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Abstract

In order to communicate with a ground station, the tracking profile design problem for a directional antenna system is 

considered. Because the motions of the gimbal angles in the antenna system affect the image quality, the main object is to 

minimize the motion of the gimbal angles during the satellite’s imaging phase. For this goal, parameter optimization problems 

in the imaging and maneuver phases are formulated separately in the body-frame, and solved sequentially. Also, several 

mechanical constraints, such as the limitation of the gimbal angle and rate, are considered in the problems. The tracking 

profiles of the gimbal angles in the maneuver phases are designed with N-th order polynomials, to continuously connect the 

tracking profiles between two imaging phases. The results confirm that if the vector trace of the desired antenna-pointing 

vector is within the antenna’s beam-width angle, motions of the gimbal angles are not required in the corresponding imaging 

phase. Also, through numerical examples, it is shown that motion of the gimbal angles in the imaging phase can be minimized 

by the proposed design process.
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1. Introduction

To communicate with a ground station, a satellite on 

low-Earth orbit is equipped with an omnidirectional or a 

directional antenna system. When a satellite is equipped with a 

directional antenna system, a gimbal system is included in the 

antenna system, to change the antenna-pointing vector. Korea 

multi-purpose satellite-3 (KOMSAT-3) is the third satellite 

developed by the Korea Aerospace Research Institute (KARI) 

to observe the Earth’s surface. To transmit stored images from 

the satellite to a ground station, KOMSAT-3 is equipped with 

a directional antenna system that includes a 2-axis gimbal 

system [1]. The tracking profile (TP) for the azimuth and 

elevation angles of the gimbal system is scheduled from the 

ground station in advance, and the information related to the 

TP is transmitted to the satellite’s on-board computer. The 

tracking profile is reconstructed in the flight software, and 

the antenna-pointing vector is controlled along the tracking 

profile, to communicate with the ground station. 

The tracking profile design is based on the satellite attitude, 

mission orbit, and position of the ground station. The satellite 

attitude is scheduled as an attitude profile in a higher 
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operational level. Generally, the attitude profile for an Earth 

observation mission can be divided into several segments, 

which can be categorized into two phases. One of the two 

phases is an imaging phase, for taking images of the Earth’s 

surface; the other is the maneuver phase, for reorienting the 

satellite attitude toward the next target point. Depending 

on the object of the Earth observation mission, the attitude 

profile is composed of several sequences of imaging phase 

and maneuver phase. In the imaging phase, to acquire 

images of better quality, the motion of gimbal angles must 

be minimized. Therefore, in the process of designing the 

tracking profile of the gimbal angles, the motion of the gimbal 

angles in the imaging phase should be taken into account.

In Refs. [1-2], the desired azimuth and elevation angles 

were extracted from the desired antenna vectors, which 

were the directions of the antenna-pointing vectors oriented 

directly to the ground station. Based on the desired gimbal 

angles, the tracking profile was designed by the least-square 

method with polynomials. 

In [3], a tracking profile was optimized by a reinforcement 

learning algorithm. The results of Ref. [3] revealed that 

because a directional antenna has a specified beam-width, 

pointing exactly at the ground station was not necessary for 

the antenna-pointing vector. However, in [3], even though 

the designed profile satisfied the beam-width constraint, 

the motions of the gimbal angles were not minimized in the 

imaging phase. 

In [4], a tracking profile for directional antenna was 

designed using a virtual ground station. Based on the 

algorithm proposed in Ref. [4], the angular velocity for the 

gimbal angle was decreased by choosing a fixed position of 

the virtual ground station in the Earth Centered Earth Fixed 

frame. However, how to choose the fixed ground station 

properly was not explained. 

This paper considers the tracking profile design problem. 

In this paper, the virtual ground station is not a fixed point, 

but a moving point, which is designed automatically through 

the tracking profile design process. For this goal, the design 

process is composed of two steps. First, to minimize the 

motion of the gimbal angles in the imaging phase, each 

antenna tracking profile corresponding to each imaging 

phase is generated. After generating tracking profiles in the 

imaging phase, the tracking profiles in the maneuver phase 

are designed. For this goal, two optimization-problems are 

formulated. 

The remainder of the paper is organized as follows. 

First, the way to calculate the desired antenna vector and 

the desired gimbal angles is explained, and the previous 

approaches to generating antenna tracking profiles are 

reviewed. After these explanations, the proposed algorithm 

is introduced, and numerical examples are presented.

2. Antenna Tracking Profile

2.1 Desired antenna-pointing vector/gimbal angles

Fig. 1 shows an example of the mission sequence for 

the Earth observation satellite. The imaging phase is the 

phase in which images of the Earth’s surface are taken. 

And the maneuver phase is the phase in which an attitude 

reorientation maneuver is executed, for orienting the 

line of sight vector of a payload to the starting point of the 

next imaging phase. To accomplish these kinds of mission 

sequences, attitude profiles should be designed in advance, 

using target positions of the Earth’s surface, and satellite 

positions on the mission orbit. Even though the ground 

station is fixed in the Earth-Centered Earth-Fixed (ECEF) 

frame, because the attitude of the satellite is controlled 

along with the attitude profile, and the satellite also revolves 

around the Earth, the position vector of the ground station 

is a time-varying vector, with respect to the satellite body 

frame. Therefore, if a directional antenna is equipped on the 

satellite, a gimbal system is required to communicate with 

a ground station. In this paper, a 2-axis gimbaled antenna 

system is assumed to be installed on the satellite.

A conceptual diagram of the antenna tracking profile 

design problem is depicted in Fig. 2. In Fig. 3, the problem 

is illustrated in the satellite body frame. 
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 are the 

body frame and the gimbal frame coordinate, respectively. Initially, the gimbal frame is aligned to the 

body frame.   and  are the elevation and azimuth angles of the antenna’s 2-axis gimbal system. 

