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Abstract

The need for position information in indoor environments has been growing lately. Several indoor navigation systems have 

been studied. Among them, pseudolite-based indoor positioning systems are one of the best systems to obtain precise position 

measurements. However, the installation of such systems is very difficult because the calibration of pseudolite antenna position 

is complicated. For precise calibration, the use of carrier phase measurements is necessary, and whenever carrier phase 

measurements are considered, problems with cycle ambiguity appear. In this paper, a new approach to calibrate the positions 

of pseudolite antennas is proposed. By using a multi-antenna, the ambiguity can be eliminated, epoch by epoch, for every single 

carrier phase measurement. Moreover, the number of calibration points can be reduced down to 3 by use of measurements 

collected at unknown positions. Using the proposed methods, the process of the collection of carrier phase measurements 

becomes considerably simple and convenient. Simulation results are presented to verify the proposed algorithms.
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1. Introduction

Global Navigation Satellite Systems (GNSS) have been 

providing accurate and reliable positioning information for 

people around the world. However, because many people 

spend most of their time indoors, the need for position 

information in indoor environments is growing.

GNSS signals are too weak to be tracked indoors. Therefore, 

there have been several studies on the indoor positioning. 

Pseudolite-based navigation is one of the major approaches. 

Pseudolite is a signal transmitter that can be configured to emit 

GNSS-like signals for enhancing GNSS by providing increased 

accuracy, integrity, and availability [1]. Furthermore, an 

independent navigation system can be constructed using 

proper pseudolite constellations. Table 1 shows the differences 

between GNSS satellites and pseudolites.

Before using pseudolite signals for navigation, each 

position of the phase centers of the pseudolite antennas must 

be calibrated precisely. The calibration error will give biased 

positions in pseudolite-based navigation.

There have been several studies on the calibration method 

of pseudolite antenna position. Pseudolite-transceiver-

based self-calibration methods using range rates [2] or 

distances [3] gave precise calibration results. However, 
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these methods could not be applied to calibrate positions 

of normal transmitter-type pseudolites. For the calibration 

of pseudolite transmitters, there is a method based on an 

Inverted-GPS positioning algorithm, which uses carrier 

phase measurements collected at several known positions 

[4]. 

Th e conventional GPS algorithm calculates unknown RX 

antenna positions based on the measurements obtained from 

GPS signals transmitted from TX antennas whose positions 

are known. On the other hand, the Inverted-GPS Positioning 

algorithm calculates unknown TX antenna positions based 

on the measurements obtained by RX antennas whose 

positions are known. Fig. 1 illustrates the conventional GPS 

method and the Inverted-GPS method.

Like GPS satellites, pseudolites provide both pseudorange 

and carrier phase measurements. A precise calibration 

of pseudolite position is possible using the Inverted-GPS 

Positioning algorithm with carrier phase measurements. 

To perform calibration, we have to collect carrier phase 

measurements fi rst. However, carrier phase measurement 

collection is a very diffi  cult process due to cycle slips. 

Furthermore, there are other diffi  culties such as the 

installation of calibration points and the placement of the 

antenna in exact positions to collect measurements.

Kee resolved the cycle ambiguity of carrier phase 

measurements by a simple method using a short baseline 

condition [4]. By using this condition, the ambiguity could 

be fi xed easily near a reference antenna. After that, the 

antenna is moved to a calibration point to collect carrier 

phase measurements. Th e short baseline condition made 

the ambiguity resolution very easy. 

However, this method cannot be used if any cycle slips or 

loss of locks occur. In fact, this is a critical problem in real 

situations. To fi x this problem, a new multi-antenna-based 

calibration method of pseudolite position is proposed in 

this paper. Moreover, an enhanced calibration method 

which uses measurements collected at unknown positions is 

proposed. By using these methods, more effi  cient and easier 

calibration of pseudolite position is possible. 

