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Abstract

A simple and robust methodology is presented to determine the location and amount of crack in beam like structures based 

on the incremental particle swarm optimization technique. A comparison is made for assessing the performance of standard 

particle swarm optimization and the incremental particle swarm optimization technique for detecting crack in structural 

members. The objective function is formulated using the measured natural frequency of the intact structure and the frequency 

obtained from the finite element simulation. The outcomes of the simulated results demonstrate that the developed method is 

capable of detecting and estimating the extent of damages with satisfactory precision.
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1. Introduction

Damage may be defined as the changes occurred to a 

structural system including changes to material and geometric 

properties, boundary conditions and system connectivity 

either intentionally or unintentionally that negatively impact 

the current as well as the future performance of that system. 

It can be introduced to a structure by a number of means 

including long term degradation of the structures as well 

as extreme events like natural disasters, fire, accidental or 

intentional overloading, collision or terrorism activities. The 

introduction of damage induces instability in the system 

thereby increasing the risk of unpredicted structural failure 

causing catastrophic, economic, and human life loss. Hence, 

in order to maintain the safety and reliability of the structure it 

is necessary to inspect the condition of the structure regularly.

Several non-destructive techniques are available for the 

identification of damage in a structure [1] which can be 

categorized into two groups, viz.; the local damage detection 

method and the global damage detection method. Local 

damage-detection methods are either visual or localized 

experimental methods such as the acoustic or ultrasonic 

method, magnetic field method, radiography method, eddy 

current method and thermal field method. All of these 

experimental techniques require that the vicinity of damage 

is known a priori and that a portion of the structure being 

inspected is readily accessible. Subjected to these limitations, 

these experimental methods can detect damage on or near the 

surface of the structure. However, in case of health monitoring 

of civil or aerospace structures, information regarding damage 

is usually not available before damage identification, and the 

location of damage may be inaccessible. Hence, the need for 

quantitative global damage-detection methods that can be 

applied to complex structures has led to the development of 
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and continued research into, methods that examine changes 

in the vibration characteristics of the structure. The main idea 

behind damage detection techniques based on structural 

dynamic changes is the fact that the modal parameters of 

a structure are functions of the physical parameters (mass, 

stiffness and damping) and thus the existence of damage 

leads to changes in the modal properties of the structure.

Recently a lot of work has been carried out to detect and 

quantify damage from changes in their modal properties such 

as, natural frequency, mode shapes and their derivatives. 

Doebling et al. [2] provided a comprehensive review on work 

regarding vibration-based damage identification research 

carried out till 1996. Carden and Fanning [3] presented a 

follow-up work to the broad and extensive review done 

by Doebling et al. [2]. Further Fan & Qiao [4] provided a 

review of the research works carried out till 2010. In most 

of the studies [5] researchers have used natural frequency 

as the diagnostic tool as they are easy to measure, and least 

affected by measurement errors. Messina et al. [6] suggested 

a standard error of ± 0.15% as a benchmark figure for natural 

frequencies measured in the laboratory with the impulse 

hammer technique. In contrast, modal damping and mode 

shape estimates have error levels as much as 20 times worse 

in comparison to natural frequency estimates.

The approach for damage detection using vibration data 

can be categorized into two categories namely, the forward 

approach and the inverse approach. The forward approach 

consists in determining the effect of damages on the 

structural dynamic properties whereas the inverse approach 

consists of determining damage parameters, such as crack 

length or location, from changes in the structural dynamic 

properties. The usual approach in the inverse procedure 

is to minimize an objective function, which is defined in 

terms of discrepancies between the vibration data identified 

by modal testing and those computed from the analytical 

model [7]. However the mathematical relationship between 

the structural vibration response and the location and extent 

of damage is very complex involving a large number of local 

optima. This makes the problem too difficult to be solved by 

conventional optimization algorithms such as the conjugate 

gradient. However, this black box mapping between cause 

and effect can be solved by recent computational intelligence 

methods such as the genetic algorithm [7-9], evolutionary 

algorithm [10], artificial neural network [10-13] and swarm 

intelligence techniques [14-18] etc.