The rotation-axis for the azimuth angle is always aligned to the zB


-axis, and the azimuth angle about 

the zB


-axis is not unbounded; whereas the rotation-axis for the elevation angle is aligned to the yG
r

-

axis, and the elevation angle is bounded between a lower bound LB  and an upper bound UB , due to 

the mechanical constraints. beam  is the angle related to the beam-width. In Fig. 3, dR


 denotes the 

time-varying position vector of the ground station in the body-frame, and AntennaR


 is the pointing 

vector of the antenna. dR


 can be computed as follows. SatP


 and GSP


 denote the position vectors of 

the satellite and the ground station in the ECEF-frame, respectively. Using SatP


and GSP


, the 

normalized position vector from the satellite to the ground station is calculated as follows; 
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where, GS
Sat ECEF
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is the normalized position vector from the satellite to the ground station. The vector 

defined in the ECEF-frame can be transformed into the vector defined in the satellite body-frame 
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A conceptual diagram of the antenna tracking profile design problem is depicted in Fig. 2. In Fig. 3, 
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where, GS
Sat ECEF

R


is the normalized position vector from the satellite to the ground station. The vector 

defined in the ECEF-frame can be transformed into the vector defined in the satellite body-frame 

Fig. 3. Definition of the azimuth and elevation angles in the satellite body frame
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In the previous papers [1-4], only the first set of desired angles in Eqs. (5)-(6) was considered in the 

tracking profile design process. Designing the tracking profile using only one set between two sets 

may increase the angular velocity of the gimbal angles, if some vectors near the vector of [0 0 1]T are 

included in the desired gimbal vectors. If two sets are considered in the process of tracking the profile 

design, the angular velocity of the gimbal angles can be efficiently decreased, which will be shown in 

the numerical example section.  

2.2 Previous approaches to design of the antenna tracking profile 

In the previous section, the ways to calculate the desired vectors and gimbal angles were explained. 

The desired gimbal angles can be calculated at user defined sampling points. However, uploading all 

the desired gimbal angles is not appropriate, because the amount of data is too large. Therefore, the 

desired gimbal angles are approximated with polynomials, and the coefficients of the polynomials are 

uploaded from the ground station. The antenna tracking profile is reconstructed in the onboard flight 

software using the uploaded coefficients. In Refs. [1-2], each gimbal angle was approximated by P-

order polynomials and coefficients.  

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                      (9) 

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                     (10) 

where, app and app  are approximated elevation and azimuth angles at time t, and iC  and iC

( 0,... )i P are the coefficients of the polynomials. Let dα and dβ  be the vectors composed of desired 

azimuth and elevation angles, sampled at sampling points of 0 1, ,..., kt t t ( k P ), as follows.  

0 1

0 1

( ) ( ) ... ( )
( ) ( ) ... ( )

Td d d
d d k

d d d
k

t t t
Y

t t t
  
  
 

     
 

α β                                                (11) 

The approximated gimbal angles at the sampling points can be organized in a matrix form, as follows. 

(8)

In the previous papers [1-4], only the first set of desired 

angles in Eqs. (5)-(6) was considered in the tracking profile 

design process. Designing the tracking profile using only 

one set between two sets may increase the angular velocity 

of the gimbal angles, if some vectors near the vector of [0 

0 1]T are included in the desired gimbal vectors. If two sets 

are considered in the process of tracking the profile design, 

the angular velocity of the gimbal angles can be efficiently 

decreased, which will be shown in the numerical example 

section. 

2.2 ��Previous approaches to design of the antenna 
tracking profile

In the previous section, the ways to calculate the desired 

vectors and gimbal angles were explained. The desired 

gimbal angles can be calculated at user defined sampling 

points. However, uploading all the desired gimbal angles 

is not appropriate, because the amount of data is too large. 

Therefore, the desired gimbal angles are approximated with 

polynomials, and the coefficients of the polynomials are 

uploaded from the ground station. The antenna tracking 

profile is reconstructed in the onboard flight software using 

the uploaded coefficients. In Refs. [1-2], each gimbal angle 

was approximated by P-order polynomials and coefficients. 

7 

2 1
d d                                                                         (8) 

In the previous papers [1-4], only the first set of desired angles in Eqs. (5)-(6) was considered in the 

tracking profile design process. Designing the tracking profile using only one set between two sets 

may increase the angular velocity of the gimbal angles, if some vectors near the vector of [0 0 1]T are 

included in the desired gimbal vectors. If two sets are considered in the process of tracking the profile 

design, the angular velocity of the gimbal angles can be efficiently decreased, which will be shown in 

the numerical example section.  

2.2 Previous approaches to design of the antenna tracking profile 

In the previous section, the ways to calculate the desired vectors and gimbal angles were explained. 

The desired gimbal angles can be calculated at user defined sampling points. However, uploading all 

the desired gimbal angles is not appropriate, because the amount of data is too large. Therefore, the 

desired gimbal angles are approximated with polynomials, and the coefficients of the polynomials are 

uploaded from the ground station. The antenna tracking profile is reconstructed in the onboard flight 

software using the uploaded coefficients. In Refs. [1-2], each gimbal angle was approximated by P-

order polynomials and coefficients.  

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                      (9) 

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                     (10) 

where, app and app  are approximated elevation and azimuth angles at time t, and iC  and iC

( 0,... )i P are the coefficients of the polynomials. Let dα and dβ  be the vectors composed of desired 

azimuth and elevation angles, sampled at sampling points of 0 1, ,..., kt t t ( k P ), as follows.  

0 1

0 1

( ) ( ) ... ( )
( ) ( ) ... ( )

Td d d
d d k

d d d
k

t t t
Y

t t t
  
  
 

     
 

α β                                                (11) 

The approximated gimbal angles at the sampling points can be organized in a matrix form, as follows. 

(9)

7 

2 1
d d                                                                         (8) 

In the previous papers [1-4], only the first set of desired angles in Eqs. (5)-(6) was considered in the 

tracking profile design process. Designing the tracking profile using only one set between two sets 

may increase the angular velocity of the gimbal angles, if some vectors near the vector of [0 0 1]T are 

included in the desired gimbal vectors. If two sets are considered in the process of tracking the profile 

design, the angular velocity of the gimbal angles can be efficiently decreased, which will be shown in 

the numerical example section.  

2.2 Previous approaches to design of the antenna tracking profile 

In the previous section, the ways to calculate the desired vectors and gimbal angles were explained. 

The desired gimbal angles can be calculated at user defined sampling points. However, uploading all 

the desired gimbal angles is not appropriate, because the amount of data is too large. Therefore, the 

desired gimbal angles are approximated with polynomials, and the coefficients of the polynomials are 

uploaded from the ground station. The antenna tracking profile is reconstructed in the onboard flight 

software using the uploaded coefficients. In Refs. [1-2], each gimbal angle was approximated by P-

order polynomials and coefficients.  

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                      (9) 

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                     (10) 

where, app and app  are approximated elevation and azimuth angles at time t, and iC  and iC

( 0,... )i P are the coefficients of the polynomials. Let dα and dβ  be the vectors composed of desired 

azimuth and elevation angles, sampled at sampling points of 0 1, ,..., kt t t ( k P ), as follows.  

0 1

0 1

( ) ( ) ... ( )
( ) ( ) ... ( )

Td d d
d d k

d d d
k

t t t
Y

t t t
  
  
 

     
 

α β                                                (11) 

The approximated gimbal angles at the sampling points can be organized in a matrix form, as follows. 