2.  Algorithm 1: Ambiguity-Free calibration 
using multi-antenna receivers

2.1  Ambiguity Elimination using Short Baseline Con-
dition

By double-diff erencing the carrier phase measurement s 

model equation, every pseudolite-related or receiver-related 

delay error is canceled out as in the following equation:

(1)

where

φ : carrier phase measurement 

d : geometrical distance

N : integer cycle ambiguity

λ : wave length of carrier

εφ : noise of carrier phase measurement
 

Fig. 1. Concepts of (a) Conventional GPS and (b) Inverted-GPS 
 

 

Table 1. Simulation Environments 
Number of 

antenna 

segments 

2 3 5 

Multi-

antenna 

formation 
 

  

Distance 

between 

antennas 

8cm  

(shorter than half a wavelength of 

carrier) 

Number 

/formation 

of cal. 

points 

9 16 25 

   
Number of 

averaging 

epochs 

600 epoch 

 

Fig. 1. Concepts of (a) Conventional GPS and (b) Inverted-GPS

Table 1. Comparison of Pseudolite with GNSS Satellite

GNSS Satellites Pseudolites

Clock
Synchronous

(Atomic clock)
Asynchronous/Synchronous

(TCXO, OCXO, 
Motion Orbital Motion Fixed on Earth

Coverage Whole Earth Narrow area
Signal 

Strength
-130dB Configurable

Indoor 
Navigation

Almost 
impossible

Possible
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Double-differenced carrier phase (DDCP) measurement is 

composed of a geometrical distance term, a cycle ambiguity 

term, and a noise term as in equation (1). The superscripts 

i and j represent the i − th and j − th pseudolites, and the 

subscripts r and c represent the reference and calibration 

antennas. The geometrical relationship of the pseudolites 

and antennas is given in Fig. 2.

O : the origin of the coordinate system

Ri, Rj : position vector of i − th or j − th pseudolite

Rr : position vector of reference antenna in multi-antenna

Rc : position vector of calibration antenna in multi-

antenna

 

 

to a calibration point to collect carrier 

phase measurements. The short baseline 

condition made the ambiguity resolution 

very easy.  

However, this method cannot be 

used if any cycle slips or loss of locks 

occur. In fact, this is a critical problem in 

real situations. To fix this problem, a new 

multi-antenna-based calibration method 

of pseudolite position is proposed in this 

paper. Moreover, an enhanced calibration 

method which uses measurements 

collected at unknown positions is 

proposed. By using these methods, more 

efficient and easier calibration of 

pseudolite position is possible.  

 

2. Algorithm 1: Ambiguity-
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multi-antenna receivers 

2.1  Ambiguity  Elimination  using 
Short Baseline Condition 

By double-differencing the carrier 

phase measurement’s model equation, 

every pseudolite-related or receiver-

related delay error is canceled out as in 

the following equation: 

 
i j i j i j i j

r c r c r c r cd N φφ λ ε∇ Δ = ∇ Δ + ∇ Δ + ∇ Δ  (1)

( ) ( ) ( )( ) ( ) ( )( )where . . . . .
i j i ji j
r r c cr c∇ Δ = − − −  

φ : carrier phase measurement  

d : geometrical distance 

N : integer cycle ambiguity 

λ : wave length of carrier 

φε : noise of carrier phase measurement 

 

Double-differenced carrier phase 

(DDCP) measurement is composed of a 

geometrical distance term, a cycle 

ambiguity term, and a noise term as in 

equation (1). The superscripts i and j  
represent the i th−  and j th−  pseudolites, 

and the subscripts r  and c  represent the 

reference and calibration antennas. The 

geometrical relationship of the pseudolites 

and antennas is given in Fig. 2. 

 

 

 

O : the origin of the coordinate system 

,i jR R : position vector of i th−  or j th−  

pseudolite 

rR : position vector of reference antenna 

in multi-antenna 

cR : position vector of calibration antenna 

in multi-antenna 
ˆ ˆ ˆ ˆ, , ,i j i j

r r c ce e e e : unit Line-Of-Sight (LOS) 

vectors from reference or calibration 

antenna to i th−  or j th−  pseudolite 

 

The multi-antenna is composed of 

a reference antenna and plural calibration 

antennas. The positions of each antenna 

segment are fixed relative to each other. 

