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Abstract

This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft 

from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was 

used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, 

several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 

1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and 

Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were 

performed during the development phase of the Firefly and the results were compared with flight determined derivatives of 

a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard 

aircraft as well as for building the aerodynamic database. 
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1. Introduction

In general, the primary advantage of the canard aircraft is 

its inherent stall-proof characteristic that can be achieved by 

the proper design of enabling the canard to stall earlier than 

the main wing. A typical small canard aircraft is commonly 

configured with vertical tails mounted at the tips of main 

wing as winglets. These tip surfaces should be placed back 

far enough to be able to function as vertical tails. This 

requires large wing sweepback, resulting in poor Dutch roll 

characteristic and insufficient directional control power[1].

The Korea Aerospace Research Institute (KARI) has 

developed a four seat general aviation canard aircraft named 

the Firefly [2-6]. The main goal of developing the Firefly was 

to improve lateral-directional flight characteristics. The flight 

test of the Velocity, which is a typical four seat canard aircraft 

as shown in Fig. 1, was carried out before the development of 

the Firefly to investigate the flight characteristics of the canard 

aircraft [7-9].

The major geometric differences between the Firefly and 

the Velocity are the location of the vertical tails and the main 

wing sweepback angle as shown in Fig. 2. The vertical tails of 

the Velocity are attached at the wing tips, while the vertical 

tails of the Firefly are moved backward by locating them at the 
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Fig.1 The Velocity in Flight 

 

Fig.2 The Firefly Drawing 

Fig. 1. ��The Velocity in Flight
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end of each boom attached to the main wing trailing edge. 

The main wing leading edge sweepback angle of the Firefly is 

18 degrees, which is 5 degrees less than that of the Velocity. 

The specifications of the Firefly are listed in Table 1.

In the conceptual design phase for the development of 

the Firefly, the initial configuration was determined from 

the aerodynamic analysis using DATCOM and AAA. In the 

preliminary design phase, aerodynamic coefficients were 

computed from the CFD analysis and measured in the wind 

tunnel test of a 1/4 scaled model. Prior to the first flight of 

the full scaled flight prototype, the flight test of a 1/4 scaled 

remotely controlled model aircraft was conducted to confirm 

the dynamic flight characteristics and flight safety. Finally, 

the flight test of a flight prototype was performed and the 

flight data acquired during the flight test was analyzed.

Test and analysis methodologies used during the 

development process of aircraft have their own inherent 

properties. Since limitations can exist on the application 

of their results, it may not be desirable to use these results 

directly. Correlations between different methods need 

to be studied. Furthermore, the Firefly has an unusual 

configuration of canard with vertical tails on tail booms. 

Therefore, the aircraft design and analysis software currently 

available may not have an aerodynamic database appropriate 

for the configuration of the Firefly.

In this study, various methodologies used in the design of 

the Firefly for the purpose of predicting flying and handling 

qualities are presented. Flight test and parameter estimation 

techniques are discussed. Results from the various methods 

in the design phase are compared with the estimation results 

obtained from the flight data of the flight prototype. Flight-

determined derivatives of the Firefly are also compared with 

those of the Velocity and the Cessna 182. 

2. Prediction of Aerodynamic Derivatives

In the design phase, several methods have been used to 

predict the aerodynamic derivatives of the Firefly. These 

methods are introduced in this section.

A 1/4 scaled model as shown in Fig. 3 was tested in the 

low speed wind tunnel of KARI [3-4]. Static forces and 

moment data were measured by a pyramidal type external 

6-components strain gauge balance. Most of the tests 

were performed at the speed of 50 m/s and the Reynolds 

number for this wind tunnel test condition is 1.2 x 106, while 

the Reynolds number for the flight test is 3.0 x 106 at stall 

condition and 6.1 x 106 at cruise condition. These differences 

in the Reynolds number do not noticeably influence the 

stability and control derivatives, except at the high angle of 

attack conditions. Only static aerodynamic derivatives were 

measured in the wind tunnel test. 

A 1/4 scaled remotely controlled model aircraft as shown 

in Fig. 4 was made and instrumented with sensors and data 

recording device. The maximum speed of this R/C aircraft is 

48 m/sec and the corresponding Reynolds number is almost 

the same as that for the wind tunnel test condition. The stall 

speed is 19 m/sec and the corresponding Reynolds number is 

0.46 x 106, which is regarded as too low. Due to the limitations 

in the qualities of the sensors and the data recording device 

that can be installed in the 1/4 scaled model, the accuracy of 

the flight data is below expectation.