Particle swarm optimization (PSO) [19] is a relatively 

new verity of the computational intelligence method, 

which mimics the collective motion of insects and birds, 

known as “swarm behavior”, trying to reach an unknown 

destination. The main advantage of this method lies with its 

simplicity in terms of the algorithm and requires updating 

two simple equations whose purpose is to emulate the best 

global individual found, as well as the best solutions found 

by each individual particle [18]. Due to its simplicity and 

convergence speed, PSO has found its application in many 

complex engineering optimization problems including 

structural design optimization [20] and structural damage 

detection [16, 18]. However, the main drawback associated 

with Standard PSO is that the algorithm may converge into 

some local optima. This may lead to prediction of wrong 

result. Therefore, in order to improve convergence into 

global optima and to improve diversity there has been many 

works on algorithm refinement and parameter modification.

In this study, an improved version of the PSO Technique 

called incremental particle swarm optimization (I-PSO) [21] 

is proposed for structural damage detection and assessment 

problems. In I-PSO one or more particles are added to the 

swarm hood after a few iterations until the optimization 

process returns an acceptable solution quality or until a 

maximum population size is reached. The newly added 

particles acquire knowledge about their environment from 

more experienced particles which are already a part of the 

swarm. Beginning with a small number of particles provides 

two advantages: (i) it enables fast learning for the initial 

population of particles due to the reduced interference effect 

that a large population provokes [22], and (ii) it may allow 

the optimal allocation of particles to solve a particular task. A 

suitable objective function is assumed to reduce the damage 

assessment problem to an optimization problem, which is 

then solved by the I-PSO technique to access the condition 

of damage. Finally, some comparative studies are made 

for the assessment and demonstration of the algorithms 

in detecting single and multiple damages in a numerically 

simulated cantilever beam.

2. Theoretical Formulation

2.1. Finite element formulation of structure

The governing equation for an Euler-Bernoulli beam with 

negligible damping is given by,

(1)

Where EI(x) denotes the flexural stiffness, m(x) denotes 

the mass per unit length of the beam. w(x, t) represents 

the transverse displacement of the beam reference axis. 

The beam is discretized into a number of elements, with 
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displacement and slope as nodal degrees of freedom and 

cubic interpolation functions.

For an n-degree of the freedom system, the equation 

of motion in discrete form for the homogeneous case 

is obtained after assembly of the element matrices and 

application of boundary conditions.

(2)

Where, [M] and [K] are (n x n) mass and stiffness matrices 

of the system, {X(t)} is the physical displacement vector, and 

{F(t)} is the applied load vector.

The eigen value equation associated with eq.2 is given by,

(3)

The solution of this eigen value equation provides n 

number of eigen values, which represents the first n number 

of natural frequencies of the system.

2.2.	Crack Modeling

The efficiency of the model-based crack assessment 

problem greatly depends on the parameterization of crack. 

It may be assumed that the introduction of crack does 

not change the mass of the system. The crack is assumed 

to be uniform across the width of the beam and is fully 

open. Also, the introduction of crack is assumed to vary 

local stiffness only. Further change in neutral axis near its 

vicinity is neglected. For a rectangular beam with a uniform 

cross section with crack of depth dc at xc distance from the 

support, the cracked stiffness EIc,x, at any distance x can be 

represented as [23], 

(4)

Ii the uncracked moment of inertia of the beam and C=(Ii-

Ic)/Ic, where Ic=w(d-dc)3/12, w and d are the width and depth 

of the uncracked beam, respectively. The constant α has 

been estimated experimentally by Christides and Barr [23] 

as 0.667. 

2.3. Objective Function

The damage assessment problem is reduced to a 

minimizing optimization problem by suitably assuming 

an objective function. Natural frequencies are easier to 

measure than mode shapes and the error associated with 

its measurement is comparatively less. Hence, they are used 

as damage indicators in this study. The objective function 

used for this study is the root mean square (RMS) of the ratio 

of the frequency measured from the intact structure by the 

frequency obtained from finite element simulation minus 

one. i.e.