Dividing both sides of equation (1) 

by the wavelength of the carrier, we can 

rewrite the DDCP measurement equation 

as: 

 
i ji j i j

r ci jr c r c
r c

d
N

φεφ

λ λ λ

∇ Δ∇ Δ ∇ Δ
= + ∇ Δ + (2)

 

 : unit Line-Of-Sight (LOS) vectors from 

reference or calibration antenna to i − th or j − th pseudolite

The multi-antenna is composed of a reference antenna 

and plural calibration antennas. The positions of each 

antenna segment are fixed relative to each other.

Dividing both sides of equation (1) by the wavelength of 

the carrier, we can rewrite the DDCP measurement equation 

as:

(2)

By rounding off both sides of equation (2), we can calculate 

the cycle ambiguity term very easily as:
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by the wavelength of the carrier, we can 

rewrite the DDCP measurement equation 
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ambiguity term very easily as: 

 
ˆi j

r c

i j i j
r c r c i j

r c

N

d
round N





 

    
 

 
  

 

 (3)  

 

but only if the following condition is 

satisfied: 

 

0.5
i j i j

r c r c
d 



    
  (4)  

 

We assume a multi-antenna whose 

calibration antennas are placed within half 

a wavelength of carrier from the 

reference antenna. With this short 

baseline, the condition (4) generally holds 

with prevalent pseudolite geometry. 

Consequently, the ambiguity elimination 

can be done easily by the short baseline 

condition anytime and anywhere. This 

means the ambiguity value can be 

eliminated from the carrier phase 

measurement at each epoch by equation 

(3). Through this epoch-by-epoch 

ambiguity elimination, the change of 

ambiguity value between epochs due to 

cycle slips or losses of lock does not 

matter anymore. 

Now we can define the DDCP 

measurement whose cycle ambiguities are 

eliminated as follows: 
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 (5)  

2.2 Multi-Antenna-based 
Calibration Algorithm of 
Pseudolite Position 

To improve the accuracy of 

pseudolite position calibration, we can 

average the ambiguity-eliminated DDCP 

measurements for N epochs as: 
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By averaging, the distribution of 

measurement noise becomes: 
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  denotes the standard deviation 

of carrier phase measurements. Equation 

(6) can be rewritten using position 

vectors and unit LOS vectors defined in 

Fig. 2 . 
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Now we can construct a navigation 

equation from equation (8) as equation 

(9). 
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Pseudolite Position

To improve the accuracy of pseudolite position 

calibration, we can average the ambiguity-eliminated DDCP 

measurements for N epochs as:

(6)

By averaging, the distribution of measurement noise 
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(7)

σφ denotes the standard deviation of carrier phase 

measurements. Equation (6) can be rewritten using position 

vectors and unit LOS vectors defined in Fig. 2 .

(8)

Now we can construct a navigation equation from equation 

(8) as equation (9).
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,i jR R : position vector of i th−  or j th−  
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in multi-antenna 
ˆ ˆ ˆ ˆ, , ,i j i j

r r c ce e e e : unit Line-Of-Sight (LOS) 

vectors from reference or calibration 

antenna to i th−  or j th−  pseudolite 
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Fig. 2. �Geometrical relationship of pseudolites and multi-antenna
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(9)

Considering l calibration points, m pseudolites, and n 

antennas in the multi-antenna, navigation equations can be 

formed in the same way. The following equation (10) shows 

the combined matrix equation. 

(10)

The state vector x is composed of position vectors of 

pseudolite antennas. Hcal is the matrix composed of unit 

LOS vectors which are unknowns at the initial state. The Zcal 

vector includes measurements and unit LOS vectors. vcal is a 

measurement noise vector. The dimensions of each matrix 

and vector are shown in equation (11).

(11)

At first, we assume the initial pseudolite positions roughly 

to calculate the initial LOS vectors. Since the operating range 

is narrow, the initial guess of pseudolite antenna position is 

important. In this paper, we assumed that we can choose the 

initial guess of pseudolite antenna position within 1 meter 

from the true position using a tape measure.

Then, the state vector can be estimated by iterative least 

square solutions. The overall calibration process is illustrated 

in Fig. 3.