For the CFD analysis, a delta form finite differential 

Table 1. ��The Firefly Specification
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Table 1 The Firefly Specification 

Specification      Value 
   Max. T/O weight, lbs 2,700 

Overall length, ft 21.5 
   Overall height, ft 7.7 

Main wing span, ft 34.2 
Main wing area, ft2 120 

   MAC of main wing, ft 4.69 
Canard span, ft 15.8 
Canard area, ft2 18.0 
Vertical tail area (total), ft2 17.2 

   CG location, in FS 130 
Performance Value 

Minimum speed, kt 64 
Cruise speed, kt 167 
Max. rate of climb, fpm 1,200 
T/O length, ft 1,140 
L/D length, ft 930 
Max. range, nm 980 

Table 2 MLE Results for Longitudinal Case 

 100 kts 120 kts 

Parameter Value CR Bound Value CR Bound 

0DC 0.0648 0.0013 0.0501 0.0042 

0LC 0.8660 0.0024 0.5837 0.0021 

DC
 0.7528 0.0042 0.5805 0.0073 

LC
 5.4459 0.0004 5.5669 0.0031 

MC
 -2.2794 0.0009 -2.3172 0.0011 

MC
 -0.7932 0.0121 -0.5968 0.0412 

qMC -14.684 0.0134 -13.853 0.0218 

eDC
 0.0000 0.0001 0.0001 0.0000 

eLC
 0.2944 0.0041 0.2543 0.0011 

eMC
 0.7786 0.0091 0.7759 0.0003 

sp 0.5768 - 0.6273 - 

spn 4.0197 - 4.2020 - 

ph 0.0425 - 0.0549 - 

phn 0.2731 - 0.2171 - 
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Fig.1 The Velocity in Flight 

 

Fig.2 The Firefly Drawing Fig. 2. ��The Firefly Drawing
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Fig.3 Wind Tunnel Test of the 1/4 scaled Firelfy model 

Fig. 4 1/4 Scaled RC Aircraft 

Fig. 3. ��Wind Tunnel Test of the 1/4 scaled Firelfy model
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equation was derived by applying the Approximate 

Factorization algorithm to a three-dimensional Euler 

equation and solved to estimate the aerodynamic 

characteristics of the Firefly [5]. The grids in the space 

around the fuselage, canard, and main wing were generated 

separately and then positioned to overlap each other using 

the Chimera grid method. The vertical tails were omitted 

due to the complexity in generating and overlapping the 

grids, and therefore only the longitudinal aerodynamic 

characteristics were investigated. The control surfaces were 

also not modeled due to high complexity and the control 

derivatives were not computed. Therefore, the output that 

can be obtained by this CFD analysis for the comparison 

with flight test data is very limited.

The USAF Stability and Control Digital Data Compendium 

(DATCOM) was used to calculate the dynamic damping 

coefficients that cannot be obtained from the wind tunnel 

test and the CFD analysis. DATCOM is an analytic method 

of estimating stability coefficients using empirical data of the 

aircraft [10].

 Advanced Aircraft Analysis (AAA) is a preliminary design 

software for airplanes. AAA is programmed based on the 

equations and empirical data of ref. [11], some of which are 

identical or close to those used in DATCOM.

Moments of inertia of all structural parts, subsystems, fuel, 

pilot, and passengers were calculated and then summed to 

obtain the moments of inertia of the aircraft.

3. ��Flight Test Techniques for Estimation of 
Aerodynamic Derivatives

In the flight test of the Firefly, several maneuvers were 

performed to separately obtain longitudinal and lateral-

directional aerodynamic derivatives. Parameter estimation 

was performed using dynamic stability and control test 

data. Each maneuver was performed repeatedly to obtain 

statistically reliable data. 

Since all parameter estimation techniques depend on the 

control inputs exciting the dynamics of aircraft, determining 

the proper or optimal control inputs is important in a flight 

test. This optimal input produces the best response of the 

aircraft, with the greatest amount of information about the 

dynamics of the aircraft, to determine the complete set of 

stability and control derivatives. A variety of input forms 

have been proposed. However, many of these input forms 

have not been applied in the flight test for a number of 

reasons. The most common reason is the inability of the pilot 

to precisely reproduce a desired but complex input [12]. A 

short-period longitudinal mode can be excited by a simple 

pulse or doublet input on the elevator or other longitudinal 

control surface. For the best excitation, pulse duration 

should be approximately equal to the natural period of the 

short-period mode. In this study, modified doublet inputs 

were applied. The best way to ensure adequate excitation 

of all lateral-directional modes such as Dutch-roll, roll, and 

spiral modes is to apply both aileron and rudder inputs 

during the maneuver. It is certainly possible to excite all 

modes with aileron input only or with rudder input only; 

however, these approaches require careful input design and 

execution. In this study, we adopted a simple rudder doublet 

input followed by an aileron doublet input. 

The commonly used flight test techniques to obtain 

longitudinal stability data are relatively simple and 

straightforward. Lift coefficient and pitching moment 

coefficient can be estimated from a series of steady state 

flight tests conducted at various C.G. conditions. The trim 

conditions must be established carefully. 

