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Abstract

Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements 

of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, 

fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an 

update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its 

weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images 

from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid 

algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.
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1. Introduction

An attitude determination system for satellites is developed 

by using the data measured by attitude sensors, such as the 

sun sensor (SS), earth horizon sensor (EHS), magnetometer 

(MAG), fiber optic gyro (FOG) and star tracker (ST). Among 

these sensors, the sun sensors especially have been used 

widely to determine coarse and fine attitudes. Analog-type sun 

sensors have been developed for Korea Institute Technology 

Satellite (KITSAT)-1, 2, 3 and Science & Technology Satellite-1 

(STSAT-1) over the past decade.  These analog sun sensors 

have an accuracy of less than 1 degree.

Based on the  mission requirements of STSAT-2, the 

conventional analog- type sun sensors  were found to be 

inadequate, motivating the development of a compact, fast 

and fine digital sun sensor (FDSS) [1,2]. The main objective 

of the FDSS is precise attitude determination of STSAT-2 for 

precision sun pointing missions and new major technology 

development projects. The target process speed is obtained 

by utilizing the Field Programmable Gate Array (FPGA), 

which acquires images from the CMOS sensor, and stores and 

processes the image data. The Field Of View (FOV) is 20×20 

degrees for each axis. The sensor accuracy is maintained by 

a rigorous centroid algorithm. FDSS mounted on STSAT-2 is 

shown in Fig.1. Table 1. shows the specifications of FDSS
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sensor converts the projected sunlight into 
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stored by the FPGA, which generates and 
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Micro Processor Unit (MPU) reads the 
stored data from the FPGA, calculates the 
entrance degree of the sunlight ray, and 
provides the calculated entrance degrees 
to the On-Board Computer (OBC),which 
determines the attitude   and processes the 
control program. The FDSS is divided 
into three parts, as shown in Fig. 2. The 
first part is the optical part: sunlight 
passes though aperture, is attenuated by 

the Neutral Density Filter (NDF) and 

filtered by the Band Pass Filter (BPF). 
The optical part projects the sunlight onto 
the surface of the CMOS image sensor. 
The second part is the FPGA part: this 
part generates the control signals and 
sends these signals to the CMOS image 
sensor. The second part stores the 
data acquired from the CMOS image 
sensor and communicates with the the 
micro process unit (MPU) by using data 
packets. The third part is the MPU: it 
communicates with the OBC and 
calculates the incident angle of the 
sunlight using the centroid algorithm. 
 

 

 

Fig. 2.  FDSS electrical scheme. 
 

 
Fig. 3. The schematic of the aperture for 

the FDSS. 
 

 

Item Specification Remark 
Field of 
View 20x 20  
Accuracy < 0.03(2σ) 2-axis 
Weight < 1kg  
Power 1.5W@normal  
Operation 
LifeTime >2 years  
Size 150x150x 160  mm3 

Fig. 1. FDSS mounted on STSAT-2
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2. Optical Design of FDSS

2.1 Basic principles of FDSS 

The basic principles of the FDSS are as follows. Sunlight 

passes though the aperture of the FDSS and is projected 

onto the surface of the CMOS image sensor. Each pixel of 

the CMOS image sensor converts the projected sunlight into 

10-bit digital signals. These signals are stored by the FPGA, 

which generates and controls the 10-bit digital signals. The 

Micro Processor Unit (MPU) reads the stored data from the 

FPGA, calculates the entrance degree of the sunlight ray, 

and provides the calculated entrance degrees to the On-

Board Computer (OBC),which determines the attitude and 

processes the control program. The FDSS is divided into 

three parts, as shown in Fig. 2. The first part is the optical 

part: sunlight passes though aperture, is attenuated by the 

Neutral Density Filter (NDF) and filtered by the Band Pass 

Filter (BPF). The optical part projects the sunlight onto 

the surface of the CMOS image sensor. The second part 

is the FPGA part: this part generates the control signals 

and sends these signals to the CMOS image sensor. The 

second part stores the data acquired from the CMOS image 

sensor and communicates with the the micro process unit 

(MPU) by using data packets. The third part is the MPU: it 

communicates with the OBC and calculates the incident 

angle of the sunlight using the centroid algorithm.

2.2 Optical part of FDSS

Fig. 3 describes the schematic of the optical part on the 

FDSS. The sunlight enters the aperture with the radius of φ 

is filtered by the NDF, and attenuated by the BPF. The optical 

part is coated internally with an anti-reflection material 

to minimize the reflection of the sunlight. Also, the optics 

and mechanical structures need to be accurately aligned 

between the aperture and the CMOS image sensor. When the 

CIS is mounted on the printed circuit board (PCB), the CIS is 

aligned with reference to the outline of the CIS on the PCB. 

