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Abstract

Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim 

of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite 

selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes 

a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using 

the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for 

the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, 

which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity 

of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index 

and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results 

demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces 

the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation 

solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of 

multiple GNSS applications.
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1. Introduction

The global navigation satellite system (GNSS) has made 

significant progress in navigation applications, such as 

in military, transportation, communication, and aviation 

navigation. Currently, several countries operate the GNSS 

or have developed their own GNSS because of its extensive 

effect on the industry as well as society, making the GNSS a 
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key world infrastructure. Several GNSSs exist, such as the 

global positioning system (GPS) used in the United States, 

the global navigation satellite system (GLONASS) in Russia, 

Beidou in China, Galileo in the European Union, and the 

quasi-zenith satellite system (QZSS) in Japan [1, 2]. General 

users can utilize multiple systems due to their open access 

policy.

GNSSs consist of medium earth orbit (MEO) 

constellations, and some follow geostationary orbits (GEOs). 

These GNSS satellites continuously follow their own orbit 

and are not fixed at a certain point [1, 3, 4]. As a result, 

the satellite distribution in the sky is constantly changing 

simultaneously and periodically. Because the number of 

GNSS satellites is increasing, a substantial number of GNSS 

signals are available [2]. If the number of satellites increases, 

their distribution is more likely to be evenly dispersed and 

dense. 

Satellite distribution, as well as the number of satellites, 

determines the navigational performance of the system. 

Although a user’s navigational performance improves as the 

number of satellites increases, this relationship is not exactly 

proportional. Performance improvement increases at a 

slower rate after the number of satellites reaches in certain 

level because a large number of satellites will increase the 

computational complexity rather than the performance 

[2, 5]. Therefore, determining the number of satellites that 

would optimize the user’s overall navigational performance 

would be preferable to simply adding more satellites. For 

example, the exclusion of some of the visual satellites would 

be expected to effectively address navigational computing 

issues (position, velocity, or time) that arise with the use of 

a large number of satellites. In addition, the given satellite 

distributions may not be even and may include relatively 

dense or sparse areas; thus, excluding a few satellites from 

the dense areas will not diminish performance but could 

decrease the computational burden. However, the exclusion 

of satellites requires that two decisions be made: determining 

which satellites to exclude (or select) and the criteria used 

in this determination. A rule must be established in order to 

maintain a balance between the overall performance and 

computational efficiency. In this paper, we propose a simple 

sensitivity index.

During the initial stage of GPS receiver development, 

the available computational capacity could not process 

all the signals from every visual satellite [6]. Therefore, the 

need to reduce the computational burden gave rise to a 

demand to select a subset of visual satellites. Given the low-

cost receivers, which had insufficient real-time processing 

capacities and a limited number of hardware channels, an 

appropriate satellite subset that would simultaneously reduce 

the computational burden and minimize performance 

degradation was needed. As time passed, electrical 

technology significantly developed, and the computational 

requirement was no longer problematic. The simultaneous 

processing of all visual satellite information became 

possible. However, other issues appeared, such as the cost 

of high-performance processors, power consumption, and 

computational efficiency. Furthermore, when the number 

of satellites reaches a certain level, the improvement of the 

navigational performance degrades or becomes saturated 

[2]. In this case, computational efficiency decreases as the 

number of satellites increases. In terms of overall efficiency, 

determining the optimal number of satellites, as well as the 

best subset of visual satellites, is preferable [2, 6-8].

In the early stages of GPS satellite selection, dilution of 

precision (DOP) was used as the selection policy. In [6, 

9], vertical DOP (VDOP), horizontal DOP (HDOP), and 

geometric DOP (GDOP) were the criteria used to select 

satellites in order to obtain accurate navigational solutions. 

Although this approach presents the optimal criteria 

because it determines the subset that best minimizes the 

DOP, when considering all visible GNSS satellites, it needs 

to examine a substantial number of subsets. For example, in 

order to select 10 satellites from 20 satellites, 184,756 subsets 

(20C10=184,756) must be examined. As a result, this method 

is restricted or impossible to apply to real-time processing. 

In order to overcome this computational burden, several 

methods have been proposed. Zheng [10] presented a 

tetrahedron method, which maximizes the geometric 

volume using four satellites. It selects the three satellites 

that have the greatest separation angles in the north, east, 

and zenith directions and then selects one more from the 

remaining satellites. This method is effective and requires 

only four satellites. However, the computational problem 

still exists because all visible satellites must be examined. 