(5)

Where, fi
m and fi

c are the frequencies measured from the 

intact structure and the frequency obtained from the finite 

element simulation, respectively. n is the number of input 

response parameters (natural frequencies) and for this study 

is taken as six for noise free parameters and nine for noisy 

parameters.

2.4. Overview of Particle Swarm Optimization

The particle swarm optimization technique is a population 

based stochastic technique in nature, and primarily used to 

tackle continuous optimization problems. Numerically, the 

positions of ith particle (xi) in a swarm of P- particles in an S- 

dimensional search space, provides a candidate solution for 

the problem. The position and the velocity of the particles at 

tth iteration can be represented by, 

(6)

And, 	

(7)

During the search process the particle moves to new 

positions by considering two factors: the best previous 

position visited by itself denoted by pbest, and the best 

position found thus far by its neighbors denoted by lbest, 

Mathematically, 

(8)

(9)

The velocity and the position of the particle for (t+1)th iteration 

are updated according to the following two equations, 

(10)

(11)

The parameters r1 ＆ r2 in eq.10 are random numbers 

uniformly distributed between [0, 1]. The second term of 
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eq.10 represents the cognition part responsible for exploiting 

its own experience, where the acceleration coefficient c1 is 

an individual coefficient termed as the cognitive coefficient. 

The third term is the social part, and represents the shared 

information and mutual cooperation among the particles. 

The acceleration coefficient c2 is known as the social scaling 

coefficient. For the present study, the values of c1 ＆ c2 are 

taken as 2.05 each. The term wt denotes the inertial weight at 

tth iteration and its value is calculated as,

(12)

Where, wmax is the initial inertia weight (0.9 for this study),  

wmax the final weight (0.4), t the current iteration number, 

and tmax the maximum number of iterations to be carried out.

Velocity of the particles is an important parameter that 

determines the resolution, or fineness, with which regions 

between the present position and the target (best so far) 

position are searched. Too high of a velocity for a particle 

may cause the particle to fly past good solutions, whereas, 

too low of a velocity may cause the particle to not explore 

sufficiently beyond locally good regions by trapping 

themselves into a local optima. Therefore, particles are 

usually constrained within the range [-vmax, vmax]. The value 

of vmax can be expressed as: 

(14)

Where xmax and xmin denotes the dynamic range of the 

variable on each dimension and the value of  has been 

taken as 0.1 for the present study.

2.5. Incremental Particle swarm optimization (I-PSO)

In the I-PSO algorithm the iteration begins with few 

particles and one or more particles are added to the swarm 

hood after every iteration or after specific number of iterations 

until maximum population size is reached. The newly added 

particles acquire knowledge about their environment from 

more experienced particles, which are already a part of 

the swarm. The social learning strategy is implemented by 

moving the newly added particle from its initial random 

location in the search space to the previous best position of 

a particle called the model particle that serves as a “model” 

to imitate. The usual practice is to choose the best particle 

as the model particle although any random particle can be 

chosen as the model particle. Mathematically, the position 

of newly added particle xp+1 in the S-dimensional search 

space at tth iteration is given by, 

(15)

Where,  is the updated position of the newly added 

particle,  is the original random position of the newly 

added particle,  is the model particle’s previous best 

position, and r is a uniformly distributed random number in 

the range [0, 1]. The velocity of the newly added particle is 

set to zero.   

The random number r is the same for all dimensions in 

order to ensure that the new particle’s updated previous 

best position will lie somewhere along the direct attraction 

vector xmodel-xnew. Using independent random numbers 

for each dimension would reduce the strength of the bias 

induced by the initialization rule because the resulting 

attraction vector would be rotated and scaled with respect 

to the direct attraction vector. Finally, the new particle's 

neighborhood, that is, the set of particles from which it will 

receive information in subsequent iterations, is generated at 

random, respecting the connectivity degree of the swarm's 

population topology. 