(10)

Where, αapp and βapp are approximated elevation and 

azimuth angles at time t, and Ci
α and Ci

β(i=0, ..., p) are the 

coefficients of the polynomials. Let αd and βd be the vectors 

composed of desired azimuth and elevation angles, sampled 

at sampling points of t0, t1, ..., tk(k>p), as follows. 

7 

2 1
d d                                                                         (8) 

In the previous papers [1-4], only the first set of desired angles in Eqs. (5)-(6) was considered in the 

tracking profile design process. Designing the tracking profile using only one set between two sets 

may increase the angular velocity of the gimbal angles, if some vectors near the vector of [0 0 1]T are 

included in the desired gimbal vectors. If two sets are considered in the process of tracking the profile 

design, the angular velocity of the gimbal angles can be efficiently decreased, which will be shown in 

the numerical example section.  

2.2 Previous approaches to design of the antenna tracking profile 

In the previous section, the ways to calculate the desired vectors and gimbal angles were explained. 

The desired gimbal angles can be calculated at user defined sampling points. However, uploading all 

the desired gimbal angles is not appropriate, because the amount of data is too large. Therefore, the 

desired gimbal angles are approximated with polynomials, and the coefficients of the polynomials are 

uploaded from the ground station. The antenna tracking profile is reconstructed in the onboard flight 

software using the uploaded coefficients. In Refs. [1-2], each gimbal angle was approximated by P-

order polynomials and coefficients.  

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                      (9) 

1
1 1 0( )app P P

P Pt C t C t C t C    
                                                     (10) 

where, app and app  are approximated elevation and azimuth angles at time t, and iC  and iC

( 0,... )i P are the coefficients of the polynomials. Let dα and dβ  be the vectors composed of desired 

azimuth and elevation angles, sampled at sampling points of 0 1, ,..., kt t t ( k P ), as follows.  

0 1

0 1

( ) ( ) ... ( )
( ) ( ) ... ( )

Td d d
d d k

d d d
k

t t t
Y

t t t
  
  
 

     
 

α β                                                (11) 

The approximated gimbal angles at the sampling points can be organized in a matrix form, as follows. 

(11)

The approximated gimbal angles at the sampling points 

can be organized in a matrix form, as follows.

8 

1
0 0 0

1 11
1 1 1

1 11

0 0

1
1

1

P PP P

P PP P
app app

P P
k k k

C C
t t t

C C
t t t

AX
C C

t t t
C C

 

 

 

 



 



 
   
   
           
   
     

α β

L

L
M M

M M L M M

L

                                     (12) 

In the previous approaches [1-2], the least-square method was used to determine the coefficients of X.

In the least-square method, the cost function was chosen as follows. 

   1
2

TJ AX Y AX Y                                                             (13) 

where, A, X, and Y are the matrices defined in Eqs. (11)-(12). The optimal coefficient of Xopt for the 

cost function in Eq. (13) is as follows. 

1( )opt T TX A A A Y                                                                (14) 

Using the virtual ground station instead of the true ground station, an alternative approach is 

suggested in Ref. [4]. In this approach, the least-square to determine the polynomial coefficients was 

also applied. The above approaches are simple and can be easily implemented. However, the 

approaches could not handle the mechanical or operational constraints, such as gimbal angle, angular 

velocity, and constraints related to the beam-width angle. In particular, using these approaches, the 

magnitude of the angular velocity in the imaging phase could not be minimized.  

(12)

In the previous approaches [1-2], the least-square method 

was used to determine the coefficients of X. In the least-

square method, the cost function was chosen as follows.

8 

1
0 0 0

1 11
1 1 1

1 11

0 0

1
1

1

P PP P

P PP P
app app

P P
k k k

C C
t t t

C C
t t t

AX
C C

t t t
C C

 

 

 

 



 



 
   
   
           
   
     

α β

L

L
M M

M M L M M

L

                                     (12) 

In the previous approaches [1-2], the least-square method was used to determine the coefficients of X.

In the least-square method, the cost function was chosen as follows. 

   1
2

TJ AX Y AX Y                                                             (13) 

where, A, X, and Y are the matrices defined in Eqs. (11)-(12). The optimal coefficient of Xopt for the 

cost function in Eq. (13) is as follows. 

1( )opt T TX A A A Y                                                                (14) 

Using the virtual ground station instead of the true ground station, an alternative approach is 

suggested in Ref. [4]. In this approach, the least-square to determine the polynomial coefficients was 

also applied. The above approaches are simple and can be easily implemented. However, the 

approaches could not handle the mechanical or operational constraints, such as gimbal angle, angular 

velocity, and constraints related to the beam-width angle. In particular, using these approaches, the 

magnitude of the angular velocity in the imaging phase could not be minimized.  

(13)

Where, A, X, and Y are the matrices defined in Eqs. (11)-

(12). The optimal coefficient of Xopt for the cost function in 

Eq. (13) is as follows.

8 

1
0 0 0

1 11
1 1 1

1 11

0 0

1
1

1

P PP P

P PP P
app app

P P
k k k

C C
t t t

C C
t t t

AX
C C

t t t
C C

 

 

 

 



 



 
   
   
           
   
     

α β

L

L
M M

M M L M M

L

                                     (12) 

In the previous approaches [1-2], the least-square method was used to determine the coefficients of X.

In the least-square method, the cost function was chosen as follows. 

   1
2

TJ AX Y AX Y                                                             (13) 

where, A, X, and Y are the matrices defined in Eqs. (11)-(12). The optimal coefficient of Xopt for the 

cost function in Eq. (13) is as follows. 

1( )opt T TX A A A Y                                                                (14) 

Using the virtual ground station instead of the true ground station, an alternative approach is 

suggested in Ref. [4]. In this approach, the least-square to determine the polynomial coefficients was 

also applied. The above approaches are simple and can be easily implemented. However, the 

approaches could not handle the mechanical or operational constraints, such as gimbal angle, angular 

velocity, and constraints related to the beam-width angle. In particular, using these approaches, the 

magnitude of the angular velocity in the imaging phase could not be minimized.  

(14)

Using the virtual ground station instead of the true ground 

station, an alternative approach is suggested in Ref. [4]. In 

this approach, the least-square to determine the polynomial 

coefficients was also applied. The above approaches are 

simple and can be easily implemented. However, the 

approaches could not handle the mechanical or operational 

constraints, such as gimbal angle, angular velocity, and 

constraints related to the beam-width angle. In particular, 

using these approaches, the magnitude of the angular 

velocity in the imaging phase could not be minimized. 