3. �Algorithm 2: Enhanced Ambiguity-Free 
Calibration

Although the calibration process of pseudolite position 

becomes easier using algorithm 1, installing accurate 

calibration points and placing the multi-antenna at the exact 

calibration point are still difficult processes. Algorithm 2 is 

an enhanced method to reduce the number of calibration 

points needed for the calibration. 

For algorithm 1, we utilized carrier phase measurements 

only collected at calibration points. However, for algorithm 2, 

we use the measurements collected while moving the multi-

antenna from one calibration point to another (at unknown 

antenna positions). As a result, it is possible to replace 

some measurements collected at calibration points by 

measurements collected while moving the multi-antenna.

3.1 �Replacement of Calibration Points by Use of 
Measurements Collected at Unknown Positions 

Generally, only measurements collected at known 

positions can be used to calibrate pseudolite position. To 

utilize measurements from unknown positions, a simple 

assumption should be applied. The antenna moves on the 

plane determined by three calibration points whose positions 

are known precisely. This assumption is true in many cases 

in which the operating area has flat floor. Fig. 4 illustrates this 

situation.

Let the position vector of the point on a moving interval 

be Rc, and the three calibration point position vectors be Rc, p, 

Rc,  q and Rc, r. Then Rc can be expressed using Rc, p, Rc, q and Rc, 
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Fig. 3. Overall Calibration Process of Algorithm 2
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on a moving interval be cR , and the three 

calibration point position vectors be  

, ,,c p c qR R
 
and ,c rR . Then cR
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expressed using , ,,c p c qR R  and ,c rR  as in 

the following equation: 

 

, , ,(1 )c q r c p q c q r c rR t t R t R t R= − − + +  (12)  

 

for some qt  and rt . By substituting 

equation (12) into the DDCP measurement 

equation (8), a navigation equation can be 

obtained. The dummy variables qt  and rt  

become additional state variables and can 

be estimated simultaneously with 

pseudolite positions. By the use of this 

method, the number of calibration points 

can be reduced down to three, which is 

the minimum number that can determine a 

plane. 

3.2  Multi‐Antenna‐based  Enhanced 
Calibration  Algorithm  of  Pseudolite 
Position  

For algorithm 2, two kinds of 

carrier phase measurements are used to 

calibrate pseudolite position. One is 

measurements collected at calibration 

points, and the other is measurements 

collected at moving intervals with 

unknown positions. The former is 

processed in the same way as in algorithm 

1 to build the navigation equation (10). 

For the latter, the elimination of ambiguity 

can be done in the same way. However, 

the building process of the navigation 

equation is different. 

Firstly, we assume the number of 

epochs at unknown positions is K. Then 

the ambiguity-eliminated carrier phase 

measurement equation at the k th−
 
epoch 

is expressed as : 
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where 1 k K≤ ≤ . 

Assuming the reference antenna 

and calibration antenna move on the plane 

determined by three calibration points 

, ,,c p c qR R  and ,c rR , the reference antenna 

position at the k th−  epoch ( )rR k and the 

calibration antenna position ( )cR k  can be 

expressed as : 
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Fig. 4. Carrier phase measurement collected at an unknown position
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r as in the following equation:

(12)

for some tq and tr. By substituting equation (12) into the 

DDCP measurement equation (8), a navigation equation can 

be obtained. The dummy variables tq and tr become additional 

state variables and can be estimated simultaneously with 

pseudolite positions. By the use of this method, the number 

of calibration points can be reduced down to three, which is 

the minimum number that can determine a plane.

3.2 �Multi-Antenna-based Enhanced Calibration Al-
gorithm of Pseudolite Position 

For algorithm 2, two kinds of carrier phase measurements 

are used to calibrate pseudolite position. One is 

measurements collected at calibration points, and the 

other is measurements collected at moving intervals with 

unknown positions. The former is processed in the same way 

as in algorithm 1 to build the navigation equation (10). For 

the latter, the elimination of ambiguity can be done in the 

same way. However, the building process of the navigation 

equation is different.

Firstly, we assume the number of epochs at unknown 

positions is K. Then the ambiguity-eliminated carrier phase 

measurement equation at the k − th epoch is expressed as :

(13)

where 1 ≤ k ≤ K.