3. Numerical Simulation Study

Numerical simulations are carried out to demonstrate the 

effectiveness of the proposed damage assessment algorithm. 

A steel cantilever beam with a length of 600 mm and a cross 

section of 10 mm × 24 mm is selected for the purpose. Bending 

is considered in the plane of thinner dimension. The Young’s 

modulus and density is considered as 200 GPa and 7800 

kg/m3, respectively. After conducting a convergence study, 

20 equal Euler-Bernoulli beam elements are used for finite 

element modeling. Fig. 1 shows the sketch of the beam with 

element numbering used in the finite element simulation. 

Fig. 1. The Cantilever Beam Model

First, six natural frequencies without noise and the first 

nine natural frequencies with random noise are selected as 

a damage indicator. These are estimated from finite element 

simulation. Table 1 shows the first six natural frequencies 

of the intact beam. Up to 1% random noise is added to the 

natural frequency data to simulate measurement error. 

Single and multiple cracked conditions are simulated for 

the purpose. The results of crack detection are compared 

for estimating the effectiveness and robustness of the 

algorithms. 
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3.1 Performance study of PSO algorithms:

Three cases, as shown in Table 2, are considered for 

demonstrating and comparing the performances of standard 

PSO and incremental PSO algorithms. 

The measured cracked natural frequencies used for 

evaluating the proposed inverse procedures are generated 

numerically by FE simulation. First, six noise-free natural 

frequencies (Table 2) for the cracked beam are used as input 

for the algorithm in order to have a fair comparison. 

The simulated natural frequencies without noise are 

used for the construction of the objective function in PSO 

algorithms. The maximum swarm size for the optimization 

is set to 50, 75 and 100 for cases C1, C2 and C3, respectively. 

For the I-PSO, the initial population size is taken as 25, 35 

and 50, respectively, for case C1, C2 and C3 and five swarms 

are added to the neighborhood at each 5th iteration till a 

maximum swarm size is achieved. The maximum number 

of iterations to be carried out are considered as 200, 200 

and 300, respectively, for C1, C2 and C3 crack cases. Ring 

topology is defined as the social network structure. Since 

the optimization problem used for crack assessment is very 

complex involving a large number of local minima, it is very 

probable that the algorithm may stick at some local minima. 

Hence, we have presented success rate, which is equal to the 

ratio of the number of successful run per total number of 

runs, as a criteria for the performance measurement. Each 

experiment is executed 20 times. Only successful cases were 

considered for calculation of minimum, maximum and 

average values as shown in Table 3. 

Also, the algorithms were compared in terms of the 

number of function evaluations needed to achieve a certain 

quality, which is taken as 10-5 for the present optimization 

problems. The average for the number of function evaluations 

required for achieving the desired quality in all successful 

experiments is represented by Mean function evaluation. 

Table 3 represents the comparison of performances for both 

the algorithms in detecting crack in the cantilever beam. The 

progress in regards to the objective functions through the 

iteration number is illustrated in Figs. 2-4, respectively, for 

crack conditions C1, C2 and C3. The ordinate provides the 

best global value of the objective function. 

It can be seen from Table 2 and Figs. 2-4 that both the 

algorithms are able to provide quite an optimized function 

value in just a few iterations. However, when incremental 

PSO is compared with the standard one, the former clearly 

produces a better result due to its higher success rate; lower 

mean objective value. Though the number of iterations 

Table 1. First six natural frequencies of the intact beam (in Hz)

Table 2. First six natural frequencies of the Cracked beam (in Hz)

Table 3. Evaluation of performance of PSO algorithms
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required to achieve the required accuracy is more in the case 

of I-PSO, the mean function evaluation is less than that of 

S-PSO.  