 

3. Problem Formulation

3.1 Parameter Optimization Problem

In this paper, the antenna tracking profile will be designed 

with the polynomials and coefficients. The coefficients of 

the antenna tracking profile will be optimized, by solving 

parameter optimization problems. Because the main 

object is to minimize the motion of the gimbal angles at 

each imaging phase, the antenna tracking profile for each 

imaging phase will be separately designed. After designing 

the tracking profile in the imaging phase, the tracking profile 

in the maneuver phase is sequentially designed. The object 

for the antenna tracking profiles design problem in the 

maneuver phases is to make smooth paths between two 

tracking profiles of the imaging phases. If there are k-number 

of imaging phases, because there are (k+1) number of 

maneuver phases, a total of 2k+1 number of segments of 

tracking profiles will be designed.

3.2 Imaging phase

The ideal result for the antenna tracking profile in each 

image-phase is that azimuth and elevation angles are 

to remain as constant values, which means that angular 

velocities and angular accelerations are zeros. At the same 

time, the desired antenna vector lies within the beam-

width. However, it may not always be possible. Consider two 
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cases, as shown in Fig. 4. Fig. 4 shows two examples of the 

geometric relations between the desired antenna vectors 

and the beam-width. The left figure in Fig. 4 shows that the 

overall desired antenna vectors in the k-th imaging phase lie 

within the antenna’s beam-width. If all the desired antenna 

vectors lie within the beam-width in the k-th imaging phase, 

then no motion of the antenna’s gimbal system is required; 

whereas if the overall desired antenna vectors do not lie 

within the beam-width, as shown in the right figure of Fig. 4, 

the motion of gimbal angles is necessary. 

Approximately, to decide whether the given desired 

vectors in the k-th imaging phase lie within the beam-width 

or not, a criterion is suggested. First, the unit mean vector 

for the sampled desired vector of 
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If Eq. (16) is satisfied, the tracking profile in the k-th imaging phase is determined as the constant 

values of the gimbal angles using mean
dR
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. If Eq. (16) is not satisfied, motions of the gimbal angles are 

assumed to be necessary. Under this case, the following parameter optimization problem is considered, 

to design the gimbal angle profiles. The angular velocities of the gimbal angles are assumed to be 

constant at the k-th imaging phase. 
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3. Problem Formulation

3.1 Parameter Optimization Problem 

In this paper, the antenna tracking profile will be designed with the polynomials and coefficients. 

The coefficients of the antenna tracking profile will be optimized, by solving parameter optimization 

problems. Because the main object is to minimize the motion of the gimbal angles at each imaging 

phase, the antenna tracking profile for each imaging phase will be separately designed. After 

designing the tracking profile in the imaging phase, the tracking profile in the maneuver phase is 

sequentially designed. The object for the antenna tracking profiles design problem in the maneuver 

phases is to make smooth paths between two tracking profiles of the imaging phases. If there are k-

number of imaging phases, because there are (k+1) number of maneuver phases, a total of 2k+1

number of segments of tracking profiles will be designed. 

Fig. 4. Geometric relations between the desired antenna vectors and beam-width 

3.2 Imaging phase 

The ideal result for the antenna tracking profile in each image-phase is that azimuth and elevation 

angles are to remain as constant values, which means that angular velocities and angular accelerations 

are zeros. At the same time, the desired antenna vector lies within the beam-width. However, it may 

not always be possible. Consider two cases, as shown in Fig. 4. Fig. 4 shows two examples of the 

geometric relations between the desired antenna vectors and the beam-width. The left figure in Fig. 4 

shows that the overall desired antenna vectors in the k-th imaging phase lie within the antenna’s 

Fig. 4. Geometric relations between the desired antenna vectors and beam-width
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12 

velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 
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image image image  α                                                               (31) 

max
imagem v                                                                       (32) 
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image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.
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Nt t t     α                                           (40) 

(31)
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.
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Nt t t     α                                           (40) 

(33)

Eq. (30) is the inequality constraints related to beam-

width constraints. In Eqs. (32)-(33), 
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.

0 1( ) ( ) ( )
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 and 
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.

0 1( ) ( ) ( )
Tman man man man man man man

Nt t t     α                                           (40) 

 are 

the maximum allowed angular velocities, given as the 

mechanical constraints at the imaging phase.

3.3 Maneuver phase

To design the antenna tracking profiles at the maneuver 

phase, the angular velocities of the gimbal angles are 

organized with P-order polynomials. 
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.
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(34)
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 

angular velocities, and angular accelerations at the sampled points can be formed as a vector, as 

follows.

0 1( ) ( ) ( )
Tman man man man man man man

Nt t t     α                                           (40) 

(35)

Where, Ci
vα and Ci

vβ,(i=0, ..., p) are the polynomial 

coefficients to be optimized. From Eqs. (34)-(35), the gimbal 

angles can be calculated as follows.

12 

velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 

1cos ( , )image image image
desired Antenna beamR R     α β
 

                                               (30) 

min max
image image image  α                                                               (31) 

max
imagem v                                                                       (32) 

max
image

bm v                                                                      (33) 

Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
iC  and v

iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Let 0 1, ,...,
Tman man man man

Nt t t   t be the times corresponding to the sampled points. Then, the angles, 
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velocities and the initial gimbal angles of , , ,m m n n       to minimize the cost function of Eq. (29), 

subject to the following constraints. 
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Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
imagev and

max
imagev are the maximum allowed angular velocities, given as the mechanical constraints at the imaging 

phase.

3.3 Maneuver phase 

To design the antenna tracking profiles at the maneuver phase, the angular velocities of the gimbal 

angles are organized with P-order polynomials.  
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where, v
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iC  , ( 0,..., )i P are the polynomial coefficients to be optimized. From Eqs. (34)-

(35), the gimbal angles can be calculated as follows. 
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Eq. (30) is the inequality constraints related to beam-width constraints. In Eqs. (32)-(33), max
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As commented in previous subsection 3.2, angular acceleration of the gimbal angles may produce 

reaction torque to the satellite, according to the principle of the conservation of angular momentum. 

Even though the reaction torque can be cancelled by the attitude control system, a smaller reaction 

torque is preferable, from the attitude control accuracy point of view. Because the reaction torque has 

a close relation to the gimbal acceleration, the following cost function is considered to generate a 

smooth path in the maneuver phases. 
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where, ( 0,..., )iw i N , and h are weights based on an integration rule, and a weight related to the time 

span, respectively. To make a continuous path, boundary conditions for the angles, angular velocities, 

and angular accelerations at the initial and final time in the maneuver phase are imposed, as follows. 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the 
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As commented in previous subsection 3.2, angular acceleration of the gimbal angles may produce 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the 
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where, 0 0 0 0, , , , , ,f f fv v v      , and fv can be determined using the antenna tracking profiles in the  can be determined 

using the antenna tracking profiles in the imaging phases. 