Assuming the reference antenna and calibration antenna 

move on the plane determined by three calibration points Rc, 

p, Rc, q and Rc, r, the reference antenna position at the k − th 

epoch Rr(k)and the calibration antenna position Rc(k) can be 

expressed as :

(14)

tr, q(k), tr, r(k), tc, q(k) and tc, r(k) are unknown dummy 

variables at the k − th epoch. Substituting equation (14) into 

(13) and collecting unknowns into state variables, we obtain 

the navigation equation for the k − th epoch as follows :

(15)

We have measurements collected for K epochs, from m 

pseudolites, and by n antennas in the multi-antenna. Thus 

we can construct K(m − 1)(n − 1) navigation equations in 

the same way. Now we can combine these equations into 

a simple state equation. The states are pseudolite position 

vectors and dummy variables.

(16)

The state vector xmove is composed of position vectors of 

m pseudolite antennas and dummy values for each epoch. 

Hmove is the matrix composed of unit LOS vectors which 

are unknowns at the initial state. The Zmove vector includes 

measurements and unit LOS vectors. vmove is a measurement 

noise vector. The dimensions of each matrix and vector are 

shown in equation (17).

(17)

The navigation equations (10) and (16) can be combined 

as one matrix equation as follows :

(18)

Equation (18) can be rewritten as equation (19) using 

matrices and vector symbols.

(19)
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The dimensions of each matrix and vector are shown in 

equation (20).

(20)

Finally, the weighted least square solution is used to 

estimate the state vector x̂ .

(21)

Using this result, we can build the HTotal matrix again, 

and then we can re-estimate the state vector x̂ over and over 

again until the state vector converges. The overall calibration 

process is illustrated in Fig. 5.

4. Simulation Results 

4.1 Ambiguity Elimination using the Multi-Antenna

In algorithm 1, there is an assumption that the inequality 

(4) is always satisfied if the baseline is shorter than half 

a wavelength. A simulation is conducted to verify this 

assumption. Fig. 6 shows the pseudolite constellations.

The simulated values of 
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Fig. 6. Pseudolite Constellation used in Simulations
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4.2 Calibration of pseudolite position: Algorithm 1

Th e calibration result is simulated in comparison with the 

previous method. Th e simulation environments are given in 

Table 2.

In the multi-antenna of Table 2, the antenna which is 

marked using asterisk is the reference antenna, and the other 

antennas are the calibration antennas. Calibration points are 

placed at equal intervals from about (-2.25, -1.5) to (2.25, 1.5) 

meters (roughly illustrated in Table 2).

Th e pseudolite calibration is performed 1000 times 

for each pseudolite, and the RMS error is calculated. Th e 

centered pseudolite (SV 1) gave the smallest mean RMS error 

due to the geometry, and pseudolite placed at (3,-2) in Fig. 

11 (SV 2) gave the biggest mean RMS error. Fig. 9 shows the 

best and worst results of the RMS errors. Th e upper fi gure is 

the result of SV1 and the lower one is that of SV2. 3 antennas 

and 9 calibration points are used. Th e blue points are the 

calculated pseudolite positions, and the red circles are the 

true pseudolite positions. Th e simulation result shows that 

the proposed algorithm works well and leaves small errors. 

Th e calibration error causes bias-type errors for users of 

pseudolite-based navigation. Th erefore, the calibration error 

must be suffi  ciently small.

In the same way, every pseudolite position could be 

calculated for 2/3/5 antennas and 9/16/25 calibration points. 

Th e averaged RMS errors are summarized as a graph in Fig. 
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result of SV1 and the lower one is that of 

SV2. 3 antennas and 9 calibration points 

are used. The blue points are the 

calculated pseudolite positions, and the 

red circles are the true pseudolite 

positions. The simulation result shows 

that the proposed algorithm works well 

and leaves small errors. The calibration 

error cause bias-type errors for users of 

pseudolite-based navigation. Therefore, 

the calibration error must be sufficiently 

small. 

In the same way, every pseudolite 

position could be calculated for 2/3/5 

antennas and 9/16/25 calibration points. 