2.3 Diffraction characteristics of the aperture

The characteristics of the sunlight on the surface of the 

COMS image sensor need to be analyzed in the optical system. 

Particularly, the intensity of the sunlight must be decreased to 

prevent it from exceeding the allowable electrical threshold 

of the CMOS image sensor. After considering the diffraction 

effect, a stable wavelength is chosen for the BPF. 

The optical characteristics of the FDSS and the distribution 

of the sunlight energy need to be considered for the detection 

of the incident angle.

(1)

(2)

(3)

where εA is the permittivity of the air; k is the k is the 2π/λ; 

Table 1. Specifications of FDSS

 

 

 

 
Fig. 1. FDSS mounted on STSAT-2 
 

Table 1. Specifications of FDSS 

 

2. Optical Design of FDSS 

2.1 Basic principles of FDSS  

The basic principles of the FDSS are as 
follows. Sunlight passes though the 
aperture of the FDSS and is projected 
onto the surface of the CMOS image 
sensor. Each pixel of the CMOS image 
sensor converts the projected sunlight into 
10-bit digital signals. These signals are 
stored by the FPGA, which generates and 
controls the 10-bit digital signals. The 
Micro Processor Unit (MPU) reads the 
stored data from the FPGA, calculates the 
entrance degree of the sunlight ray, and 
provides the calculated entrance degrees 
to the On-Board Computer (OBC),which 
determines the attitude   and processes the 
control program. The FDSS is divided 
into three parts, as shown in Fig. 2. The 
first part is the optical part: sunlight 
passes though aperture, is attenuated by 

the Neutral Density Filter (NDF) and 

filtered by the Band Pass Filter (BPF). 
The optical part projects the sunlight onto 
the surface of the CMOS image sensor. 
The second part is the FPGA part: this 
part generates the control signals and 
sends these signals to the CMOS image 
sensor. The second part stores the 
data acquired from the CMOS image 
sensor and communicates with the the 
micro process unit (MPU) by using data 
packets. The third part is the MPU: it 
communicates with the OBC and 
calculates the incident angle of the 
sunlight using the centroid algorithm. 
 

 

 

Fig. 2.  FDSS electrical scheme. 
 

 
Fig. 3. The schematic of the aperture for 

the FDSS. 
 

 

Item Specification Remark 
Field of 
View 20x 20  
Accuracy < 0.03(2σ) 2-axis 
Weight < 1kg  
Power 1.5W@normal  
Operation 
LifeTime >2 years  
Size 150x150x 160  mm3 

 

 

 

 
Fig. 1. FDSS mounted on STSAT-2 
 

Table 1. Specifications of FDSS 

 

2. Optical Design of FDSS 

2.1 Basic principles of FDSS  

The basic principles of the FDSS are as 
follows. Sunlight passes though the 
aperture of the FDSS and is projected 
onto the surface of the CMOS image 
sensor. Each pixel of the CMOS image 
sensor converts the projected sunlight into 
10-bit digital signals. These signals are 
stored by the FPGA, which generates and 
controls the 10-bit digital signals. The 
Micro Processor Unit (MPU) reads the 
stored data from the FPGA, calculates the 
entrance degree of the sunlight ray, and 
provides the calculated entrance degrees 
to the On-Board Computer (OBC),which 
determines the attitude   and processes the 
control program. The FDSS is divided 
into three parts, as shown in Fig. 2. The 
first part is the optical part: sunlight 
passes though aperture, is attenuated by 

the Neutral Density Filter (NDF) and 

filtered by the Band Pass Filter (BPF). 
The optical part projects the sunlight onto 
the surface of the CMOS image sensor. 
The second part is the FPGA part: this 
part generates the control signals and 
sends these signals to the CMOS image 
sensor. The second part stores the 
data acquired from the CMOS image 
sensor and communicates with the the 
micro process unit (MPU) by using data 
packets. The third part is the MPU: it 
communicates with the OBC and 
calculates the incident angle of the 
sunlight using the centroid algorithm. 
 

 

 

Fig. 2.  FDSS electrical scheme. 
 

 
Fig. 3. The schematic of the aperture for 

the FDSS. 
 

 

Item Specification Remark 
Field of 
View 20x 20  
Accuracy < 0.03(2σ) 2-axis 
Weight < 1kg  
Power 1.5W@normal  
Operation 
LifeTime >2 years  
Size 150x150x 160  mm3 

Fig. 2. FDSS electrical scheme.