Zhang [8, 11] selected the satellite that had the greatest 

elevation angle. Subsequently, satellite selection was based 

on a criterion, wherein the satellites possessing the most 

perpendicular line of sight vector were selected first among 

the remainder satellites. Yan [12] proposed the selection of 

a subset of satellites based on a predefined database, which 

included sensitivity information about potential satellites. 

In GNSS real-time kinematic (RTK) applications, satellite 

selection has also been researched. These studies focus 

on finding one primary satellite by considering the DOP, 

observation time, and elevation angle [13, 14]. However, this 

approach is only effective in RTK applications because the 

subsets of satellites align with the primary satellite.

Previous approaches are too computationally demanding 

and time consuming. They require substantial computational 
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resources as well as costly computing processors, and they 

are inefficient in real-time processing when determining 

the appropriate subsets of visible satellites. In this paper, 

we propose a geometric sensitivity index that is less 

computationally demanding yet applicable to satellite 

selection and exclusion. The index is derived using the inner 

product of the line of sight (LOS) vector of each satellite to 

determine the proximities between satellites. The LOS vector 

is computed by taking into account the geometry between 

the satellite and the position of the user. Individual LOS 

vectors are used to calculate the inner product of the vector 

of the other satellites, and then each satellite is assigned a 

score (index) by averaging these results. This score signifies 

the average proximity of a satellite to other satellites. The 

score is a distinct index and denotes the effectiveness of the 

satellite as a navigation solution. An experimental test was 

conducted in order to verify the reliability of this index. The 

proposed index was compared with the results obtained 

using the conventional approach, which determined subsets 

using the best DOP. Furthermore, a statistical analysis was 

conducted to find the most sensitive satellite, which could 

be used as the navigational solution. The test results indicate 

that the proposed index was within 96% of the results of the 

conventional approach and that it had a significantly lower 

computational burden. This index indicates the sensitivity 

of each satellite as a navigation solution. Consequently, the 

index can be applied to satellite selection and exclusion 

methods.

2. GNSS Observation

Before deriving the sensitivity index, GNSS observation 

should first be defined. A GNSS range measurement can be 

calculated using the propagation time between the satellite 

and the receiver. This measurement includes the geometric 

relationship between the satellite and user positions and the 

clock bias. In general, satellite clock bias can be corrected 

by broadcasting navigation messages, which allows us to 

assume that only the receiver clock bias term exists. Thus, 

the GNSS observation equation is given by [1, 3]
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Equation (2) and (3) are obtained by linearizing equation 

(1) with respect to nominal user position xu0, expanding this 

for all visible satellites.
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in equation (4).
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3. Optimal Performance Index

The DOP is a multiplicative parameter that converts the 

pseudo-range measurement error into the coordinates of 

the user position for a given satellite distribution. In general, 

the DOP has been used in satellite constellation design, 

performance evaluation, and the prediction of expected 

navigational error levels. The DOP used in this method is 

derived from the error covariance, which is calculated from 

the least-squares estimation equation [4, 15]. Applying the 

general definition of the DOP gives us equations (5) and (6). 

Details of the DOP follow.
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in the ith row and ith column) of matrix D. 

The DOP has also been historically used as a performance 

index in GNSS applications. It is an optimal criterion for both 

satellite selection and performance evaluation. In order to 

achieve an optimal satellite subset selection, it selects the 

satellite subset having the minimal DOP after computing all 

the DOPs of possible satellite subsets. 
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In this equation, n is the total number of visible satellites, m 

is the number of selected satellites, and C is the combination 

process. This method guarantees the best satellite selection, 

but it requires a substantial amount of computation. 

When considering all visible GNSS satellites, a significant 

number of subsets must be examined. For example, if 

ten satellites are selected from twenty satellites, 184,756 

subsets (20C10=184,756) must be examined. Moreover, the 

matrix inversion in equation (5), which is computationally 

expensive, should be repeated for every subset in the process. 

As a result, this method is limited and may not apply to real-

time processing.

Other conventional approaches [5-13] are only valid for 

satellite selection and exclusion and do not provide a sensitivity 

index for individual satellites. Therefore, approaches other 

than the optimal index (DOP-based) method should not be 

compared with the index proposed in this paper.

4. Proposed Sensitivity Index

Each satellite has its own elevation and azimuth angle as 

well as its position within the geometry, and these aspects 

affect the navigational solution. In other words, each 

satellite has a different sensitivity to computing the position 

solution. Therefore, the sensitivity of each satellite should be 

calculated.