The averaged RMS errors are summarized 

as a graph in Fig. 10. The RMS error of 

the calibration of pseudolite position 

becomes smaller as the number of 

calibration points and antennas increase. 
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As shown in Fig. 10, the calibration 

result of the proposed method is slightly 

poorer than that of the former method. 

This seems to be due to the geometric 

weakness of the short baseline multi-

antenna. However, what is important is 

not the accuracy of pseuodolite position, 

but the accuracy of positioning based on 

the calibrated pseudolites. In this context, 

the position error is simulated when the 

pseudolite position has errors. User 

positions used in the simulation are given 

Fig. 9.  Simulation results of the calibration of pseudolite position for 
pseudolite SV1 (upper plot) and pseudolite SV2 (lower plot)
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10. Th e RMS error of the calibration of pseudolite position 

becomes smaller as the number of calibration points and 

antennas increases.

As shown in Fig. 10, the calibration result of the proposed 

method is slightly poorer than that of the conventional 

method. Th is seems to be due to the geometric weakness of 

the short baseline multi-antenna. However, what is important 

is not the accuracy of pseuodolite position, but the accuracy 

of positioning based on the calibrated pseudolites. In this 

context, the position error is simulated when the pseudolite 

position has errors. User positions used in the simulation are 

given in Fig. 11. Asterisks represent user antenna positions, 

and circles represent pseudolite positions.

Th e user receiver calculates its position using a carrier-

phase-based GPS algorithm. Th e only error source included 

in the carrier phase measurements is thermal noise (2mm 

standard deviation). Th erefore, we can see the eff ect of only 

the calibration error on the user position. Th e simulation is 

performed for various pseudolite position errors. Th e results 

are summarized in Table 3. Each value in Table 3 represents 

the mean RMS error value of 1000 simulation results. 

Th e user navigation errors of the previous method and 

the proposed method (5 antennas) are calculated as similar 

values. From the �rue Position case, we can see that even 

when there is no calibration error, the navigation user has few 

centimeters of position error. Th is is due to the measurement 

noise. So the user position error due to the calibration error 

can be calculated by subtracting the error of the �rue Position 

case from the other results in Table 3 as in Table 4.

We can see that there remains a negligible amount of 

errors. In most applications, these amounts of error do not 

matter at all. One of the strictest applications is indoor robot 

control. It requires centimeter-level accuracy. Th erefore, 

the positioning error due to the pseudolite calibration 

must be about a few millimeters or even smaller. If we use 

the proposed algorithm with 5 antennas, this is satisfi ed. 

Consequently, the suggested calibration method causes no 

problems with respect to precision.

4.3 Calibration of pseudolite position: Algorithm 2

A simulation to show the feasibility of algorithm 2 is 
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poorer than that of the former method. 

This seems to be due to the geometric 

weakness of the short baseline multi-

antenna. However, what is important is 

not the accuracy of pseuodolite position, 

but the accuracy of positioning based on 

the calibrated pseudolites. In this context, 

the position error is simulated when the 

pseudolite position has errors. User 

positions used in the simulation are given 

Fig. 10. Summarized calibration results of pseudolite positions

Table 3. User navigation error

Pseudolite position 
error (RMS, m)

User position error (RMS, m)
point 1 point 2 point 3 point 4

0
(True Position)

0.0160 0.0176 0.0165 0.0181

0.001
(Prev. method)

0.0163 0.0180 0.0178 0.0180

0.004
(5 antennas)

0.0174 0.0192 0.0181 0.0185

0.0127
(3 antennas)

0.0237 0.0266 0.0253 0.0260

0.0257
(2 antennas)

0.0375 0.0448 0.0410 0.0388

 

 

in Fig. 11. Blue points represent user 

antenna positions, and red points 

represent pseudolite positions. 
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The user receiver calculates its 

position using a carrier-phase-based 

GPS algorithm. The only error source 

included in the carrier phase 

measurements is thermal noise (2mm 

standard deviation). Therefore, we can 

see the effect of only the calibration error 

on the user position. The simulation is 

performed for various pseudolite position 

errors. The results are summarized in 

Table 3. Each value in Table 3 represents 

the mean RMS error value of 1000 

simulation results.  