Also, inequality constraints related to the mechanical 

constraints for the gimbal angles, angular velocities, and 
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angular accelerations are imposed.

14 

imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 

   0 0

2
f ft t t t

t
  

                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(47)
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max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 

   0 0

2
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t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(48)
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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2
f ft t t t

t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(49)
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(50)
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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2
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t
  

                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(51)

Finally, because the antenna-pointing vectors 

reconstructed from the designed azimuth and elevation 

angles by utilizing Eq. (4) are required to be within beam-

width, the following inequality constraint is also imposed.
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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2
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t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(52)

The parameter optimization problem for the maneuver 

phase is summarized as follows: to find polynomial 

coefficients of the angular velocity profiles at the maneuver 

phase and initial gimbal angles 
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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2
f ft t t t

t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

 and  
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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2
f ft t t t

t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

, to minimize the approximated cost 

function in Eq. (44), while satisfying Eqs. (45)-(52).

3.4 Sampling Points

In the paper, the Legendre-Gauss-Lobatto (LGL) points 

are considered as the sampling points. Let LN(τ) denote the 

Legendre polynomial of degree N on the interval 
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

. 

The LGL points are the zeros of LN, which is the derivative of 

the Legendre polynomial LN with respect to τ, including both 

endpoints of τ0=-1 and τN=1. To transform the interval from 

the domain of the LGL points 
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

 to the time domain of  
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

, the following Eq. (52) is used [5-6].
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imaging phases. Also, inequality constraints related to the mechanical constraints for the gimbal 

angles, angular velocities, and angular accelerations are imposed. 

min max
man man man  α                                                                 (49) 

max
man manv v                                                                     (50) 

max
man manv v                                                                     (51) 

max
man mana a                                                                     (52) 

max
man mana a                                                                     (53) 

Finally, because the antenna-pointing vectors reconstructed from the designed azimuth and 

elevation angles by utilizing Eq. (4) are required to be within beam-width, the following inequality 

constraint is also imposed. 

1cos ( , )man man man
desired Antenna beamR R     α β
 

                                                (54) 

The parameter optimization problem for the maneuver phase is summarized as follows: to find 

polynomial coefficients of the angular velocity profiles at the maneuver phase and initial gimbal 

angles 1 1 0 0, , , , ,v v v v
N NC C C C C    

    and 1 1 0 0, , , , ,v v v v
N NC C C C C    

   , to minimize the approximated 

cost function in Eq. (46), while satisfying Eqs. (47)-(54). 

3.4 Sampling Points 

In the paper, the Legendre-Gauss-Lobatto (LGL) points are considered as the sampling points. Let 

( )NL  denote the Legendre polynomial of degree N on the interval  1, 1   . The LGL points are the 

zeros of NL& , which is the derivative of the Legendre polynomial NL with respect to  , including 

both endpoints of 0 1    and 1N  . To transform the interval from the domain of the LGL points 

 1, 1    to the time domain of 0[ , ]ft t t , the following Eq. (54) is used [5-6]. 

   0 0

2
f ft t t t
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                                                              (55) 

The integral of a function ( )F t  over 0[ ]ft t  can also be approximated using the Gauss-Lobatto 

(53)

The integral of a function F(t) over [t0 tf] can also be 

approximated using the Gauss-Lobatto integration rule.
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Therefore, the weight h related to time span in Eq. (46) is 0( ) / 2man man
ft t , and the weights in Eq. (46) 

are equal to the weights in Eq. (57). 
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4. Numerical examples 

In this section, numerical examples are presented. In this paper, the beam-width angle for the 

directional antenna system was assumed to be 10 degree. However, a different magnitude of beam-

width angle was applied in the problem. In the maneuver phases, 10 degree of beam-width angle was 

considered; however, in the imaging phase, 5 degree of beam-width angle was considered strategically. 

The mechanical or operational constraints for the gimbal system considered in this paper are 

summarized in Table 1. 

Table 1. Mechanical/operational constraints for the gimbaled antenna system 
Phase   Values 

Maneuver 
phase

Angle
Azimuth Unlimited 
Elevation (-145) ~ (-15) deg. 

Angular
Rate

Azimuth 10 deg/s 
Elevation 10 deg/s 

Angular
acceleration 

Azimuth 10 deg/s2

Elevation 10 deg/s2

Beam-width  
angle  10 deg 

Imaging
phase

Angle
Azimuth Unlimited 
Elevation 15 - 145 deg. 

Angular
Rate

Azimuth 2 deg/s 
Elevation 2 deg/s 

Angular
acceleration 

Azimuth 1 deg/s2

Elevation 1 deg/s2

Beam-width  
angle  5 deg 

A Sun-synchronous orbit with altitude of 550 km was considered as the mission orbit. The data for 

the mission orbit were generated by Satellite Tool Kit (STK). Two imaging phases were assumed to be 

the purpose for the mission. Daejeon in the Republic of Korea was chosen as the position of the 

ground station (GS). Fig. 5 shows the initial position of the satellite, the mission orbit, and the 

position of the ground station in the ECEF frame.  

From the initial time corresponding to the initial position, the first and second imaging phases were 

assumed to be executed at 440 sec and 540 sec with a duration of 19 sec and 59 sec, respectively. In 

Fig. 6, the satellite positions for the imaging phases, and the target positions to be taken on the Earth 

surface are marked. 
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Fig. 5. Mission orbit and ground station for the examples 

Fig. 6. Positions of the satellite and target  

To take images for the target positions, the attitude profile is required to be designed in advance. For 

the above mission, the attitude profile was designed using the algorithm presented in Ref. [7]. The 

attitude profile corresponding to the above mission is presented in Fig. 7. In Fig. 7, the marks of ‘o’ 

and ‘*’ depict the start time and the end time of each imaging phase. If the mission orbit, the attitude 

of the satellite, and the position of the ground station are given, the unit position vectors of the ground 

station in the body frame can be calculated using Eqs. (1)-(2). As commented in the previous section, 

the unit position vectors of the ground positions in the body frame are the desired antenna vectors. 

Fig. 5. Mission orbit and ground station for the examples
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Therefore, the weight h related to time span in Eq. (46) is 0( ) / 2man man
ft t , and the weights in Eq. (46) 

are equal to the weights in Eq. (57). 
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Therefore, the weight h related to time span in Eq. (44) 

is  (tf
man-t0

man)/2, and the weights in Eq. (44) are equal to the 

weights in Eq. (55).

