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Abstract

In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global 

Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second 

order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric 

method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed  considering 

both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman 

filtering method is verified via numerical simulation. 
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1. Introduction

GPS has been used as main navigation system for a variety 

of aerospace applications. Kalman filter estimation is widely 

applied to GPS positioning as well as the integration of GPS 

with inertial navigation system. A conventional Kalman filter 

is formulated with assumption that both the process and 

measurement noise are Gaussian white. There are some GPS 

measurement error modeling studies under SA(Selective 

Availability) condition[1-4]. Where GPS position 

measurement error can be modeled as a time correlated 

low order Gauss-Markov process both continuous and 

discrete time domain using various parameter identification 

approaches. Because it is difficult to determine the 

parameters of Gauss-Markov process in a real-field problem, 

it is important to estimate of the amount of experimental 

data recoding time and ensemble average needed for a given 

required estimation accuracy.

Previous works for kalman filtering methods that 

consider time-correlated measurement error are 

categorized in two main approaches. First approach is 

state augmentation method where the measurement error 

is augmented into state vector. However, the augmented 

sate space equation has the perfect measurement with 

singular measurement covariance matrix that may cause 

system to become ill-conditioned[5-7]. The second 

approach uses measurement differencing method to 

make a new measurement equation corrupted by white 

noise without time-correlated part[6-9]. Therefore 

the conventional Kalman filter can be applied to this 

state and new measurement equation for optimal state 

estimation. However, In case of multiple measurements, 

the measurement differencing approach is limited by each 

measurement should be simultaneously time-correlated.

This paper describes GPS error modeling method for 

stand-alone single frequency GPS. The relationship between 

required data recoding time and ensemble average number 

to satisfy the desired PSD(Power Spectrum Density) 

estimation error is investigated. It is also shown that the 

physical parameter of a first or second order dynamic system 

is related with required data recoding time and ensemble 

average number. A Kalman filtering method is proposed that 

consider both correlated/white measurements noise based 

on characteristics of a stand-alone GPS position and velocity 

measurements. The performance of the proposed Kalman 

filtering method is verified via numerical simulation.
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2. GPS Error Modeling

2.1 Linear System and PSD

The relationship between PSD and transfer function of 

single input-output linear time invariant system is described 

as follows[10].

(1)

where G(w) is a transfer function of the system, Suu(w) is 

the PSD of input, and Sxx(w) is the PSD of output. The time 

average of the periodogram of a random process x(t) can be 

expressed as follows[7].

(2)

where  is a time sample of the random process x(t) at 

time t,  is Fourier transform of the . If Suu(w) is 

unit power white noise and Sxx(w) is the error signal of a GPS, 

using equation (1) and (2), we can find transfer function of 

the GPS error model with experimental data of Sxx(w). 

2.2 Normalized PSD Estimation Error

The normalized bias error of PSD estimation can be 

approximated via Taylor series expansion of expectation of 

the PDF(Probability Density Function) of a random process 

x(t) [11].

(3)

where W is the resolution bandwidth. Eq. (3) can be 

rearranged as 

(4)

The normalized random error of a PSD estimation can be 

represented using identity that the two degree of freedom 

chi-square variables have average n and variance 2n.

(5)

where nd is ensemble average number. The required data 

recoding time for given normalized random error is

(6)

2.3 Transfer Function Parameter and PSD

An arbitrary transfer function and PSD of the first-order/

second-order Gauss Markov process can be represented as 

follows.

First order:

(7)

(8)

Second order:

(9)

(10)

To investigate the relationship between PSD estimation 

error and resolution bandwidth, we define  and 

conservative approach should be applied to determine the 

frequency for calculation of  in Eq. (4).

As shown in the Fig. 1. (a)~(b), SF of the first-order 

Gauss-Markov reaches maximum value at the frequency 

, and the second-order Gauss-Markov process 

has an extreme value of SF depending on the damping 

ratio. In case of a second-order Gauss-Markov process with 

lightly  damped system(damping ratio range is C<0.3),  has a 

maximum value at the resonance frequency . In 

case of normally damped system, that has a damping ratio is 

0.3<C<0.707,  has a maximum value at the damped natural 

frequency . In case of over damped system, 

that has a damping ratio is C>0.707, SF has a maximum value 

at the frequency . Therefore, W should be evaluated 

at the appropriate frequency for given PSD estimation error 

bound based on damping ratio of the second-order linear 

system.