 
 

Ta�le 3. User navi�ation error 
Pseudolite 

position error 

(RMS, m) 

User position error (RMS, m) 

point 1 point 2 point 3 point 4 

0 

(True Position) 
0.0160 0.0176 0.0165 0.0181 

0.001 

(Prev. method) 
0.0163 0.0180 0.0178 0.0180 

0.004 

(5 antennas) 
0.0174 0.0192 0.0181 0.0185 

0.0127 

(3 antennas) 
0.0237 0.0266 0.0253 0.0260 

0.0257 

(2 antennas) 
0.0375 0.0448 0.0410 0.0388 

 

The user navigation errors of the 

previous method and the proposed method 

(5 antennas) are calculated as similar 

values. From the ‘True Position’ case, we 

can see that even when there is no 

calibration error, the navigation user has 

few centimeters of position error. This is 

due to the measurement noise. So the 

user position error due to the calibration 

error can be calculated by subtracting the 

error of the ‘True Position’ case from the 

other results in Table 3 as in Table 4. 

 
Ta�le 4. User navi�ation error due to the 

pseudolite position error 
Pseudolite 

position error 

(RMS, m) 

User position error (RMS, m) 

point 1 point 2 point 3 point 4

0.001 

(Prev. method)
0.0003 0.0004 0.0013 0.0001

0.004 

(5 antennas) 
0.0014 0.0016 0.0016 0.0004

0.0127 

(3 antennas) 
0.0077 0.0090 0.0088 0.0079

0.0257 

(2 antennas) 
0.0215 0.0272 0.0245 0.0207

 

We can see that there remains a 

negligible amount of errors. In most 

applications, these amounts of error do 

not matter at all. One of the strictest 

applications is indoor robot control. It 

requires centimeter-level accuracy. 

Therefore, the positioning error due to 

the pseudolite calibration must be about a 

few millimeters or even smaller. If we use 

the proposed algorithm with 5 antennas, 

this is satisfied. Consequently, the 

suggested calibration method causes no 

problems with respect to  precision, while 

making the calibration process easy and 

efficient. 

4.3 Calibration of pseudolite position: 
Algorithm 2 

A simulation to show the feasibility 

of algorithm 2 is performed. Algorithm 2 

utilizes measurements from unknown 

positions to replace calibration points. The 

User antenna Positions 
(-1.5,-1.0), (-1.5,1.0), (1.5,-1.0), (1.5,1.0)

Fig. 11. User antenna and pseudolite positions 

Table 4.  User navigation error due to the pseudolite position error 
(based on reference position from ‘True Position’ case)

Pseudolite position 
error (RMS, m)

User position error (RMS, m)
point 1 point 2 point 3 point 4

0.001
(Prev. method)

0.0003 0.0004 0.0013 0.0001

0.004
(5 antennas)

0.0014 0.0016 0.0016 0.0004

0.0127
(3 antennas)

0.0077 0.0090 0.0088 0.0079

0.0257
(2 antennas)

0.0215 0.0272 0.0245 0.0207
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performed. Algorithm 2 utilizes measurements from 

unknown positions to replace calibration points. Th e 

simulation environments are given in Table 5.

For case 1, the number of calibration points is the 

minimum, three. Th e measurements collected at unknown 

positions (circular move) are used together. Calibration 

points are placed at (0, 1.5), (-2.25, -1.5), and (2.25, -1.5). Th e 

radius of circular trajectory is 2 meters (roughly illustrated 

in Table 5). 

For the comparison, a simulation for algorithm 1 is 

performed as well. Calibration points are placed at (2.25, 

1.5), (2.25, -1.5), (-2.25, 1.5), and (-2.25, -1.5) meters (roughly 

illustrated in Table 5). Th e total number of measurements 

used in the calibration is set equal for both cases.

Th e simulation result shows that a calibration point could 

be replaced successfully by measurements collected from 

unknown positions and that algorithm 2 works. Th e precision 

of calibration is similar to that of algorithm 1. Strictly, the 

mean RMS error of algorithm 2 is slightly larger than that of 

algorithm 1. However, this small diff erence does not result 

in signifi cant error for the user, and it can be said that the 

precision of algorithm 2 is enough for most applications. 