Lateral and directional static stability and controllability 

could be measured from the flight data by determining 

the rolling and yawing moments generated by the aileron 

and rudder, respectively, to keep the aircraft in steady 

state condition. Unfortunately, lateral static stability and 

directional static stability cannot be separately measured 

because they are coupled through sideslip angle, so a 

technique must be found that would yield lateral and 

directional static stability measurements simultaneously. 

One of the maneuvers that satisfy these requirements is a 

steady-heading sideslip flight or crab test, which can be 

performed by balancing the forces and moments applied 

on the aircraft so that it flies at constant sideslip angle while 

maintaining constant heading. Fig. 5 shows the flight test 

data of Firefly’s crab maneuver.

Roll rate tests are conducted in order to identify rolling 

characteristics as well as the maximum roll rate. Once the 

aircraft is stabilized in a 60 degree left bank with zero roll 

rate, the pilot abruptly moves the stick to the right and holds 

it until the aircraft is rolled to a 60 degree right bank. The pilot 

then moves the stick to the neutral position and maintains 
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Fig.3 Wind Tunnel Test of the 1/4 scaled Firelfy model 

Fig. 4 1/4 Scaled RC Aircraft Fig. 4. ��1/4 Scaled RC Aircraft
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the aircraft at 60 degrees of the right bank angle [13-14], as 

shown in Fig. 6.

4. Parameter Estimation

4.1 Maximum Likelihood Estimation

The system under investigation is assumed to be modeled 

by a set of dynamic equations containing unknown 

parameters. To determine the values of the unknown 

parameters, the system is excited by a suitable input, and the 

input and actual system responses are measured. The values 

of the unknown parameters are then inferred based on the 

requirement that model responses to the given input match 

the actual system responses. 

The Maximum Likelihood Estimation (MLE) method 

[15-18], which accounts for both process and measurement 

noise, was used in this research. The algorithm is based on 

the Kalman filter for the linear state estimation problem, an 

explicit estimation of covariance of residuals, and the Gauss-

Newton method for parameter update. 

25 

 

Fig.5 Crab Flight Test Data 

 

Fig.6 Roll Rate Flight Test Data
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Fig. 5. Crab Flight Test Data
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Fig. 6. Roll Rate Flight Test Data
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The dynamic system, of which the parameters are to 

be estimated, is assumed to be described by the following 

mathematical model:

6 
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where x is the (n×1) state vector, u is the (p×1) control input 

vector, and y is the (m×1) observation vector. The process 

noise, w(t) is assumed to be characterized by a zero-mean 

Gaussian noise with an identity spectral density. The 

measurement noise vector, v(k) is assumed to be zero-mean 

Gaussian with identity covariance.

The maximum likelihood estimates are obtained by 

minimizing the negative logarithm of the likelihood function:
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where ( )W k  is the covariance matrix of residuals. 

In order to obtain predicted state variables ˆ( )x k from the dynamic model with both process noise 

and measurement noise, the extended Kalman filter, which is an optimal linear state estimator, is used. 

In general, minimization of the cost function requires nonlinear programming. It assumes most 

parts of parameter estimation process and plays major roles in determining efficiency and applicability. 

Since cost function has a quadratic form, the Newton-Raphson method could be applied to minimize 

cost function. However, this method is very complex because of the computation of the Hessian. This 

complexity can be reduced by using the Gauss-Newton method, which uses an approximation to the 

Hessian. 

The Maximum Likelihood Estimator provides a measure of the reliability of each estimated 

parameter based on the information obtained from each dynamic maneuver. This measure of the 

reliability is called the Cramer-Rao bound. The Cramer-Rao bound, analogous to the standard 

deviation, should generally be used as a measure of relative, rather than absolute, accuracy. The bound 

is obtained from the approximation to the information matrix H . The bound for each unknown 

coefficient is the square root of the corresponding diagonal element of 1H  ; that is, for the thi

unknown parameter, the Cramer-Rao bound is 1
,i iH .
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The Case II parameter estimation structure reduces the number of unknown parameters by 

introducing the following relation between yawing moment and side force due to rudder deflection.
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where vl  is the distance from the aircraft C.G. to the vertical tail aerodynamic center and zzI  is the 

moment of inertia about z -axis.

The result of Case I estimation showed larger scatter and uncertainty level of side force estimates 

compared with Case II. Therefore, the constraint of the side force derivative using yawing moment 

derivative could give a better result.  

Case III performs parameter estimation by fixing three parameters as constants in the system model. 

The values of 
plC ,

rnC , and nC


are fixed as the values estimated from Case I and then the 

remaining derivatives are estimated. 
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where lv is the distance from the aircraft C.G. to the vertical 

tail aerodynamic center and IZZ is the moment of inertia 

about z-axis. 

