moments of inertia and products of inertia of the ith subcomponent or part in its barycentric 

coordinate system. 

(5)
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where xI , yI , zI , xyI , xzI , and yzI  are the moments of inertia and products of inertia of a 

component in its barycentric coordinate system, xiI , yiI , ziI , xyiI , xziI , and yziI  are the 

moments of inertia and products of inertia of the ith subcomponent or part in its barycentric 

coordinate system. 

(6)

where Ix, Iy, Iz, Ixy, Ixz, and Iyz are the moments of inertia 

and products of inertia of a component in its barycentric 

coordinate system, Ixi, Iyi, Izi, Ixyi, Ixzi, and Iyzi are the moments 

of inertia and products of inertia of the ith subcomponent or 

part in its barycentric coordinate system.

6. Automatic Load Calculation

Wing load is divided into three categories: aerodynamic 

load, inertial load from the mass of wing structure and gas 

in the wing tank, and concentrated load caused by other 

components and external stores hinged to the wing [21]. 

The first two are the main forms of wing load, which are 

distributed load and act on the wing structure according to 

a certain rule of distribution. In this paper, the main work 

of the load calculation is to obtain the distributed loads and 

convert them into equivalent nodal forces with the purpose 

of carrying out the finite element analysis.

6.1. Aerodynamic load calculation

The aerodynamic load calculation is divided into two 

parts, to compute aerodynamic forces on the wing and 

convert them into equivalent nodal forces according to the 

finite element model of wing structure. Because this study 

focuses on the aircraft conceptual design stage, during which 

the design is modified repeatedly and there is a lack of detail, 

aerodynamic prediction methods with less time cost are 

required in this study and the requirement for calculation 

accuracy can be appropriately relaxed. At the conceptual 

design stage, the common aerodynamic prediction methods 

include an engineering estimation approach, as described 

in Ref. [2], the vortex lattice method, the panel method, 

and numerical calculation methods. There have been some 

aerodynamic prediction programs based on these methods. 

Thus, an existing program selected according to the actual 

needs of engineering was integrated into the weight 

estimation software to compute the aerodynamic forces on 

the wing.

PANAIR, a computer program developed to predict 

subsonic or supersonic linear potential flows about 

arbitrary configurations using a higher-order panel method, 

has been used widely in the field of aircraft design[22-24]. 

Refs. [25-27] describe comparisons and evaluations of 

the program and method. The PANAIR program was 

used in B737 design process by Boeing Company[28-30]. 

Additionally, the time cost of this program is acceptable. 

Accordingly, this study integrated PANAIR to calculate 

aerodynamic forces. One caveat is that the applicable scope 

 

Figure 6. Aerodynamic load calculation process 

 

6.2. Inertial load calculation 

The inertia force induced by the mass of the wing structure and the fuel in the wing tank and 

the inertial force calculation is to obtain the mass distribution. In this paper, the wing model 

is cut into several blocks (see Fig. 7) and mass characteristics of each block are counted. 

Then, the mass distribution of the whole wing is determined. Because the wing thickness is 

far less than the chord length and span length, the grid used to cut the model is plane. Inertia 

force will be converted into equivalent nodal forces and loaded onto the finite element mesh 

according to the static equivalence principle. 

Fig. 6. ��Aerodynamic load calculation process
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of the method is limited, especially its inapplicability to 

cases with significant viscous effects and flow separation, 

and would be necessary to integrate another program or 

write a new program in these cases, which is beyond the 

scope of this study.

The calculation progress is shown in Fig. 6:

1) Set the parameters of a surface mesh of the wing. 

2) ��Generate the mesh according to the surface mesh 

settings and wing shape automatically.

3) Set the parameters of aerodynamic prediction.

4) ��Call PANAIR to compute the aerodynamic forces on the 

wing and output the result, including the aerodynamic 

forces, at all mesh nodes.

5) ��Convert the aerodynamic forces at the mesh nodes of 

the aerodynamic calculation into equivalent nodal 

forces at the mesh of the finite element model.