 

 

 

 
Fig. 1. FDSS mounted on STSAT-2 
 

Table 1. Specifications of FDSS 

 

2. Optical Design of FDSS 

2.1 Basic principles of FDSS  

The basic principles of the FDSS are as 
follows. Sunlight passes though the 
aperture of the FDSS and is projected 
onto the surface of the CMOS image 
sensor. Each pixel of the CMOS image 
sensor converts the projected sunlight into 
10-bit digital signals. These signals are 
stored by the FPGA, which generates and 
controls the 10-bit digital signals. The 
Micro Processor Unit (MPU) reads the 
stored data from the FPGA, calculates the 
entrance degree of the sunlight ray, and 
provides the calculated entrance degrees 
to the On-Board Computer (OBC),which 
determines the attitude   and processes the 
control program. The FDSS is divided 
into three parts, as shown in Fig. 2. The 
first part is the optical part: sunlight 
passes though aperture, is attenuated by 

the Neutral Density Filter (NDF) and 

filtered by the Band Pass Filter (BPF). 
The optical part projects the sunlight onto 
the surface of the CMOS image sensor. 
The second part is the FPGA part: this 
part generates the control signals and 
sends these signals to the CMOS image 
sensor. The second part stores the 
data acquired from the CMOS image 
sensor and communicates with the the 
micro process unit (MPU) by using data 
packets. The third part is the MPU: it 
communicates with the OBC and 
calculates the incident angle of the 
sunlight using the centroid algorithm. 
 

 

 

Fig. 2.  FDSS electrical scheme. 
 

 
Fig. 3. The schematic of the aperture for 

the FDSS. 
 

 

Item Specification Remark 
Field of 
View 20x 20  
Accuracy < 0.03(2σ) 2-axis 
Weight < 1kg  
Power 1.5W@normal  
Operation 
LifeTime >2 years  
Size 150x150x 160  mm3 

Fig. 3. The schematic of the aperture for the FDSS.

11)(260-265)11-032.indd   261 2012-07-25   오후 3:53:32



DOI:10.5139/IJASS.2012.13.2.260 262

Int’l J. of Aeronautical & Space Sci. 13(2), 260–265 (2012)

the t is the time ; the ω is the 2πf.
That I(q) is twice as long as the diameter of the aperture 

in length. 

Because of I ∝ E*E, the intensity, I, is given by Eq. (4) as 

follows [3].

(4)

where a is the radius of the aperture; b is the maximum 

symmetric   distance of the aperture through which the 

sunlight passes ; Φ is the rotation angle on the y-z plane 

about the z axis; and q is the distance between the center and 

the diffraction pattern. 

Itot is the total energy which is received from the a circular 

aperture. The energy is

(5)

Eq. (5) shows that I(q) becomes zero when q =116µm.  This 

illustrates the fact that I(q) is twice as long as the diameter of 

the aperture in length. 

Fig. 5 displays the diffraction distance of the aperture. The 

ratio of the first diffraction pattern and the total diffraction 

energy is calculated as follows

(6)

Eq. (6) shows that most energies concentrate within the 

first circular diffraction (q0) pattern. The CMOS image sensor 

has 512×512 pixels

The pixel efficiency is approximately 7%. When the pixels 

are at a right angle to the sunlight, the energy distribution of 

the sunlight by the diffraction effect and the allocation of the 

sunlight energy are calculated as follows. 

Eq. (4) uses the Cartesian coordinate system. Therefore, 

Eq. (4) needs to be changed as follows

(7)

where I0 = 487.4

Based on Eq. (7), the energy radiated into the central pixel 

for 0.1 second is

(8)

Using Eq. (8), the locations of the other pixels close to the 

center pixels can be calculated. The first airy disk is plotted 

by the pixels, as shown in Fig. 5.

Electrons are generated by the photo effect. The energy of 

an electron is 

(9)

Eqs. (10) and (11) can be used to calculate the number of 

electrons generated. 

(10)

(11)

We designed a filter for the attenuation of the sunlight. 

The sunlight’s intensity needed to be decreased by using the 

NDF because the intensity was too strong. Using the above 

results, Eq. (12) shows the percentage of attenuation that a 

filter would need to achieve. 

(12)

A 5.44% filter has to be used. If the transmittance of 
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Using Eq. (8), the locations of the other 
pixels close to the center pixels can be 
calculated. The first airy disk is plotted by 
the pixels, as shown in Fig. 5. 
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We designed a filter for the attenuation 
of the sunlight. The sunlight’s intensity 
needed to be decreased by using the NDF 
because the intensity was too strong. 
Using the above results, Eq. (12) shows 
the percentage of attenuation that a filter 
would need to achieve.  
 