The result of Case I estimation showed larger scatter and 

uncertainty level of side force estimates compared with Case 

II. Therefore, the constraint of the side force derivative using 
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Clp
, Cnr

, and Cnβ are fixed as the values estimated from Case I 

and then the remaining derivatives are estimated.

4.3 Estimation of Static Stability and Control Deriva-
tives

Various parameter estimation methods could be used 

to extract stability and control derivatives from flight 

data. These methods introduce statistical techniques 

based on the minimization of the errors between flight 

data and simulation results of the estimated model. The 

most accurate stability and control derivatives could 

be determined from parameter estimation. However, 

these estimation methods have limitations since many 

numbers of parameters are estimated at the same time. 

It is reasonable to judge that some parameters estimated 

from steady state flight data would be more accurate and 

therefore can be used in the verification or analysis of 

the parameter estimation results [19-21]. The estimation 

procedures of CLα and CMα from the steady state flight test data 

are described below.

The neutral point of aircraft is defined as a position about 

which pitching moment is independent of the angle of 

attack. For the purpose of calculating the neutral point, the 

following moment equilibrium equation at the C.G. point 

can be used:
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By the definition of the neutral point, 0acMC
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If the C.G. of the aircraft is located at the neutral point, i.e. 0al  , then 0e






 becomes zero.  

Flight tests were performed at various C.G. locations. The C.G. location was varied from FS 129 in 

to FS 132 in. The neutral point could be estimated as illustrated in Fig. 7 by extrapolating the straight 

line approximation to find the center of gravity that makes 0e






. As shown in Fig. 7, the neutral 

point of the Firefly is located at FS 138 in.  

The lift coefficient can be calculated from Eq. (15), which is obtained from the force equilibrium 

equation for trim condition, 

2
cos sin

0.5L
W TC

V S
 



      (15) 

and the lift coefficient can be written as follows if the lift due to elevator deflection is neglected.  

0L L LC C C

       (16) 

Longitudinal trim flight was performed at various speeds, and the result is illustrated in Fig. 8, from 

which
0LC and LC


are estimated. 

Once LC


 and the neutral point location are estimated, MC


is calculated by, 

cg np
M L

x x
C C

c 


     (17) 

The estimation procedure of lateral-directional derivatives from the steady state flight data are 

described below. 

At a given bank angle, the steady state, straight line lateral-directional equation of motion can be 

written as follows:

, Eq. (13) 
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For the flight conditions with symmetrical thrust, the thrust terms in Eq. (18) may be omitted and 

Eq. (18) is written as follows:  
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If attitude, velocity, sideslip angle, and control surface deflection data are available from the flight 

test, stability and control derivatives can be calculated from the simultaneous equations of Eq. (19). 

Now, we have three equations with nine unknowns. Six further relationships should be introduced in 

order to solve this problem. 

First, the weathercock derivative can be computed from the Dutch roll time history. Dutch roll 

undamped natural frequency has a relation with lateral and directional derivatives as follows: 

0

0
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r r
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Y N U N N Y
U

  
 

     (20) 

The middle term in Eq. (20) usually dominates the lateral-directional oscillation and the first and 

second term can be ignored. Dutch roll undamped natural frequency could be approximated as Eq. (21) 
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Second, the aileron control derivative 
alC


, and roll damping derivative 

plC  could be computed 

from the roll rate test. The equilibrium equation for roll motion is as follows: 
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l l l
I ppbC a C C

V qSb 
 


     


   (22) 

Since the change of sideslip angle during pure roll motion is small, the second term in Eq. (22) 

(18)

For the flight conditions with symmetrical thrust, the 

thrust terms in Eq. (18) may be omitted and Eq. (18) is 

written as follows: 
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If attitude, velocity, sideslip angle, and control surface deflection data are available from the flight 

test, stability and control derivatives can be calculated from the simultaneous equations of Eq. (19). 

Now, we have three equations with nine unknowns. Six further relationships should be introduced in 

order to solve this problem. 
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Second, the aileron control derivative Clδa, and roll 

damping derivative Clp could be computed from the roll rate 

test. The equilibrium equation for roll motion is as follows:
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Since the change of sideslip angle during pure roll motion 

is small, the second term in Eq. (22) related with sideslip 

angle can be ignored. At steady-state motion, the roll rate pss 

is equal to zero and Eq. (22) reduces to Eq. (23).
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can be solved for the lateral-directional stability and control derivatives. 
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Fifth, CYδa is assumed to be zero since it is negligibly small 

for most aircraft. Lastly, for the adverse yaw derivative, 

Cnδa, which cannot be estimated by the steady state flight 

Table 2. ��MLE Results for Longitudinal Case
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Table 1 The Firefly Specification 