6.2. Inertial load calculation

The inertia force induced by the mass of the wing 

structure and the fuel in the wing tank and the inertial force 

calculation is to obtain the mass distribution. In this paper, 

the wing model is cut into several blocks (see Fig. 7) and 

mass characteristics of each block are counted. Then, the 

mass distribution of the whole wing is determined. Because 

the wing thickness is far less than the chord length and 

span length, the grid used to cut the model is plane. Inertia 

force will be converted into equivalent nodal forces and 

loaded onto the finite element mesh according to the static 

equivalence principle.

The calculation progress is shown in Fig. 8:

1) ��Set the parameters of the plane mesh used to cut the 

wing model. 

2) Generate several planes according to the mesh. 

3) ��Use these planes to cut the wing model into many parts.

4) ��Compute the mass characteristics of each part to obtain 

the mass distribution and the inertial force.

5) ��Convert the inertial force into equivalent nodal forces at 

the finite element mesh.

6.3. Equivalent nodal force conversion

Converting aerodynamic load and inertia load to finite 

element nodes should follow the static equivalence principle. 

There are two feasible methods, as described below.

One method is to distribute each load to three adjacent 

finite element nodes. Suppose there are three finite element 

nodes and a load, as shown in Fig. 9. The loads assigned 

to the three nodes can be calculated with the following 

 

Figure 7. Cut wing model into several blocks 

 

The calculation progress is shown in Figure 8: 

(1) Set the parameters of the plane mesh used to cut the wing model.  

(2) Generate several planes according to the mesh.  

(3) Use these planes to cut the wing model into many parts. 

(4) Compute the mass characteristics of each part to obtain the mass distribution and the 

inertial force. 

(5) Convert the inertial force into equivalent nodal forces at the finite element mesh. 

Fig. 7. ��Cut wing model into several blocks

 

Figure 8. Inertia load calculation process 

 

6.3. Equivalent nodal force conversion 

Converting aerodynamic load and inertia load to finite element nodes should follow the static 

equivalence principle. There are two feasible methods, as described below. 

Fig. 8. ��Inertia load calculation process
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Figure 9. Three nodes around the load 

 

One method is to distribute each load to three adjacent finite element nodes. Suppose there 

are three finite element nodes and a load, as shown in Figure 9. The loads assigned to the 

three nodes can be calculated with the following formula: 

j A
j

A P
P

A
  (7) 

 

where AP  is the load at point A, A  is the area of triangle 1, 2, 3, 1A  is the area of triangle 

A, 2, 3, 2A  is the area of triangle A, 1, 3, 3A  is the area of triangle A, 1, 2. Calculate the 

forces distributed to the three adjacent nodes for each load with Eq. (7) to obtain the 

equivalent nodal forces of the finite element model. 

Another method is to distribute each load to several finite element nodes, or even the all 

nodes. Its basic idea is that the closer the finite element node is to the load, the higher the 

force is distributed to this node. 

Assume there is an invisible beam between the finite element nodes and the position of 

load, which is a cantilever beam clamped to the load position. 

Fig. 9. ��Three nodes around the load
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are three finite element nodes and a load, as shown in Figure 9. The loads assigned to the 
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equivalent nodal forces of the finite element model. 

Another method is to distribute each load to several finite element nodes, or even the all 

nodes. Its basic idea is that the closer the finite element node is to the load, the higher the 

force is distributed to this node. 

Assume there is an invisible beam between the finite element nodes and the position of 

load, which is a cantilever beam clamped to the load position. 

(7)

where PA is the load at point A, A is the area of triangle 1, 2, 

3, A1 is the area of triangle A, 2, 3, A2 is the area of triangle 

A, 1, 3, A3 is the area of triangle A, 1, 2. Calculate the forces 

distributed to the three adjacent nodes for each load with Eq. 

(7) to obtain the equivalent nodal forces of the finite element 

model.