(311,000 / 5.72 8) 100 0.0544E × =           (12) 
 

A 5.44% filter has to be used. If the 
transmittance of the NDF is low, the S/N 
characteristics of the CIS tend to   
decrease. Therefore, there needs to be a 
trade-off between the NDF and BPF to 
obtain the optimal performance [4]. An 
appropriate exposure time and sampling 
time are also chosen by the designer. Also 
the developer should consider the stability 
of the MPU and the FPGA  
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the NDF is low, the S/N characteristics of the CIS tend to 

decrease. Therefore, there needs to be a trade-off between 

the NDF and BPF to obtain the optimal performance [4]. 

An appropriate exposure time and sampling time are also 

chosen by the designer. Also the developer should consider 

the stability of the MPU and the FPGA 

3. �Calculation algorithm for the incident 
angle 

The center of the aperture, through which the sunlight 

passes at an incident angle, must be found. For this purpose, 

a sunlight image was projected onto the pixels of the CMOS 

image sensor. Among the several algorithms that can be used 

to find the center, the centroid algorithm is well-known and 

popular, given as Eq. (13). 

Fig. 6 shows the size of the CMOS sensor. X and Y are the 

center coordinates calculated by the centroid algorithm. The 

incident angle error of the sunlight was simulated, and the 

maximum error was less than 2.0E-4degrees. 

(13)

i, j : Number of pixels. 

l : Intensity of each pixel. 

The incident angles of the sunlight to the x-axis and y-axis 

are α and β, respectively, given by Eqs. (14) and Eq. (15) as 

follows [5, 6].

(14)

(15)

h : the height between the CMOS image sensor and the 

aperture.

X : distance of the pixel on x axis. 

Y : distance of the pixel on y axis. 

Fig. 7 is a photo of the developed FDSS for FM. It has been 

prepared for use in space. It is coated for thermal control.

4. FDSS Measurement Results

4.1 Measurement facility

The test facility for calibration consists of the solar 

simulator, a 2-axis rotary stage, and a collimator in the Satreci 

optical room. The solar simulator has AM1.5 precision, and 

the 2 axis rotary stage has 1/1000mm resolution accuracy [7]. 
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i, j : Number of  pixels.  
l :  Intensity of each pixel.  
 
The incident angles of the sunlight to 

the x-axis and y-axis are α and β, 
respectively, given by Eqs. (14) and Eq. 
(15) as follows [5, 6]. 

1tan ( )X
h

α −= o                                           (14) 

1ta n ( )Y
h

β −= o                                           (15) 

h : the height between the CMOS 
image sensor and the aperture. 

X : distance of the pixel on x axis.  
Y : distance of the pixel on y axis.  

 

Fig.7. FDSS   made by SaTReC 
 
Fig. 7 is a photo of the developed 

FDSS for FM. It has been prepared for 
use in space. It is coated for thermal 
control. 

 
4. FDSS Measurement Results 

4.1 Measurement facility 

The test facility for calibration consists 
of the solar simulator, a 2-axis rotary 
stage, and a collimator in the Satreci 
optical room. The solar simulator has 
AM1.5 precision, and the 2 axis rotary 
stage has 1/1000mm resolution accuracy 
[7]. Fig. 8 shows the calibration facility of 
SI (SaTReC Initiative) for the FDSS. 

 
Fig. 8.  Calibration facility for the FDSS 

Fig.7. FDSS made by SaTReC

 

 

4.2 Signal of the CIS outpu 

 

 

 

 

 

 

 

 
 
 
 

Fig. 9.  Waveform of the CIS output 
 

Fig. 9 shows the signal of CIS when the 
sunlight enters to the pin hole. This wave 
is similar to the analyzed waveform. This 
waveform is suitable for the application of 
the algorithm. Fig. 10 shows the graph of 
the errors versus the x-axis when the 
horizon axis degree is zero. The error 
range is within the accuracy of the 0.03 
degrees [7].  

 
Fig.10. FDSS x-axis error result with zero 
degree 

 
Based on the results, the target 

accuracy can be obtained. Also Fig. 10 
shows the graph of the errors versus the y-
axis when the horizon axis degree is zero. 
The algorithm is very important for 
obtaining accurate and best performance. 
Therefore, better algorithms need to be 
studied for high-level, fine digital sensors. 

 

 
Fig. 11. FDSS y-axis error result with 
zero degree 

 

 
 
Fig. 12. FDSS -x-axis error result with 
+45 degree rotation. 