The proposed approach applies the inner product of the 

LOS in order to determine the proximity of the LOSs to one 

another. The inner product of two vectors calculates the 

angle between the vectors, determining their independence. 

The inner product of two unit vectors (
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enables us to check the effect of geometrical sensitivity only, 

i.e., without using the clock term, as the optimal approach 

only uses PDOP rather than GDOP with the clock term.
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. The result should be a square matrix, and its dimension 

equals the number of visible satellites. The element in the ith 

row and jth column denotes the inner product of the ith and jth 

satellites, and it is easily transformed into the cosine of the 

angle (θij) induced between the two LOS vectors. Therefore, P 

includes information that is useful in analyzing the closeness 

of all visible satellites.

Matrix P has two distinct characteristics. First, it is 

symmetric, which implies that all of its components do not 

need to be analyzed. In other words, only the upper (or 

lower) triangle matrix is required to determine the closeness 

of all visible satellites. Second, all diagonal terms are 1 

because they are inner products of themselves (if i=j, then 

cosθij=1) and can be excluded from the closeness analysis.

Analyzing matrix P enables us to find the closest satellite 

by searching the maximum component, which is determined 

by two satellites. The inner product returns a scalar value 

from two vectors. Thus, the maximum inner product is the 

product of two satellites. Checking only the maximum inner 
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product is insufficient, and the search must be extended to 

the second greatest inner product or possibly further. Then 

the index can include the proximity with several neighbor 

satellites. Subsequently, these inner products are averaged, 

and this average signifies the score value (index) for each 

satellite. The proposed sensitivity index (S) can be expressed 

as

  10
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each satellite. The proposed sensitivity index (S) can be expressed as 
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where max n  is the nth maximum value, ,i allP  represents the vector in the ith row and every column, and

 denotes the satellite index. In equation (11), the first maximum is not used because it is computed 

alone and always produces a value of 1. 

5. Tests and Analysis 

The proposed sensitivity index was verified through an analysis of experimental data. The results 

were compared with the conventional optimal index approach (in section 3) in terms of computational 

time and the optimality of satellite selection. 

5.1 Test Settings 

The test data were generated using the version 3.0 receiver independent exchange (RINEX3) 

navigation data from the National Aeronautics and Space Administration (NASA) Crustal Dynamics 

Data Information System, (CDDIS) website (http://cddis.nasa.gov/). The data were referenced on 

December 24, 2014, and included multiple GNSS constellations (GPS, GLONASS, Gaileo, Beidou, 

and QZSS) over a 24-hour period. The receiver antenna was assumed to be located in Konkuk 

University, Seoul, Korea, because Korea has a geographical advantage when receiving various GNSS 

signals.

The data was post-processed using ®Matlab 2014b on Windows 7 (i7 processor, 8 GB RAM). The 

number of satellites ranged from 25 to 39, and the average was 33 for the 24-hour period. Fig. 1 

displays the number of satellites and the PDOP over time, and the satellite distribution can be seen in 
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where maxn is the nth maximum value, Pi, all represents the 

vector in the ith row and every column, and i denotes the 

satellite index. In equation (11), the first maximum is not 

used because it is computed alone and always produces a 

value of 1.

5. Tests and Analysis

The proposed sensitivity index was verified through an 

analysis of experimental data. The results were compared 

with the conventional optimal index approach (in section 3) 

in terms of computational time and the optimality of satellite 

selection.

5.1 Test Settings

The test data were generated using the version 3.0 receiver 

independent exchange (RINEX3) navigation data from the 

National Aeronautics and Space Administration (NASA) 

Crustal Dynamics Data Information System, (CDDIS) 

website (http://cddis.nasa.gov/). The data were referenced 

on December 24, 2014, and included multiple GNSS 

constellations (GPS, GLONASS, Gaileo, Beidou, and QZSS) 

over a 24-hour period. The receiver antenna was assumed 

to be located in Konkuk University, Seoul, Korea, because 

Korea has a geographical advantage when receiving various 

GNSS signals.

The data was post-processed using ®Matlab 2014b on 

Windows 7 (i7 processor, 8 GB RAM). The number of satellites 

ranged from 25 to 39, and the average was 33 for the 24-hour 

period. Fig. 1 displays the number of satellites and the PDOP 

over time, and the satellite distribution can be seen in Fig. 2. 

The satellite cut off angle was 0 deg during the test.