Specification      Value 
   Max. T/O weight, lbs 2,700 

Overall length, ft 21.5 
   Overall height, ft 7.7 

Main wing span, ft 34.2 
Main wing area, ft2 120 

   MAC of main wing, ft 4.69 
Canard span, ft 15.8 
Canard area, ft2 18.0 
Vertical tail area (total), ft2 17.2 

   CG location, in FS 130 
Performance Value 

Minimum speed, kt 64 
Cruise speed, kt 167 
Max. rate of climb, fpm 1,200 
T/O length, ft 1,140 
L/D length, ft 930 
Max. range, nm 980 

Table 2 MLE Results for Longitudinal Case 

 100 kts 120 kts 

Parameter Value CR Bound Value CR Bound 

0DC 0.0648 0.0013 0.0501 0.0042 

0LC 0.8660 0.0024 0.5837 0.0021 

DC
 0.7528 0.0042 0.5805 0.0073 

LC
 5.4459 0.0004 5.5669 0.0031 

MC
 -2.2794 0.0009 -2.3172 0.0011 

MC
 -0.7932 0.0121 -0.5968 0.0412 

qMC -14.684 0.0134 -13.853 0.0218 

eDC
 0.0000 0.0001 0.0001 0.0000 

eLC
 0.2944 0.0041 0.2543 0.0011 

eMC
 0.7786 0.0091 0.7759 0.0003 

sp 0.5768 - 0.6273 - 

spn 4.0197 - 4.2020 - 

ph 0.0425 - 0.0549 - 

phn 0.2731 - 0.2171 - 
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Fig.7 Neutral Point of the Firefly 

 
Fig.8  Lift Curve of the Firefly 

Fig. 8. ��Lift Curve of the Firefly
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maneuver, the output from the maximum likelihood 

estimation method is used. Now, Eqs. (19), (23), (24), and 

(25) can be solved for the lateral-directional stability and 

control derivatives.

5. Results and Discussion

The stability and control derivatives obtained from the 

maximum likelihood estimation method are shown in Table 

2 ~ Table 4 with uncertainty levels.

The standard deviations of the longitudinal estimates 

are not presented since flight data for longitudinal motion 

is insufficient. The Cramer-Rao bounds of the longitudinal 

derivatives are sufficiently small compared with the 

magnitude of the estimated parameters, except CDδe. This 

implies that estimated parameter values are reliable, except 

CDδe, which can be ignored in most cases.

The large differences between the Cramer-Rao bounds 

and standard deviations of the lateral-directional derivatives 

shown in Table 4 are possibly caused by the influence of 

atmospheric turbulence. It is conjectured that the estimated 

parameters of Cnβ and Clp are accurate since the Cramer-Rao 

bounds are small and coincide with standard deviations, 

while the accuracies of CYp and Cnδa are quite poor.

Fig. 9 shows a comparison of the flight data and the 

Table 3. Maximum Likelihood Estimation Results for Lateral-Directional Case

20 

 

   

Table 3 Maximum Likelihood Estimation Results for Lateral-Directional Case 
 Case I Case II Case III 