2.4 Estimation of the PSD and Transfer Function

In static condition, the position error dynamic model is 

identified as a first/second order transfer function, and the 

velocity error model is identified as a band-limited Gaussian 

white noise via non-parametric method of a PSD estimation 

in continuous time domain. Based on quick identification 

of the position error model of the second order transfer 

function and its damping ratio wm using one hour recoding 

data analysis, we obtained nd=25 and Tr=45 minutes that 

satisfy PSD estimation error boundary  and 

. 

Fig. 2. (a) shows effectiveness of ensemble average of 

the PSD in frequency domain. In this case, 25 data set of 
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position error PSD are averaged. Fig. 2. (b) shows fitting of 

the averaged PSD estimation using nonlinear least square 

regression method. Fig. 2. (c) bode diagram of the identified 

transfer function. Fig. 2. (d) shows comparison of the real 

experimental data and linear simulation of the identified 

transfer function. In fact, the GPS position error model can 

be approximated as a first order transfer function within low 

frequencies with -20dB/dec roll-off ratio of the magnitude as 

shown in Fig. 2. (c).

The Identified GPS position error model in NEU coordinate 

system is summarized in the Table 1. 

As shown in the Fig. 3, the velocity measurement error 

PSD has relatively low roll-off ratio and flat magnitude within 

Nyquist frequency. Therefore it is reasonable to assume that 

velocity measurement noise is band limited white. 

A Kalman filter can be applied to the state-space equation 

transformed from the error transfer function. The first order 

transfer function can be obtained as Eq.(11). σ and δ of the 

first order transfer function corresponding to each axis on 

NEU coordinate system is summarized in Table 2. 

(11)

Eq.(11) can be discretized for the sampling time △t 

yielding 

(12)

3. Kalman Filtering Methodology

The Kalman filtering method is applied for one 

measurement noise is first order Gauss-Markov process 

and the other measurement noise is white. Consider the 

discrete state and measurement equation with both colored 

measurement noise and white noise.

(13)

(14)

(15)

(16)

(17)

    

Fig. 1. Transfer Function Parameter and Required Recoding Time: (a) First Order System SR with respect to Time Constant, (b) First Order System 
Required Recoding Time with respect to Bias Error, (c) Second Order System SR with respect to Damping Ratio, (d) Second Order System 
Required Recoding Time with respect to Bias Error.

(a)

(c) (d)

(b)
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(18)

where    , , , w, d, c denotes states, measurements, 

state of time-time correlated measurement error, process 

noise, white noise measurement and white noise for shaping 

time-correlated measurement error, respectively. These 

white noises are mutually un-correlated. State variables can 

be classified as the three groups:(i) xc, which are disturbed 

Fig. 3. Ensemble Average of 25 Data Set of Velocity Error PSD.

Table 1. Summary of the GPS Position Error Model

Fig. 2. Identification of the Easting Position Error Transfer Function: (a) Ensemble Average, (b) Nonlinear Least Square Fitting with respect to PSD, (c) 
Bode Diagram of the Identified Transfer Function, (d) Comparison Real Data and Linear Simulation of ID

(a)

(c) (d)

(b)

Table 2. Summary of the Model Parameters of 1st Order Transfer 

Function
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by the time-correlated measurement noise, (ii) xn, which are 

disturbed by white measurement noise, and (iii) xs, which 

can be estimated. Each state variables have rows nc, nn and 

ns . It is also assumed that the time-correlated measurement 

noise can be represented by the first order transfer function 

having nc state variables. Eq.(19) shows the size of each 

variable vectors with appropriate subsystems.

(19)

State and measurement equations can be rewritten using 

Eq.(19) as

(20)

(21)

After augmenting time-correlated measurement error state 

into state vector, state and measurement equations can be 

rearranged as follows.

(22)

(23)

where,

(24)

As can be seen in Eq.(24), time-correlated measurement 

for augmented system model does not contain the white 

noise. A numerical difference method is used in this paper 

to avoid the 'perfect measurement condition', which is 

often the cause of numerical instability. In order to do this, 

a new measurement vector  can be defined as the linear 

difference of the measurement z between t(k-1) and t(k) as 

follows.