 

4. Numerical examples

In this section, numerical examples are presented. In this 

paper, the beam-width angle for the directional antenna 

system was assumed to be 10 degree. However, a different 

magnitude of beam-width angle was applied in the problem. 

In the maneuver phases, 10 degree of beam-width angle 

was considered; however, in the imaging phase, 5 degree 

of beam-width angle was considered strategically. The 

mechanical or operational constraints for the gimbal system 

considered in this paper are summarized in Table 1.

A Sun-synchronous orbit with altitude of 550 km was 

considered as the mission orbit. The data for the mission 

orbit were generated by Satellite Tool Kit (STK). Two imaging 

phases were assumed to be the purpose for the mission. 

Daejeon in the Republic of Korea was chosen as the position 

of the ground station (GS). Fig. 5 shows the initial position of 

the satellite, the mission orbit, and the position of the ground 

station in the ECEF frame. 

From the initial time corresponding to the initial position, 

the first and second imaging phases were assumed to be 

executed at 440 sec and 540 sec with a duration of 19 sec and 

59 sec, respectively. In Fig. 6, the satellite positions for the 

imaging phases, and the target positions to be taken on the 

Earth surface are marked.

To take images for the target positions, the attitude profile 

is required to be designed in advance. For the above mission, 

the attitude profile was designed using the algorithm 

presented in Ref. [7]. The attitude profile corresponding to 

the above mission is presented in Fig. 7. In Fig. 7, the marks 

of ‘o’ and ‘*’ depict the start time and the end time of each 

imaging phase. If the mission orbit, the attitude of the 

satellite, and the position of the ground station are given, 

the unit position vectors of the ground station in the body 

frame can be calculated using Eqs. (1)-(2). As commented in 

the previous section, the unit position vectors of the ground 

positions in the body frame are the desired antenna vectors.

In Fig. 8, the desired antenna vector is presented on the 

unit sphere in the body frame. The desired antenna vectors 

at the 1st and 2nd imaging phases are illustrated with a 

distinguishing line style. The desired antenna vectors were 

computed at every second, and portions of the desired 

vector at the imaging phase are presented in Tables 2 and 

3. The two-set of desired gimbal angles were calculated by 

Eqs. (5)-(8), and the desired gimbal angles are presented 

in Fig. 9. In this example, some vectors close to [ 0 0 1]T 

were included. Because the vector of [ 0 0 1]T is a singular 

vector, the azimuth angle corresponding to the vector of [ 0 

0 1]T cannot be defined. Therefore, if the vector of [ 0 0 1]T is 

included in the desired vector, a jump in the desired azimuth 

angle history happened. If some vectors around the vector of 

[ 0 0 1]T were included in the desired vector history, a sharp 

change in the history of desired gimbal angles can be seen in 

Fig. 9. Therefore, designing a tracking profile using only one 

desired gimbal angle set between two sets is not appropriate.

4.1. First imaging phase

Using the desired vectors as shown in Fig. 8, the unit mean 

vector was computed by Eq. (15). The unit mean vector was 

computed as follows:
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and ‘*’ depict the start time and the end time of each imaging phase. If the mission orbit, the attitude 
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In Fig. 8, the desired antenna vector is presented on the unit sphere in the body frame. The desired 

antenna vectors at the 1st and 2nd imaging phases are illustrated with a distinguishing line style. The 

desired antenna vectors were computed at every second, and portions of the desired vector at the 

imaging phase are presented in Tables 2 and 3. The two-set of desired gimbal angles were calculated 

by Eqs. (5)-(8), and the desired gimbal angles are presented in Fig. 9. In this example, some vectors 

close to [ 0 0 1]T were included. Because the vector of [ 0 0 1]T is a singular vector, the azimuth angle 

corresponding to the vector of [ 0 0 1]T cannot be defined. Therefore, if the vector of [ 0 0 1]T is 

included in the desired vector, a jump in the desired azimuth angle history happened. If some vectors 

around the vector of [ 0 0 1]T were included in the desired vector history, a sharp change in the history 

of desired gimbal angles can be seen in Fig. 9. Therefore, designing a tracking profile using only one 

desired gimbal angle set between two sets is not appropriate. 

Fig. 7. �Attitude profile for the example mission
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Fig. 8. Desired antenna vectors on the unit sphere in the body frame  
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Fig. 9. Desired gimbal angles corresponding to the desired antenna vectors 

4.1. First imaging phase 

Using the desired vectors as shown in Fig. 8, the unit mean vector was computed by Eq. (15). The 

unit mean vector was computed as follows: 
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The angles between the unit mean vector and the desired antenna vector are presented in the fifth 

column of Table 2. The maximum value among the angles is 1.52 degree, which is smaller than the 5 

degree of the antenna beam width angle. Therefore, it was concluded that the desired antenna vectors 

lie within the beam-width. The desired antenna vectors, unit mean vector, and beam-width are 

(56)

The angles between the unit mean vector and the 

desired antenna vector are presented in the fifth column 

of Table 2. The maximum value among the angles is 1.52 

degree, which is smaller than the 5 degree of the antenna 

beam width angle. Therefore, it was concluded that the 

desired antenna vectors lie within the beam-width. The 

desired antenna vectors, unit mean vector, and beam-

width are presented in Fig. 10. As shown in Fig. 10, the 

desired antenna vectors are within the beam-width, 

whose center is the unit mean vector. The antenna 

tracking profile in the first imaging phase can be chosen 

as the stationary vector of [0.716097 0.097106 0.691213]T, 

which is the same as the unit mean vector. The elevation 

and azimuth angle corresponding to the stationary vector 

were computed as -43.7262 degree and 7.7226 degree 

from Eqs. (5)-(6). 

4.2 Second imaging phase

Using the desired antenna vectors in the second imaging 

phase, the unit mean vector was computed by Eq. (3), as 

follows:
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The angles between the unit mean vector and the desired antenna vector are presented in the fifth 

column of Table 2. The maximum value among the angles is 1.52 degree, which is smaller than the 5 

degree of the antenna beam width angle. Therefore, it was concluded that the desired antenna vectors 

lie within the beam-width. The desired antenna vectors, unit mean vector, and beam-width are 
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The angles between the unit mean vector and the desired antenna vector are presented in the fifth 

column of Table 2. The maximum value among the angles is 1.52 degree, which is smaller than the 5 

degree of the antenna beam width angle. Therefore, it was concluded that the desired antenna vectors 

lie within the beam-width. The desired antenna vectors, unit mean vector, and beam-width are 
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Table 2. Desired antenna vectors at the 1st imaging phase

20 

presented in Fig. 10. As shown in Fig. 10, the desired antenna vectors are within the beam-width, 

whose center is the unit mean vector. The antenna tracking profile in the first imaging phase can be 

chosen as the stationary vector of [0.716097 0.097106 0.691213]T, which is the same as the unit mean 

vector. The elevation and azimuth angle corresponding to the stationary vector were computed as -

43.7262 degree and 7.7226 degree from Eqs. (5)-(6).  