Parameter 90 kts 120 kts 140 kts 90 kts 120 kts 140 kts 90 kts 120 kts 140 kts

YC
 -0.7795 -0.5210 -0.4240 -0.9021 -0.4910 -0.3901 -0.8112 -0.5110 -0.4340

lC
 -0.1012 -0.0744 -0.0566 -0.1311 -0.0854 -0.0560 -0.1134 -0.0751 -0.0536

nC
 0.0366 0.0351 0.0401 0.0411 0.0384 0.0409 0.0351 0.0363 0.0412

pYC -0.0013 -0.0021 -0.0019 -0.0011 -0.0026 -0.0023 -0.0014 -0.0020 -0.0014

plC -0.4600 -0.4591 -0.4335 -0.4820 -0.4498 -0.4435 -0.4701 -0.4601 -0.4421

pnC -0.0506 -0.0522 -0.0251 -0.0406 -0.0512 -0.0299 -0.0510 -0.0501 -0.0263

rYC 0.1900 0.2131 0.2324 0.2300 0.2543 0.2514 0.1850 0.2241 0.2321

rlC 0.1714 0.0972 0.0651 0.1533 0.0894 0.0591 0.1694 0.0941 0.0655

rnC -0.0606 -0.0701 -0.0652 -0.0501 -0.0693 -0.0612 -0.0612 -0.0695 -0.0659

alC
 0.1452 0.1249 0.1102 0.1341 0.1341 0.0902 0.1451 0.1301 0.1201

anC
 -0.0031 -0.0025 -0.0014 -0.0043 -0.0023 -0.0018 -0.0035 -0.0021 -0.0011

rYC
 0.1500 0.1491 0.1451 0.1311 0.1451 0.1351 0.1512 0.1521 0.1501

rlC
 0.0087 0.0105 0.0084 0.0067 0.0113 0.0081 0.0090 0.0112 0.0082

rnC
 -0.0470 -0.0410 -0.0374 -0.0560 -0.0421 -0.0351 -0.0480 -0.0380 -0.0375

D 0.1210 0.1231 0.1194 0.1250 0.1241 0.1204 0.1230 0.1211 0.1181

Dn 2.2500 2.2710 2.2310 2.2400 2.2110 2.2010 2.2800 2.2510 2.2290

Table 4. Parameter estimation Accuracy for Lateral-Directional Case
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Table 4 Parameter estimation Accuracy for Lateral-Directional Case 

Parameter Case I Case II Case III 
90 kts 120 kts 140 kts 90 kts 120 kts 140 kts 90 kts 120 kts 140 kts

YC


Cramer-Rao bound 
Standard Deviation 

0.0143 
0.1208 

0.0102 
0.1103

0.0156 
0.0914

0.0131 
0.0841

0.0087
0.1146

0.0119 
0.1308

0.0076 
0.0812 

0.0100 
0.0633 

0.0127 
0.0942

lC


Cramer-Rao bound 
Standard Deviation 

0.0055 
0.0257 

0.0062 
0.0311

0.0075 
0.0214

0.0041 
0.0297

0.0043
0.0384

0.0050 
0.0311

0.0032 
0.0289 

0.0093 
0.0139 

0.0043
0.0215

nC


Cramer-Rao bound 
Standard Deviation 

0.0020 
0.0029 

0.0019 
0.0013

0.0037 
0.0024

0.0036 
0.0041

0.0032
0.0028

0.0032 
0.0028

-
-

-
-

-
-

pYC Cramer-Rao bound 
Standard Deviation 

0.0100 
0.0061 

0.0101 
0.0042

0.0120 
0.0073

0.0210 
0.0033

0.0154
0.0065

0.0121 
0.0084

0.0078 
0.0073 

0.0090 
0.0061 

0.0124
0.0059

plC Cramer-Rao bound 
Standard Deviation 

0.0016 
0.0041 

0.0022 
0.0011

0.0032 
0.0004

0.0021 
0.0017

0.0049
0.0031

0.0013 
0.0019

-
-

-
-

-
-

pnC Cramer-Rao bound 
Standard Deviation 

0.0087 
0.0192 

0.0121 
0.0144

0.0122 
0.0164

0.0096 
0.0175

0.0119
0.0143

0.0083 
0.0164

0.0129 
0.0098 

0.0091 
0.0084 

0.0142 
0.0091

rYC Cramer-Rao bound 
Standard Deviation 

0.0100 
0.0082 

0.0100 
0.0991

0.0100 
0.1142

0.0130 
0.0122

0.0103
0.1121

0.0055 
0.0810

0.0020 
0.0911 

0.0131 
0.0944 

0.0100 
0.0812

rlC Cramer-Rao bound 
Standard Deviation 

0.0069 
0.0482 

0.0068 
0.0512

0.0000
0.0491

0.0059 
0.0421

0.0063
0.0451

0.0020 
0.0591

0.0100 
0.0551 

0.0041 
0.0689 

0.0096 
0.0713

rnC Cramer-Rao bound 
Standard Deviation 

0.0049 
0.0012 

0.0056 
0.0024

0.0050 
0.0026

0.0046 
0.0049

0.0039
0.0055

0.0050 
0.0064

-
-

-
-

-
-

alC


Cramer-Rao bound 
Standard Deviation 

0.0071 
0.0300 

0.0099 
0.0244

0.0099 
0.0522

0.0007 
0.0412

0.0087
0.0643

0.0100 
0.0455

0.0020 
0.0573 

0.0020 
0.0597 

0.0087
0.0449

anC


Cramer-Rao bound 
Standard Deviation 

0.0100 
0.0012 

0.0092 
0.0014

0.0099 
0.0044

0.0078 
0.0063

0.0091
0.0055

0.0099 
0.0056

0.0100 
0.0106 

0.0056 
0.0670 

0.0009
0.0420

rYC


Cramer-Rao bound 
Standard Deviation 

0.0199 
0.1121 

0.0129 
0.1240

0.0120
0.0890

0.0185 
0.0991

0.0110
0.0812

0.0100 
0.0957

0.0063 
0.0812 

0.0070 
0.0724 

0.0080
0.0931

rlC


Cramer-Rao bound 
Standard Deviation 

0.0036 
0.0099 

0.0032 
0.0081

0.0100 
0.0074

0.0029 
0.0075

0.0000
0.0096

0.0000
0.0105

0.0069 
0.0099 

0.0059 
0.0031 

0.0028
0.0063

rnC


Cramer-Rao bound 
Standard Deviation 

0.0012 
0.0059 

0.0021
0.0053

0.0038 
0.0421

0.0030
0.0024

0.0028
0.0074

0.0038 
0.0085

0.0091 
0.0071 

0.0085 
0.0042 

0.0069
0.0053
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linear simulation results of longitudinal motion. Mean 

values of the maximum likelihood estimates were taken to 

construct a system model for linear simulation. The large 

difference in the velocity data seems to be caused by the 

flight test intended for the short period mode which has the 

characteristic of constant speed.