 
Table 2 provides the measurement errors 
of the two axes. We measured the real 
error of the FDSS; it was less than a 0.032 
degrees, which FDSS requires.  
 

0 1 2 3 4 5 6 7 8 9
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
 FDSS X -axis error

 FDSS X -axis 

 E
rr

or
=

an
g-

po
ly

va
l

 
 

Fig. 13. FDSS +x-axis error result with 
+45 degree rotation. 
 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
 FDSS X -axis error

 FDSS X -axis 

 E
rr

or
=

an
g-

po
ly

va
l

Fig. 9. Waveform of the CIS output
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Fig. 8 shows the calibration facility of SI (SaTReC Initiative) 

for the FDSS.

4.2 Signal of the CIS output

Fig. 9 shows the signal of CIS when the sunlight enters to 

the pin hole. This wave is similar to the analyzed waveform. 

This waveform is suitable for the application of the algorithm. 

Fig. 10 shows the graph of the errors versus the x-axis when 

the horizon axis degree is zero. The error range is within the 

accuracy of the 0.03 degrees [7]. 

Based on the results, the target accuracy can be obtained. 

Also Fig. 10 shows the graph of the errors versus the y-axis 

when the horizon axis degree is zero. The algorithm is very 

important for obtaining accurate and best performance. 

Therefore, better algorithms need to be studied for high-

level, fine digital sensors.

Table 2 provides the measurement errors of the two axes. 

We measured the real error of the FDSS; it was less than a 

0.032 degrees, which FDSS requires. 

Fig. 12, 13, 14, and 15 show the x -axis and y-axis error 

graphs with +45 degree rotation. The error value around zero 

degree in the Fig. 11 is increased because of the effect of the 

sunlight reflection in the optical system and CIS alignment. 

Because present anti- reflection techniques are imperfect, it 

is very difficult to align the CIS to the horizontal and vertical 

axes. Also the plane of the CIS surface is not uniform. But 

we did not compensate the errors by using the measurement 

algorithm.
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Fig.10. FDSS x-axis error result with zero degree
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Fig. 12. FDSS -x-axis error result with +45 degree rotation.
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Fig. 14.  FDSS -y-axis error result with 
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Fig. 15.  FDSS +y-axis error result with 
+45degree rotation. 
 

Fig. 12, 13, 14, and 15 show the x -axis 
and y-axis error graphs with +45 degree 
rotation. The error value around zero 
degree in the Fig. 11 is increased because 
of the effect of the sunlight reflection in 
the optical system and CIS alignment. 
Because present anti- reflection 
techniques are imperfect, it is very 
difficult to align the CIS to the horizontal 
and vertical axes. Also the plane of the 
CIS surface is not uniform. But we did not 
compensate the errors   by using the 
measurement algorithm. 
 
5. Conclusion   
 

The incident characteristics of sunlight 
for the FDSS have been analyzed. After 
considering the results of the analysis and 

simulation, we designed, manufactured, 
tested, and calibrated the FDSS   
successfully.  

The feasibility of the developed FDSS 
was verified by now. But the errors, 
which are affected by factors such as   
temperature, power characteristics and the 
Fixed Pattern Noise (FPN) of the CIS, and 
real measurement algorithm, were 
considered. 

 Especially, error compensations ac-
cording to a certain range of angles were 
considered. Also the performance test of 
FDSS needs to be verified by an orbit test 
of the STSAT-2. On orbit the test can be 
tested by the star sensor which has with 
the accuracy less than 0.016degree. 

Unfortunately, the performance mission 
of this FDSS could not be tested in orbit 
because of the two times launch failures 
of KSLV-1 (Korea Space Launch 
Vehicle-I).   
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5. Conclusion 

The incident characteristics of sunlight for the FDSS have 

been analyzed. After considering the results of the analysis 

and simulation, we designed, manufactured, tested, and 

calibrated the FDSS successfully. 

The feasibility of the developed FDSS was verified by 

now.  But the errors, which are affected by factors such as 

temperature, power characteristics and the Fixed Pattern 

Noise (FPN) of the CIS, and real measurement algorithm, 

were considered.

Especially, error compensations according to a certain 

range of angles were considered. Also the performance test 

of FDSS needs to be verified by an orbit test of the STSAT-2. 

On orbit the test can be tested by the star sensor which has 

with the accuracy less than 0.016degree.

Unfortunately, the performance mission of this FDSS 

could not be tested in orbit because of the two times launch 

failures of KSLV-1 (Korea Space Launch Vehicle-I). 
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