Another method is to distribute each load to several finite 

element nodes, or even the all nodes. Its basic idea is that the 

closer the finite element node is to the load, the higher the 

force is distributed to this node.

Assume there is an invisible beam between the finite 

element nodes and the position of load, which is a cantilever 

beam clamped to the load position.

When the free ends, the finite elements (see Fig. 10), are 

assigned a load, the deformation energy is:
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Figure 10. Imaginary beam between finite element nodes and the position of load 

 

When the free ends, the finite elements (see Fig. 10), are assigned a load, the deformation 

energy is: 
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6
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where EJ  is the bending stiffness of the imaginary beam. So, the deformation energy of the 

whole system, including all imaginary beams, is:  
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The loads allocated to finite element nodes should minimize the deformation energy of the 

system as well as accord with the condition of static equilibrium. 
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where n  is the number of finite element nodes. 
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The loads allocated to finite element nodes should 

minimize the deformation energy of the system as well as 
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where n is the number of finite element nodes.

Use a Lagrangian multiplier method to establish the 

Lagrangian function:Use a Lagrangian multiplier method to establish the Lagrangian function: 
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where j j Ax x x  , j j Az z z  , , x , and z are Lagrangian multipliers. 

To minimize  x zF   , let: 
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 , x , and z  are obtained by solving Eq. (16) and the loads assigned to these nodes are 

calculated by substituting  , x , and z  into Eq.(15). Allocate each load into the finite 

element notes by this method. Then, the equivalent nodal forces are obtained. 

In this paper, the finite element mesh of the wing is quadrilateral, so the former method is 

not suitable for this situation. The equivalent nodal forces of the finite element model are 

obtained through two steps: distribute each load to four adjacent nodes of the quadrilateral 

surrounding the load by the latter method, and put the forces assigned to the same node 

together for each node. 
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Figure 10. Imaginary beam between finite element nodes and the position of load 

 

When the free ends, the finite elements (see Fig. 10), are assigned a load, the deformation 

energy is: 
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where EJ  is the bending stiffness of the imaginary beam. So, the deformation energy of the 

whole system, including all imaginary beams, is:  

1

n

j
j

U U


  (9) 

The loads allocated to finite element nodes should minimize the deformation energy of the 
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where n  is the number of finite element nodes. 

Fig. 10. ��Imaginary beam between finite element nodes and the posi-
tion of load
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design can be judged through load calculations and static 

strength analyses. Optimization according to the constraints 

of strength and stiffness is used to make the result of the 

weight estimate more reasonable when the safety margin of 

the wing structure is too large.

The task of wing structure optimization is to adjust the 

parameters of wing structures to reduce the wing weight and 

satisfy the constraints of stress, displacement, and size. The 

optimization problem is stated as follows:

Find X={xi} 

Minimize Wwing  

Subject to 

7. Wing Weight Optimization with the Constraints of Strength and Rigidity 

In the initial design, a wing model can be created through the rapid modeling function of the 

software and the weight estimation module can provide the weight and center of gravity data 

of the current aircraft wing design. The initial design can be judged through load calculations 

and static strength analyses. Optimization according to the constraints of strength and 

stiffness is used to make the result of the weight estimate more reasonable when the safety 

margin of the wing structure is too large. 
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where X  includes the parameters of wing structures, including skin thickness, sizes of other 

structures like spar profile parameters, and rib web thickness, i is the stress, and iu  is the 

displacement. Now, the strength constraint is the stress less than the allowable stress of the 

material and more failure modes will be considered in future research. Different aerodynamic 

load cases are computed and the maximum aerodynamic load case is used in the structure 

analysis. 

The procedure of wing weight optimization according the constraints of strength and 

rigidity is shown in Figure 11. This optimization was realized using Workbench and the 

where X includes the parameters of wing structures, 

including skin thickness, sizes of other structures like spar 

profile parameters, and rib web thickness, σi is the stress, 

and ui is the displacement. Now, the strength constraint is 

the stress less than the allowable stress of the material and 

more failure modes will be considered in future research. 