In actual calibration, the use of additional measurements 

is very easy for algorithm 2. It is not easy for algorithm 1, 

and very hard for the conventional method. Using more 

measurements, the calibration using algorithm 2 can easily 

achieve better precision than other methods.

Table 7 shows a summary of the simulation results. By 

using the proposed algorithm 1, the calibration process 

becomes easy due to the use of the multi-antenna, and the 

calibration result is suffi  ciently precise.

In the case of algorithm 2, the calibration process 

becomes much easier, replacing the calibration points 

by measurements collected at unknown positions. 

Th e enhancement of precision by adding additional 

measurements is easy for algorithm 2. Th e assumption that 

the antenna moves on the plane determined by 3 calibration 

points should be satisfi ed.

Th us, if the fl oor of the navigation area is fl at, we can use 

algorithm 2 and conduct the calibration very easily. If the 

fl oor is not fl at, algorithm 1 can be used.

Conclusion

To use pseudolite systems, the pseudolites own positions 

must be calibrated in advance. One previous study that used 

Table 5. Simulation environments 

Number 
of antenna 
segments

5

Multi-antenna 
formation

Distance 
between 
antennas

8cm
(shorter than half a wavelength of carrier)

Number /
formation of 
cal. Points

(10Hz data)

[Case 1]
3 Calibration 

points,
60 seconds each

+
Unknown positions
(circular trajectory)

60 seconds

[Case 2]
4 Calibration points,

60 seconds each

++

Table 6.  Comparison of simulation results of the calibration of 
pseudolite positions for pseudolite SV 1

5 antennas

Algorithm 2

3 Calibration 
points 

+ 
Move on the 

floor
 

RMS error for PL1 : 6.9mm
Mean RMS error : 12.6mm

Algorithm 1

4 Calibration 
points  

RMS error for PL1 : 7.7mm
Mean RMS error: 9.7mm 
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a carrier-phase-based Inverted-GPS positioning algorithm, 

could not be applied to measurements including any cycle 

slips or losses of lock. For this reason, the previous method 

was considered to be inefficient, time-consuming, and 

inapplicable to ill-conditioned or wide areas.

In this context, this paper proposed a multi-antenna-

based pseudolite calibration algorithm. By using this 

method, the ambiguity can be eliminated, epoch-by-epoch 

easily. Hence, cycle slip-free carrier phase collection is 

possible. Moreover, an enhanced calibration algorithm 

is also proposed. This algorithm utilizes measurements 

collected at unknown positions to replace calibration points 

and minimize the number of calibration points down to 

three. The measurement can be collected easily assuming 

planar positioning of the calibration points.

Simulation results were given to show the feasibility of 

the proposed algorithm. According to the simulation result 

for algorithm 1, the calibration accuracy of the proposed 

method was calculated as for the case of 5 antennas. However 

the actual navigation user error was almost the same as that 

of the previous method. The calibration process becomes 

remarkably easy and convenient using algorithm 1. The 

simulation results for algorithm 2 show that it is possible to 

replace the calibration points by use of measurements from 

unknown positions. The precision of algorithm 2 is similar to 

that of algorithm 1. Using algorithm 2, the calibration process 

becomes even easier than algorithm 1.

In the case of actual calibration, algorithm 2 can easily be 

used if the navigation area has a flat floor. In the other general 

cases, algorithm 1 can be used to make the calibration 

process easy and convenient.
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Table 7. Summary of Simulation Results

Former Method Proposed Algorithm 1 Proposed Algorithm 2

Calibration Process
Hard

(Cycle slips)
Easy

(Cycle slip-Free)
Much Easy

(Cycle slip-Free, Fewer Cal. Points)

Number of Calibration 
points

As many as possible As many as possible
At least 3,

Replace the others by measurements from 
unknown positions

Precision
High

(Sub-millimeter)
High enough

(Sub-centimeter)
High enough

(Sub-centimeter)
Adding Additional 

measurement
Hard to add calibration 

points
Hard to add calibration points

Easily add measurements from unknown 
positions

Assumptions - -
Antenna moves on the plane determined by 3 

calibration points
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