3.2 Performance of PSO algorithms with noisy natu-
ral frequency data

The algorithms are evaluated for their performance in 

determining crack using natural frequency with measurement 

error. First, nine frequencies are considered for damage 

assessment. In order to simulate the experimental cracked 

frequency for the beam in a realistic way, random errors are 

added to the calculated frequencies for each of C1, C2 and 

C3 cases. Three different noise levels with ±0.15%, ± 0.50%, 

and ±1.0% noise, respectively, are added to the theoretically 

calculated frequencies. The maximum size of swarm is taken 

as 150 and the initial swarm size is set to 75 for the I-PSO 

case. Similar to the section 3.1, the swarm increment strategy 

is taken as five swarms at the fifth iteration, till the maximum 

swarm size is achieved. The maximum iteration is set to 

300. A total of five experiments are conducted for each case 

and noise level, and the experiment resulting in the lowest 

objective value is considered as the final crack scenario. Figs. 

5-7 present the results of crack detection for each case. The 

ordinates provide the depth of crack in mm and the abscissa 

provide the distance of the point from the fixed end in 

meters. The notations Actual, S-PSO and I-PSO represent the 

actual crack present in the structure and are detected by the 

S-PSO and I-PSO algorithms, respectively.   

It can be seen from Figs. 5-7 that, both the algorithms 

perform well in detecting crack locations but the performance 

of I-PSO is found to be superior to S-PSO in detecting cracks. 

Though, in some cases both algorithms show a false crack 

scenario toward the free end but the amount of false damage 

is significantly less for I-PSO. Also, crack quantification 

obtained by the I-PSO algorithm is found to be better than 

S-PSO. While analyzing the efficacy of both I-PSO and 

S-PSO for all the cases, it is observed that S-PSO could not 

detect correct damage locations in some cases [for example 

Fig.7(c)] and the amount of false damages is quite significant 

compared to I-PSO. In contrast, I-PSO could consistently 

detect the correct damaged locations in all cases and the 

Fig. 2. Variation of the objective function for the C1 crack condition

Fig. 3. Variation of the objective function for the C2 crack condition

Fig. 4. Variation of the objective function for the C3 crack condition

(a) Crack detection for C1 case with 0.15% noise in natural frequency

(b) Crack detection for C1 case with 0.50% noise in natural frequency

(c) Crack detection for C1 case with 1.00% noise in natural frequency

Fig. 5. Single Crack detection in the cantilever beam with noisy natu-
ral frequency data
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amounts of false damages are comparatively small in most 

of the cases. Thus, considering the results of all the cases, 

we can conclude that I-PSO could detect damages more 

accurately than S-PSO.

To study the effectiveness of the I-PSO based damage 

assessment technique, nine cases are considered with 

varying beam types and damage conditions as shown in 

Table 4. 

The initial and maximum swarm size, algorithm related 

parameters and material constants are kept similar to the 

previous study. The fixed beam and the propped beams 

are discretized into 20 and the continuous beam into 30 

equal Euler-Bernoulli elements. First, nine frequencies are 

considered for the study. The results are shown in Table 5. 

The noise level in the natural frequency data is represented 

as a percentage.

It is seen from Table 5 that the I-PSO based algorithm 

can identify the correct damaged location with reasonable 

accuracy. 

The error associated with the quantification of damage 

is below 6% for a noise level of 0.15%, 20% for a noise level 

of 0.50% and 28% for a noise level of 1.00% in measured 

frequency data. Though the number of false detections 

increases with an increase in noise level, its value never 

exceeded 0.5 mm for the considered noise levels, and hence 

it is not included in the table for the sake of brevity. 

4. Conclusion

A simple but robust methodology is presented to 

determine the location and amount of crack in beam like 

structures based on the I-PSO technique. A comparison 

is made for assessing the performance of S-PSO and I-PSO 

for detecting cracks in a cantilever beam like structure. A 

comparison is also made to check the effectiveness of both 

variants of PSO in detecting damage when error is present in 

the natural frequency data. Finally, some additional damage 

cases are simulated to check the applicability of the I-PSO 

based damage detection algorithm. The results reveal that 

the I-PSO based algorithm not only identifies the correct 

location of the damage but can also quantify the damage with 

reasonably good accuracy even with noisy frequency data. 
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