The linear simulation results of lateral-directional motion 

are compared with the flight data in Fig. 10. The simulation 

results show good agreement with the flight data.

The aerodynamic coefficients obtained from the flight 

data are compared in Table 5 and Table 6 with those from the 

wind tunnel test and analytical methods such as CFD and 

DATCOM.

The lift coefficient slope, CLα, obtained from the flight 

data agrees with the wind tunnel test data, while DATCOM 

and the CFD results are slightly larger. It is conjectured that 

the analytical methods such as DATCOM and CFD do not 

accurately estimate the downwash on the main wing due to 

the canard. 

The longitudinal static stability parameter, CMα, computed 

from the estimated neutral point coincides well with the 

power off wind tunnel prediction. The parameter estimation 

(MLE) output of the flight data for CMα is slightly less than 

the wind tunnel test data. Considering that the wind tunnel 

test was performed for power-off condition, this excellent 

agreement between the flight test results and the wind 

tunnel test results does not mean these data are accurate. 

The power effect on CMα is neither large nor negligible. The 

magnitude of CMα computed from DATCOM is too small and 

the CFD output is large compared with the flight test results.

On the whole, for the longitudinal case, the results from 

the MLE of the flight data almost coincide with those from 
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Fig.9 Comparison of the Flight Data and Linear Simulation Results for Longitudinal Case
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the wind tunnel test results, except for CDα and CDδe. These 

aerodynamic derivatives related to drag are difficult to 

estimate from the flight data since their sensitivities to the 

measurement data in the short period mode are not large 

enough.

Table 5 and Table 6 also show that the DATCOM output is 

very unreliable for the canard aircraft. The CFD output is also 

not accurate. Therefore we must be very careful when we use 

the analytical results during a preliminary design phase of 

canard aircraft. 

The longitudinal aerodynamic derivatives of the Firefly and 

the Velocity are close to each other. This result was expected 

since the Firefly was designed by modifying the Velocity with 

the intention of improving the lateral-directional dynamic 

flying qualities only. Therefore, it is reasonable that the 

short period damping and natural frequency of the Firefly 

are close to those of the Velocity. The Phugoid damping 

and the natural frequency of the Firefly and the Velocity 

differ somewhat. This difference is probably caused by the 

poor estimation of the parameters that mainly influence the 

Phugoid mode.

Table 6 indicates that the steady state results obtained by 

solving the equilibrium equations are generally close to the 

MLE output, except for Clβ. The flight determined derivatives 

agree well with the wind tunnel test results, except for the 

derivatives Cnβ, Clβ, and Cnδe.

The magnitude of Clβ obtained from the MLE method is 

larger than the wind tunnel result and the steady state flight 

test result. The directional stability derivative, Cnβ, obtained 

from the flight data is smaller than the wind tunnel test result 

and the results from the analytical method of DATCOM and 

AAA.

The magnitude of the derivative, Cnδa obtained from the 

flight data is also smaller than the wind tunnel test result and 

the results from the analytical method. Since the magnitude 

of Cnδa that determines the adverse yaw of the aircraft is very 

Table 5. Comparison of Results for Longitudinal Case
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Table 6 Comparison of Results for Lateral-Directional Case 
Parameter DATCOM AAA CFD Wind 