(25)

Combination of the augmented state equation and the 

new measurement equation yields 

(26)

(27)

(28)

(29)

Using Eqs(28)-(29) Eq.(30) is obtained.

(30)

Eq.(27) can be rearranged as,

(31)

Eqs.(30)-(31) yields,

(32)

Using Eq.(26) and Eq(32), expression on uc(k) can be given 

by

(33)

Time delay of the update on state estimation can be avoided 

when the measurement can be rewritten using the inverse of 

the state transition matrix of the augmented state equations:

(34)

(35)

(36)

Now, new parameters N and U are introduced to combine 

Eqs.(35)-(36),

(37)

where  , ,    

                           

Eq.(22) and Eq.(37) can be simplified as,

(38)

(39)

(40)

(41)

where the new measurement noise  is white, and wa(k-1), 

wc(k-1), d(k) are not time-correlated. However, the process 

noise and measurement noise is correlated because both 

state equation and measurement equation have the term 

wa(k-1). Measurement noise covariance matrix F and 
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process-measurement cross covariance matrix S can be 

defined as,

(42)

(43)

In general, Kalman filter cannot be applied for the 

case process noise and measurement noise is correlated. 

Therefore, a generalized Kalman filter is used in this paper 

in order to obtain optimal estimation that considers both 

time-correlated measurement noise and white noise. State 

equation and measurement equation with updates for a 

generalized Kalman filter are shown in Eq.(44)-(53)[12].

(44)

(45)

(46)

(47)

(48)

Time Update

(49)

(50)

Measurement Update

(51)

(52)

(53)

4. Numerical Simulation

A simple kinematic CWNJM(Continuous White Noise 

Jerk Model) is considered for numerical simulation. The 

states are position, velocity and acceleration. It is assumed 

that the position measurement noise is first-order Gauss-

Markov process and velocity measurement noise is white as 

    

Fig. 4. Simulation Results: (a) Position Estimation, (b) Velocity Estimation, (c) Acceleration Estimation, (d) Kalman Gain.

(a)

(c) (d)

(b)
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mentioned in chapter II. Discretized linear dynamic model 

of CWNJM as follows.

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

where,  

, ,

, ,    

 

State equation for augmented system can be expressed as,

(63)

where  , , .

Discretized version of measurement equation can be 

given by the following equations 

(64)

(65)

(66)

(67)

(68)

Now the state equation and measurement equation are 

reconstructed so that the generalized Kalman filter can be 

applied. Parameters for process noise and white noise are 

set as q=0.0012, D=0.012, V=0.032. =0.999925 for Northing 

position error model from the discretization of the GPS 

position error model with △t=0.05 in Eq.(12). Numerical 

simulation is performed using Eqs.(44)-(53).

Fig. 4. (a) and (b) shows the proposed filter effectively 

estimates both position corrupted by time-correlated 

measurement error and velocity corrupted by white noise. 

Also, the acceleration estimation is appropriate as shown 

in Fig. 4 (c). In this example, the process noise covariance is 

set relatively small value to show the estimate with respect 

to noise magnitude during small time window. It should 

be noted that the initial states are assumed to be known. 

Actually, this proposed Kalman filter de-correlates the time 

correlated measurement error of the position using velocity 

information which is not corrupted by time correlated noise, 

but by white noise. Moreover, using the velocity information 

and simple kinematics, we can get acceleration estimation 

without additional measurements.       

5. Conclusions

In this paper, a dynamic modeling method for the 

velocity and position information of a single frequency 

stand-alone GPS receiver is described. The relationship 

between ensemble averages, required data recoding time 

and PSD estimation error that satisfy the given  error bound 

is described. Also, analysis on transfer function parameters 

of a first and a second order linear system with respect to 

PSD error is described. A Kalman filter is proposed that 

consider both correlated/white measurements noise based 

on identified GPS error model. The proposed Kalman 

filter is derived from the fusion of the state augmentation 

approach and measurement differencing approach. The 

performance of the proposed Kalman filter is verified via 

numerical simulation. Using this filter, the time correlated 

position error of the GPS measurement is effectively de-

correlated via its own GPS velocity information without any 

additional sensors. In near future, the proposed Kalman 

filtering method will be formulated for more general cases 

and applied to the precise navigation of moving vehicles.
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