The performance of the proposed index was verified by 

analyzing its performance in comparison to the optimal 

satellite selection achieved by using the DOP. The satellite 

selection achieved using the DOP is always optimal and 

is henceforth referred to as the optimal index. Therefore, 

comparing the optimal index with the proposed sensitivity 

index (S) is a reasonable method to use in the performance 

evaluation. The proposed sensitivity index was computed 

using equation (11), whereas the optimal index was 

obtained by computing the DOP of every possible subset of 

visible satellites. As the range of the two indexes differed, a 

normalization process was applied to adjust the scale. The 

normalization was achieved by dividing a distance from the 

mean (value minus mean) by the standard deviation.

5.2 Test Results

The proposed sensitivity index was verified by analyzing 

the result that was obtained by determining the optimal 

index. The computation time and sensitivity accuracy were 

examined.

First, the computation time was analyzed. The number of 

satellites to be selected varied, and the resulting computation 

time was measured. Table 1 exhibits the computation times 

over 24 hours using 300-second intervals, and the number of 

satellites (# Satellites) is incremented from one to five. Here, 

the number of satellites indicates the number of satellites to 

be selected or excluded. For example, the satellite selection 
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Fig. 2. The satellite cut off angle was 0 deg during the test. 

Fig. 1. Number of visual satellites (top) and DOP (bottom) over 24 hours 

Fig. 2. Skyplot at 2:00 on December 24, 2014: G, J, R, C, and E represent GPS, QZSS, GLONASS, 

Beidou, and Galileo, respectively 

The performance of the proposed index was verified by analyzing its performance in comparison to 

the optimal satellite selection achieved by using the DOP. The satellite selection achieved using the 

Fig. 1.  Number of visual satellites (top) and DOP (bottom) over 24 
hours
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Fig. 2.  Skyplot at 2:00 on December 24, 2014: G, J, R, C, and E repre-
sent GPS, QZSS, GLONASS, Beidou, and Galileo, respectively
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process required two steps in order to select two satellites 

because the index produced in the first step was valid only 

for a given visible satellite set. Therefore, the indexes were 

computed again after the visible satellite set changed 

according to the satellite selections or exclusions. As the 

number of satellites increased, the computation time for 

the proposed index also increased linearly. However, the 

optimal index increased exponentially. Given one satellite 

selection, the optimal index was approximately 20 times as 

computationally expensive as the proposed one.

The optimal index should check all possible subsets of 

given visible satellites, as in equation (5).

Figure 3 shows the number of subsets that test the DOP in 

order to form the optimal index. Each line denotes the total 

number of visible satellites, which ranged between 20 and 

70 (assuming full GNSS constellation and 50% visibility). The 

x-axis represents the number of satellites to be selected, and 

the y-axis measures the number of subsets to be tested. The 

number of subsets increased until it reached half of the entire 

number of given satellites because the process for selecting 

satellites is equivalent to the process for excluding them. 

This increasing number of subsets results in a substantial 

computational burden. Moreover, the DOP computations 

should be performed in every subset, and the computation 

points equal the number of satellites within a given subset. 

Therefore, the proposed sensitivity index is more efficient 

in terms of processing time, whereas the optimal index is 

computationally expensive.

Second, the accuracy of the proposed sensitivity index 

was verified by checking its correspondence with the 

optimal index. Fig. 4 illustrates the distribution of visible 

satellites after seven hours. In this case, 26 satellites were 

visible. Fig. 5 displays the normalized optimal and proposed 

sensitivity index for each individual satellite represented in 

Fig. 4. The optimal index was obtained by computing the 

DOP of the satellite subsets, which successively subtracted 

each satellite, and determining an inverse because the 

DOP demonstrated an inverse relationship with the 

proposed sensitivity index. The proposed sensitivity index 

was computed using equation (11). Both indexes were 

normalized in order to create a more accurate analysis that 

accounted for scale. The x-axis denotes the pseudo-random 

number (PRN), and the y-axis represents the normalized 

index. The proposed index in the top graph used equation 

(11) to average all the satellites, and the proposed index 

in the bottom graph averaged only the first two maximum 

values. Lesser values signify greater sensitivity, and greater 

values imply less sensitivity. The optimal and proposed 

sensitivity index trends were approximately similar, and the 

correlation coefficients between the two indexes were 0.781 

(top) and 0.852 (bottom). The proposed index adequately 

followed the optimal index in the high-sensitivity region 

(below -1), although it demonstrated some inconsistencies 

in the low-sensitivity region (around 0).
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The optimal index should check all possible subsets of given visible satellites, as in equation (5). 