Tunnel
R/C Test Steady

State
MLE Velocity Cessna

182
YC
 0.5620 0.4280 - 0.4480 - 0.5380 0.5210 0.6130 0.3930

lC
 0.0680 0.0460 - 0.0500 - 0.0590 0.0740 0.0930 0.0923

nC
 0.0600 0.0480 - 0.0500 - 0.0310 0.0350 0.0240 0.0587

pYC 0.0640 0.0021 - - - - 0.0021 0.0390 0.0750

plC 0.5020 0.6230 - - - 0.4930 0.4600 0.4710 0.4840

pnC 0.0272 0.0244 - - - - 0.0520 0.0590 0.0278

rYC - 0.2011 - - - - 0.2130 0.1810 0.2140

rlC 0.0812 0.0965 - - - - 0.0970 0.1130 0.0798

rnC 0.0550 0.0572 - - - - 0.0700 0.0570 0.0937

alC
 0.1630 0.1220 - 0.1050 - 0.1120 0.1250 0.0920 0.2290

anC
 0.0033 0.0046 - 0.0032 - - 0.0025 0.0100 0.0216

rYC
 0.2310 0.2560 - 0.1650 - 0.1110 0.1490 0.0912 0.1870

rlC
 0.0115 0.0114 - 0.0100 - 0.0090 0.0110 0.0080 0.0147

rnC
 0.0620 0.0770 - 0.0450 - 0.0350 0.0410 -0.024 0.0645

D - 0.1412 - - - - 0.1231 0.1092 0.1556

Dn - 2.3419 - - - - 2.2710 1.9134 3.1248

Table 5 Comparison of Results for Longitudinal Case 
Parameter DATCOM AAA CFD Wind 

Tunnel
R/C Test Steady

State
MLE Velocity Cessna

182

DC
 0.1150 0.2050 - 0.3200 - - 0.5805  0.6030 0.1210

LC
 6.5000 6.3400 6.5500 5.5000 5.3300 5.7000 5.5669  5.2100 4.4100

MC
 -  0.5500 - - - - 2.3172  2.3900 -7.2700

MC
 0.2900 0.8800 0.7450 0.6300 0.5690 0.6250 0.5968  0.5910 -0.6130

qLC 1.8570 5.9600 - - - - - - 3.9000

qmC 6.5400 7.4900 - - - - 13.853  14.010 -12.400

eDC
 0.0167 0.0104 - 0.0160 - - 0.0001  0.0020 0.0000

eLC
 0.3900 0.3140 - 0.3000 0.5620 - 0.2543 0.2890 0.4300

emC
 0.5530 0.550 - 0.7400 1.7370 - 0.7759  0.7010 -1.1220

sp - 0.4220  - - - - 0.6273  0.7030 0.74420

spn - 4.5300  - - - - 4.2020  4.2900 4.9802

ph - 0.0513  - - - - 0.0549  0.0943 0.1189

phn - 0.1460  - - - - 0.1371  0.2030 0.2311
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small compared with other parameters, Cnδa is difficult to 

estimate accurately from the flight data. The derivative, Cnδa, 

predicted by the analytical method, is generally not reliable.

The aileron control effectiveness derivative, Clδa, estimated 

from the flight data, agrees with other results, except for the 

DATCOM output which is too large.

The rudder control derivatives estimated from the MLE 

method coincide with the wind tunnel test results while they 

are slightly larger than the steady state flight test output and 

smaller than the analytical results.

The roll damping derivative, Clp, estimated from the 

flight data, is close to the DATCOM output. The derivatives, 

CYp and Cnp, do not agree with the analytical results. These 

disagreements are anticipated since the Cramer-Rao bounds 

of these derivatives are large.

The yaw damping derivative, Cnr, estimated by the MLE 

method is larger than the analytical results.

Table 6 also shows that the Dutch roll damping of the 

Firefly is larger than that of the Velocity. This means that 

the goal of the development of the Firefly is satisfied since 

the Firefly was designed with the intention of improving the 

lateral-directional flying qualities by locating the vertical 

tails afterward and by decreasing the main wing sweepback 

angle.

Cessna-182 data is listed in Table 5 and 6 for the 

comparison of conventional aircraft data with the canard 

aircraft data. It is noticeable that the signs of CMδe and CMα of 

the Firefly are opposite to those of the Cessna-182. This is 

due the difference of horizontal tail location with respect to 

the main wing.

6. Concluding Remarks

The longitudinal and lateral-directional aerodynamic 

derivatives for the Firefly, a four seat general aviation canard 

aircraft, were estimated from the flight data by using a 

maximum likelihood estimation method, solving steady 

state trim equations, and comparing with the results from 

a wind tunnel test and analytical prediction methods such 

as DATCOM, AAA, and CFD. Even though the prediction of 

aerodynamic derivatives of the canard aircraft by analysis 

or wind tunnel test is difficult, the parameter estimation of 

the canard aircraft does not differ from that of conventional 

aircraft.

For the lateral-directional derivatives, the flight 

determined derivatives agree well with the wind tunnel test 

data, except for the derivatives, Cnβ, Clβ, and Cnδa.

For the longitudinal derivatives, on the whole, the results 

from the flight data agree well with the wind tunnel test 

results except the aerodynamic derivatives related to drag. 

The analytical results from DATCOM, AAA, and CFD are 

shown to be poor. Therefore, it is strongly recommended that 

new aerodynamic empirical database should be constructed 

for canard aircraft.

In this study, comparisons of the flight determined 

parameters with the wind tunnel test results and the results 

from the analytical methods were made only for one flight 

condition, that is, for one angle of attack. For further study, 

more extensive flight tests need to be performed so that the 

parameter variations for the various angles of attack could be 

investigated and analyzed.
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