Table 2. Desired antenna vectors at the 1st imaging phase 
Time (sec) Bx By Bz Angle (deg.) 

440 0.732946 0.093763 0.673793 1.40 
442 0.729695 0.094416 0.677222 1.13 
444 0.726336 0.095085 0.680730 0.84 
446 0.722868 0.095774 0.684316 0.56 
448 0.719285 0.096480 0.687982 0.26 
450 0.715584 0.097204 0.691729 0.04 
452 0.711758 0.097942 0.695562 0.36 
454 0.707804 0.098705 0.699477 0.68 
456 0.703716 0.099483 0.703480 1.01 
458 0.699490 0.100281 0.707571 1.35 
459 0.697324 0.100689 0.709648 1.52 

 

Fig. 10. Unit mean vector for the 1st imaging phase 
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Table 3. Desired antenna vectors at the 2nd imaging phase
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4.2 Second imaging phase 

Using the desired antenna vectors in the second imaging phase, the unit mean vector was computed 

by Eq. (3), as follows: 
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The angles between the unit mean vector and the desired antenna are presented in the fifth column of 

Table 3.  

Table 3. Desired antenna vectors at the 2nd imaging phase 
Time (sec) Bx By Bz Angle (deg.) 

540 0.470411 0.008318 0.882408 18.99 
546 0.41782 0.008372 0.908491 15.63 
552 0.360102 0.008425 0.932875 12.04 
558 0.297426 0.008476 0.954707 8.24 
564 0.230219 0.00852 0.973102 4.24 
570 0.159201 0.008553 0.987209 0.09 
576 0.085382 0.008574 0.996311 4.17 
582 0.009999 0.008581 0.999913 8.49 
588 -0.06557 0.008572 0.997811 12.83 
594 -0.13993 0.008549 0.990125 17.11 
599 -0.20003 0.008523 0.979752 20.61 

The maximum value among the angles is 20.61 degree, which is larger than the antenna beam width 

angle of 5 degree. Fig. 11 shows the relation between the unit mean vector and the desired antenna 

vectors. Therefore, the antenna tracking profile at the 2nd imaging phase was approximated as a first-

order polynomial, as Eqs. (19) and (20). The coefficients of m , m , n , and n  are optimized by 

solving the parameter optimization problem formulated in section IV. The parameter optimization 

problem was solved by the ‘fmincon’ function implemented in @MATLAB. The optimization results 

are as follows: 

0.5023 (deg/ )
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                                                             (60) 
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Therefore, the designed antenna tracking profile for 540 559t  can be summarized as follows. 

 ( ) 0.5023 540 66.9321t t                                                         (61) 

 ( ) 0.0063 540 0.6713t t                                                          (62) 

At t = 540 second, the designed elevation and azimuth angles were -66.9321 and 0.6713 degrees. 

And at t = 599 second, the designed elevation and azimuth angles were -96.5667 and 0.2947 degrees. 

These values were used as the boundary conditions of the gimbal angles, in the optimization problem 

of the maneuver phases. 

Fig. 11. Unit mean vector for the 2nd imaging phase 

4.3 Maneuver phases 

There are three maneuver phases in this example. A 7th-order polynomial was used for each tracking 

profile in the maneuver phase. In each optimization problem, the boundary conditions were chosen to 

connect the antenna tracking profiles of the imaging phases, which are listed in Table 4.  

For example, in the optimization problem for the second maneuver phase, the boundary conditions 

for the initial azimuth and elevation angles were chosen as the final gimbal angles of the antenna 

tracking profile in the first imaging phase. And the boundary conditions for the final azimuth and 

Fig. 11. Unit mean vector for the 2nd imaging phase
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Table 4. Boundary conditions in the optimization problem for the maneuver phases
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elevation angles were chosen as the initial angles of the antenna tracking profile in the second 

imaging phase. 

Table 4. Boundary conditions in the optimization problem for the maneuver phases 
Maneuver

phase Duration 
Angle Angular rate Angular acceleration 

Elevation Azimuth Elevation Azimuth Elevation Azimuth 

1 440 sec 
α(t0) = Fixed 

α(tf) = Fixed 

β(t0) = Fixed

β(tf) = Fixed

vα(t0) = 0 

vα(tf) = 0 

vβ(t0) = 0 

vβ(tf) = 0 

aα(t0) = 0 

aα(tf) = 0 

aβ(t0) = 0 

aβ(tf) = 0 

2 81 sec 
α(t0) = Fixed 

α(tf) = Fixed 

β(t0) = Fixed

β(tf) = Fixed

vα(t0) = 0 

vα(tf) = Fixed

vβ(t0) = 0 

vβ(tf) = Fixed

aα(t0) = 0 

aα(tf) = 0 

aβ(t0) = 0 

aβ(tf) = 0 

3 100 sec 
α(t0) =Fixed 

α(tf) = Free 

β(t0) = Fixed

β(tf) = Free 

vα(t0) = Fixed

vα(tf) = Free

vβ(t0) = Fixed

vβ(tf) = Free 

aα(t0) = 0 

aα(tf) = Free 

aβ(t0) = 0 

aβ(tf) = Free

The parameter optimization problems were also solved by the ‘fmincon’ function implemented in 

@MATLAB. Figs. 12-16 show the optimization results. Figs. 12-13 are the results for the designed 

gimbal angles with the two-set of desired gimbal angles. Marks ‘+’ and ‘o’ stand for the two sets of 

desired gimbal angles. As shown in Figs. 12-13, the tracking profile was designed smoothly between 

the two sets of desired gimbal angles. In this paper, two possible desired gimbal angle sets were not 

used directly, but the desired vector was used. The approach used in this paper can automatically 

make a continuous tracking profile between two sets of desired gimbal angles. This result was not 

found in previous researches. Fig. 14 shows the results for the gimbal angular velocities. Also, the 

profile of the angular velocity was continuously connected. As shown in Fig. 14, it was confirmed that 

the angular velocities were zeros for all the first imaging phase. In Fig. 15, the overall desired antenna 

vectors and designed tracking profile are presented on the unit sphere in the body frame. Furthermore, 

Fig. 16 shows the result related to the beam-width constraint. The angle differences between the 

desired antenna vectors and designed antenna vectors were less than 10 degree of beam-width angle, 

which means that the beam-width constraints were satisfied. 
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Fig. 12. Designed and desired elevation angles 
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4.2 Second imaging phase 

Using the desired antenna vectors in the second imaging phase, the unit mean vector was computed 

by Eq. (3), as follows: 
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The angles between the unit mean vector and the desired antenna are presented in the fifth column of 

Table 3.  