Different aerodynamic load cases are computed and the 

maximum aerodynamic load case is used in the structure 

analysis.

The procedure of wing weight optimization according 

the constraints of strength and rigidity is shown in Fig. 11. 

This optimization was realized using Workbench and the 

optimization function is integrated into the system. The 

optimization is implemented, based on the automatic 

adjustment illustrated in 4.3.

8. Example

The weight estimation software was developed by the 

methods described above (Fig.12).

The effectiveness of the weight evaluation method 

was assessed through an example. Specifically, the wing 

geometry of the example refers to the wing of an A320.

The wing shape was created and the modeling process is 

shown in Fig. 13, including setting the wing plane shape and 

airfoils. The wing shape modeling result is shown in Fig. 14.

The wing structure layout was made based on the wing 

shape. The wing structure model is shown in Fig. 15 and the 

initial weight result is shown in Table 2. 

The aerodynamic loads were calculated from the results 

of the aerodynamic analysis (Fig. 17), which is the case of 

maximum aerodynamic forces in a series of aerodynamic 

analyses. The inertial loads were calculated according to 

mass distribution and the results show in Fig. 18.

The wing structure was analyzed with the FE method and 

the results are shown in the following two figures.

The wing weight was optimized with the constraints 

of stress and displacement. The stress constraint is the 

allowable stress of the material, which is 450 MPa here. 

The optimization results are shown in Table 3. Data in 

Tables 2 and 3 indicate that the wing weight was reduced. 

This example result is close to the true A320 wing structure 

weight, 9150 kg (Ref. [31]).

The accuracy of the weight estimation result depends 

primarily on two aspects: the parametric modeling is 

consistent with the actual situation, and the stress and 

displacement constraints set are reasonable.

optimization function is integrated into the system. The optimization is implemented, based 

on the automatic adjustment illustrated in 4.3. 
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Fig. 13. Wing parametric modeling
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Figure 14. 
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The aerodynamic loads were calculated from the results of the aerodynamic analysis 

(Fig. 17), which is the case of maximum aerodynamic forces in a series of aerodynamic 

analyses. The inertial loads were calculated according to mass distribution and the results 

show in Figure 18. 

 

 

Figure 17. Aerodynamic loads 

 

 

Figure 18. Inertial loads 

 
The wing structure was analyzed with the FE method and the results are shown in the 

following two figures. 

Fig. 17. ��Aerodynamic loads

 

Figure 16. Wing structure weight calculation 

 

Table 2. Initial wing structure weight 

Wing 

structure 
weight/kg

Center of gravity 

x/m y/m z/m 

Spar 1758.4 16.47 0 -1.72

Stringer 694.3 16.84 0 -1.75

Rib 8747.8 16.51 0 -1.87

Skin 1153.9 17.89 0 -1.61

Total 12354.4 16.66 0 -1.82
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The wing structure layout was made based on the wing shape. The wing structure model is 

shown in Figure 15 and the initial weight result is shown in Table 2.  
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The wing structure layout was made based on the wing shape. The wing structure model is 

shown in Figure 15 and the initial weight result is shown in Table 2.  
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9. Conclusions

1) According to weight estimation requirements for speed 

and accuracy, a wing weight evaluation method considering 

the structural straight and rigidity is proposed in this 

paper. The feasibility and practicability of the method are 

demonstrated by an example.

2) A weight estimation software tool was developed with 

this method. The software possesses functions of wing shape 

parametric modeling and rapid wing structure layout facing 

the wing weight estimation, finite element model automatic 

generation, automatic load calculation, and weight 

characteristic calculations based on the model.

3) The software can simplify the tedious and repetitive 

aspects with its automated processing of modeling, weight 

computation, load calculation, and structure analysis, 

especially its automated adjustment and data update when a 

design is changed. This will help users to pay more attention 

to the aircraft design itself. This software could become 

a convenient tool in weight estimation during aircraft 

conceptual design. 
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