Figure 3 shows the number of subsets that test the DOP in order to form the optimal index. Each 

line denotes the total number of visible satellites, which ranged between 20 and 70 (assuming full 

GNSS constellation and 50% visibility). The x-axis represents the number of satellites to be selected, 

and the y-axis measures the number of subsets to be tested. The number of subsets increased until it 

reached half of the entire number of given satellites because the process for selecting satellites is 

equivalent to the process for excluding them. This increasing number of subsets results in a 

substantial computational burden. Moreover, the DOP computations should be performed in every 

subset, and the computation points equal the number of satellites within a given subset. Therefore, the 

proposed sensitivity index is more efficient in terms of processing time, whereas the optimal index is 

computationally expensive. 

Fig. 3. Number of subsets on which the DOP was tested in the optimal index case with respect to the 

total number of visible satellites 

Second, the accuracy of the proposed sensitivity index was verified by checking its correspondence 

with the optimal index. Fig. 4 illustrates the distribution of visible satellites after seven hours. In this 

case, 26 satellites were visible. Fig. 5 displays the normalized optimal and proposed sensitivity index 

for each individual satellite represented in Fig. 4. The optimal index was obtained by computing the 

Fig. 3.  Number of subsets on which the DOP was tested in the opti-
mal index case with respect to the total number of visible sat-
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DOP of the satellite subsets, which successively subtracted each satellite, and determining an inverse 

because the DOP demonstrated an inverse relationship with the proposed sensitivity index. The 

proposed sensitivity index was computed using equation (11). Both indexes were normalized in order 

to create a more accurate analysis that accounted for scale. The x-axis denotes the pseudo-random 

number (PRN), and the y-axis represents the normalized index. The proposed index in the top graph 

used equation (11) to average all the satellites, and the proposed index in the bottom graph averaged 

only the first two maximum values. Lesser values signify greater sensitivity, and greater values imply 

less sensitivity. The optimal and proposed sensitivity index trends were approximately similar, and the 

correlation coefficients between the two indexes were 0.781 (top) and 0.852 (bottom). The proposed 

index adequately followed the optimal index in the high-sensitivity region (below -1), although it 

demonstrated some inconsistencies in the low-sensitivity region (around 0). 

Fig. 4. Skyplot after seven hours Fig. 4.  Skyplot after seven hours

Table 1. Computation time (seconds) with respect to the iterations necessary to check the indexes
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DOP is always optimal and is henceforth referred to as the optimal index. Therefore, comparing the 

optimal index with the proposed sensitivity index (S) is a reasonable method to use in the 

performance evaluation. The proposed sensitivity index was computed using equation (11), whereas 

the optimal index was obtained by computing the DOP of every possible subset of visible satellites. 

As the range of the two indexes differed, a normalization process was applied to adjust the scale. The 

normalization was achieved by dividing a distance from the mean (value minus mean) by the standard 

deviation. 

5.2 Test Results 

The proposed sensitivity index was verified by analyzing the result that was obtained by 

determining the optimal index. The computation time and sensitivity accuracy were examined. 

First, the computation time was analyzed. The number of satellites to be selected varied, and the 

resulting computation time was measured. Table 1 exhibits the computation times over 24 hours using 

300-second intervals, and the number of satellites (# Satellites) is incremented from one to five. Here, 

the number of satellites indicates the number of satellites to be selected or excluded. For example, the 

satellite selection process required two steps in order to select two satellites because the index 

produced in the first step was valid only for a given visible satellite set. Therefore, the indexes were 

computed again after the visible satellite set changed according to the satellite selections or exclusions. 

As the number of satellites increased, the computation time for the proposed index also increased 

linearly. However, the optimal index increased exponentially. Given one satellite selection, the 

optimal index was approximately 20 times as computationally expensive as the proposed one. 

Table 1. Computation time (seconds) with respect to the iterations necessary to check the indexes 

# Satellites Optimal index
(sec) 

Proposed index
(sec)

Ratio
(%, optimal/proposed) 

1 0.461 0.022 20.955 
2 3.169 0.047 67.426 
3 46.332 0.065 712.800 
4 391.727 0.078 5022.141 
5 2158.032 0.093 23204.645 
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Figure 6 shows the test results to determine the extent to 

which the sensitivity of the proposed and optimal methods 

corresponds. This index is produced by comparing the order 

of sensitivity. Once the sensitivity indexes are computed 

using both the optimal and proposed methods, each index 

is sorted by its order of sensitivity. After the index is sorted, 

the most sensitive satellite is determined using the proposed 

sensitivity index, and its position is determined using the 

optimal index. If the most sensitive satellite derived from the 

proposed method also ranks highest in the optimal index 

list, then the test result receives a 1. If it ranks third in the 

optimal index list, then the correspondence index is (n–3)/n, 

in which n is the total number of visible satellites. The test 

results demonstrate that the two indexes coincided 95.9% of 

the time when selecting the most sensitive satellite.