Table 3. Desired antenna vectors at the 2nd imaging phase 
Time (sec) Bx By Bz Angle (deg.) 

540 0.470411 0.008318 0.882408 18.99 
546 0.41782 0.008372 0.908491 15.63 
552 0.360102 0.008425 0.932875 12.04 
558 0.297426 0.008476 0.954707 8.24 
564 0.230219 0.00852 0.973102 4.24 
570 0.159201 0.008553 0.987209 0.09 
576 0.085382 0.008574 0.996311 4.17 
582 0.009999 0.008581 0.999913 8.49 
588 -0.06557 0.008572 0.997811 12.83 
594 -0.13993 0.008549 0.990125 17.11 
599 -0.20003 0.008523 0.979752 20.61 

The maximum value among the angles is 20.61 degree, which is larger than the antenna beam width 

angle of 5 degree. Fig. 11 shows the relation between the unit mean vector and the desired antenna 

vectors. Therefore, the antenna tracking profile at the 2nd imaging phase was approximated as a first-

order polynomial, as Eqs. (19) and (20). The coefficients of m , m , n , and n  are optimized by 

solving the parameter optimization problem formulated in section IV. The parameter optimization 

problem was solved by the ‘fmincon’ function implemented in @MATLAB. The optimization results 

are as follows: 
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The angles between the unit mean vector and the desired 

antenna are presented in the fifth column of Table 3. 

The maximum value among the angles is 20.61 degree, 

which is larger than the antenna beam width angle of 5 

degree. Fig. 11 shows the relation between the unit mean 

vector and the desired antenna vectors. Therefore, the 

antenna tracking profile at the 2nd imaging phase was 

approximated as a first-order polynomial, as Eqs. (19) and 

(20). The coefficients of mα, mβ, nα and nβ are optimized by 

solving the parameter optimization problem formulated in 

section IV. The parameter optimization problem was solved 

by the ‘fmincon’ function implemented in @MATLAB. The 

optimization results are as follows:
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Therefore, the designed antenna tracking profile for 

540≤t≤559 can be summarized as follows.
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Therefore, the designed antenna tracking profile for 540 559t  can be summarized as follows. 

 ( ) 0.5023 540 66.9321t t                                                         (61) 

 ( ) 0.0063 540 0.6713t t                                                          (62) 

At t = 540 second, the designed elevation and azimuth angles were -66.9321 and 0.6713 degrees. 

And at t = 599 second, the designed elevation and azimuth angles were -96.5667 and 0.2947 degrees. 

These values were used as the boundary conditions of the gimbal angles, in the optimization problem 

of the maneuver phases. 

Fig. 11. Unit mean vector for the 2nd imaging phase 
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There are three maneuver phases in this example. A 7th-order polynomial was used for each tracking 

profile in the maneuver phase. In each optimization problem, the boundary conditions were chosen to 

connect the antenna tracking profiles of the imaging phases, which are listed in Table 4.  

For example, in the optimization problem for the second maneuver phase, the boundary conditions 

for the initial azimuth and elevation angles were chosen as the final gimbal angles of the antenna 

tracking profile in the first imaging phase. And the boundary conditions for the final azimuth and 
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At t=540 second, the designed elevation and azimuth 

angles were -66.9321 and 0.6713 degrees. And at t=599 

second, the designed elevation and azimuth angles were 

-96.5667 and 0.2947 degrees. These values were used 

as the boundary conditions of the gimbal angles, in the 

optimization problem of the maneuver phases.

4.3 Maneuver phases

There are three maneuver phases in this example. A 7th-

order polynomial was used for each tracking profile in 

the maneuver phase. In each optimization problem, the 

boundary conditions were chosen to connect the antenna 

tracking profiles of the imaging phases, which are listed in 

Table 4. 

For example, in the optimization problem for the second 

maneuver phase, the boundary conditions for the initial 

azimuth and elevation angles were chosen as the final gimbal 

angles of the antenna tracking profile in the first imaging 

phase. And the boundary conditions for the final azimuth 

and elevation angles were chosen as the initial angles of the 

antenna tracking profile in the second imaging phase.

The parameter optimization problems were also solved 

by the ‘fmincon’ function implemented in @MATLAB. 

Figs. 12-16 show the optimization results. Figs. 12-13 are 

the results for the designed gimbal angles with the two-set 

of desired gimbal angles. Marks ‘+’ and ‘o’ stand for the two 

sets of desired gimbal angles. As shown in Figs. 12-13, the 

tracking profile was designed smoothly between the two sets 

of desired gimbal angles. In this paper, two possible desired 

gimbal angle sets were not used directly, but the desired 

vector was used. The approach used in this paper can 

automatically make a continuous tracking profile between 

two sets of desired gimbal angles. This result was not found 

in previous researches. Fig. 14 shows the results for the 

gimbal angular velocities. Also, the profile of the angular 
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Fig. 15. Overall designed tracking profile and desired antenna vector 
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velocity was continuously connected. As shown in Fig. 14, 

it was confirmed that the angular velocities were zeros for 

all the first imaging phase. In Fig. 15, the overall desired 

antenna vectors and designed tracking profile are presented 

on the unit sphere in the body frame. Furthermore, Fig. 16 

shows the result related to the beam-width constraint. The 

angle differences between the desired antenna vectors and 

designed antenna vectors were less than 10 degree of beam-

width angle, which means that the beam-width constraints 

were satisfied.

5. Conclusion and Discussion

In this paper, parameter optimization problems were 

formulated to design antenna tracking profiles. In the 

optimization problems, mechanical constraints, such as 

the bounds for gimbal angles, angular rates, and angular 

accelerations, were taken into account. The main objective 

was to minimize the motion of the antenna’s gimbal system 

during the imaging phase. Our study confirmed that if a trace 

of the desired vector was within the given beam-width angle, 

the motion of the gimbal angles was not required. If motion 

of the gimbal angles was required, the profile of the azimuth 

and elevations angles could be successfully designed with a 

first-order polynomial. Even though a first-order polynomial 

was used in this paper for the tracking profile in the imaging 

phases, high-order polynomials can also be used. To 

connect the antenna tracking profiles between the imaging 

phases, another optimization problem under boundary 

conditions was solved in the maneuver phase. Through 

numerical examples, it was verified that the overall tracking 

profile could be continuously designed, and the motions of 

the gimbal system in the imaging phase could be drastically 

minimized.
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