The proposed sensitivity index and the optimal index 

exhibit similar trends. Increasing the accuracy of the 

proposed index requires the elevation angle of the satellites 

to be considered. Most GNSS applications use the satellites 

that are above the horizon (have a positive elevation angle) 

because of their visibility. The greatest possible elevation 

angle is 90 degrees; thus, the maximum angle induced with 

the highest satellite is less than 90 degrees. This implies that 

the highest satellite will more likely demonstrate positive 

inner products when compared with other satellites. If the 

average is taken over all the inner product components of 

a given satellite, the highest satellite is at a disadvantage. 

However, because higher satellites produce more effective 

navigation solutions [15] a compensation (or weighting) 

process must be applied in addition to the proposed 

approach to improve the accuracy.

6. Conclusion

Satellite distribution determines the navigational 

performance, and the number of satellites is proportional 

to the navigational performance. However, a significant 

number of satellites increase the computational burden 

rather than increasing the performance. Therefore, the 

selection of an appropriate number of satellites improves the 

overall performance of the user’s navigational system, and 

a rule that balances the overall performance improvement 

and computational efficiency must be established. In this 

paper, we propose a geometric sensitivity index, which is 

simple and fast as well as less computationally intensive, for 

satellite selection and exclusion.

The index is derived using the inner product of the LOS 

vector of each satellite to determine the proximity of a 

satellite to its neighbors. Individual LOS vectors are used 

to determine these inner products, and then each satellite 

is assigned its index by averaging the results. This indicates 

the average proximity of a satellite to other satellites. An 

experimental test was conducted to verify the reliability 

of this index, which was analyzed by comparing it with 

the index produced by a conventional approach that tests 

subsets according to the best DOP. Furthermore, a statistical 

analysis was conducted to determine the most sensitive 

satellite for the navigation solution. The test results reveal 

that the proposed sensitivity index is close to the index 

determined by the conventional approach 96% of the time 

and exhibits a reduced computational burden. This index 
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Fig. 5. Normalized performance index for the optimal index and proposed index, computed by 

averaging all (top) and the first two (bottom) maximum values 

Figure 6 shows the test results to determine the extent to which the sensitivity of the proposed and 

optimal methods corresponds. This index is produced by comparing the order of sensitivity. Once the 

sensitivity indexes are computed using both the optimal and proposed methods, each index is sorted 

by its order of sensitivity. After the index is sorted, the most sensitive satellite is determined using the 

proposed sensitivity index, and its position is determined using the optimal index. If the most sensitive 

satellite derived from the proposed method also ranks highest in the optimal index list, then the test 

result receives a 1. If it ranks third in the optimal index list, then the correspondence index is (n–3)/n,

in which n is the total number of visible satellites. The test results demonstrate that the two indexes 

coincided 95.9% of the time when selecting the most sensitive satellite. 

Fig. 5.  Normalized performance index for the optimal index and proposed index, computed by averaging all (top) and the first two (bottom) maxi-
mum values
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Fig. 5. Normalized performance index for the optimal index and proposed index, computed by 

averaging all (top) and the first two (bottom) maximum values 

Figure 6 shows the test results to determine the extent to which the sensitivity of the proposed and 

optimal methods corresponds. This index is produced by comparing the order of sensitivity. Once the 

sensitivity indexes are computed using both the optimal and proposed methods, each index is sorted 

by its order of sensitivity. After the index is sorted, the most sensitive satellite is determined using the 

proposed sensitivity index, and its position is determined using the optimal index. If the most sensitive 

satellite derived from the proposed method also ranks highest in the optimal index list, then the test 

result receives a 1. If it ranks third in the optimal index list, then the correspondence index is (n–3)/n,

in which n is the total number of visible satellites. The test results demonstrate that the two indexes 

coincided 95.9% of the time when selecting the most sensitive satellite. 

Fig. 6.  Correspondence between the two indexes over time.
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indicates the effectiveness of each satellite as a navigational 

solution. This implies that the proposed index can be used 

for satellite selection or exclusion and sensitivity checks.
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