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Abstract

This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply 

and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is 

modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on 

free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows 

a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, 

analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, 

using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have 

been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper 

deviations in simple and combination resonance characteristics.

Key words: Anisotropic damage, Harmonic loading, Plate like Beam, Instability.

1. Introduction

A plate like beam can be thought of as a two-dimensional 

narrow structural member that can take membrane stresses. 

In usual structural analysis, these are taken as a simplified 

one-dimensional beam element. However, considering the 

same as two-dimensional, it enhances the load carrying 

capacity, as the beam element carries an additional in-plane 

load, giving rise to improved strength to weight ratio.

The study of the static and dynamic response behaviour of 

plate like beam type structural elements under the in-plane 

harmonic load is of importance. The in-plane load significantly 

affects the response behaviour. As the magnitude of in-plane 

compressive load increases, the frequency of vibration 

reduces and at a critical buckling load the frequency becomes 

zero. Periodic in-plane loads induce dynamic instability in 

the form of resonant transverse vibrations. This phenomenon 

is known as parametric resonance. The instability regions of 

parametric resonance consist of a range of values for loading 

parameters for which instability occurs. Dynamic instability 

can occur when the excitation frequency is related to one of 

the natural frequencies of the system. This is called simple 

resonance. When excitation frequency is related to more than 

one natural frequency, the instability phenomenon called 

combination resonance occurs (Bolotin, 1964).

Extensive study has been done on the static and dynamic 

behaviour of structural elements. Sahu and Datta (2007) 

have made an excellent review on the works available in the 

literature, both for isotropic and composite materials.

Damages or flaws are almost unavoidable in any structure at 

some stage of its operating life span. The presence of damage 

significantly affects the buckling, vibration and parametric 

instability behaviour of the structural element. Damage 

modelling is usually based on the stiffness loss. Modelling of 

damage in anisotropic materials, such as laminate composites 

is done through the continuum damage mechanics approach. 

This method is helpful in describing the deterioration of 

material based on the onset or initiation of damage, such 

as micro cracks (Voyiadjis, 2005). Talreja (1985) introduced 

damage by describing a set of vectors to represent damage 
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on various directed planes in the composite material. A 

continuum mechanics based model of cracks was proposed 

by Abdelrahman and Nayfeh (1999). Valliappan et al. (1990) 

developed a finite element model of anisotropic damage 

based on the structural reduction factor. The formulation has 

a broader scope of applications because of the elegance and 

simplicity of constitutive relations and non-symmetry of the 

damaged stress tensor.

A composite damage model called Damage Meso-

model for Laminates (DML) was proposed by Ladeveze 

and LeDantec (1992). This model takes into account the 

characteristic differences between the damaged plies under 

tensile and compressive stresses. Murari and Upadhyay 

(2008) have worked on a modification of DML which takes 

into account the damage at the microlevel. Pidaparti (1997) 

computed the free vibration and flutter characteristics 

of a composite plate considering the aeroelastic effects. 

The author establishes that the formulation proposed by 

Valliappan et al. (1990) has more influence on the free 

vibration and parametric resonance characteristics than that 

by Talreja (1985). Under suitable constraints the formulation 

proposed by Valliappan et al. (1990) reduces to the isotropic 

damage formulation proposed by Prabhakara and Datta 

(1993).

Considerable amount of works are available in literature 

regarding the stability of beams, plates and shells under 

various loading conditions including the in-plane harmonic 

load, follower load and transverse harmonic loads (Sahu and 

Datta, 2007). The importance of the plate like beam structure 

was discussed. A void exists in literature when it comes to 

the stability behaviour of such structures subjected to the 

in-plane harmonic load. In the present work, a generalized 

anisotropic damage formulation was twinned to the plate 

like beam problem and studies on free vibration, buckling 

and dynamic instability characteristics were made on 

isotropic and composite structures. The effects of damage 

orthogonality, damage intensity, damage size and its 

location on static and dynamic characteristics have been 

investigated.

The advantage to the method is that the formulation 

considers the in-plane membrane effect of the plate in the 

beam problem. The presence of damage in the plate like 

beam alters the in-plane stress distributions. The beam 

formulation in this paper takes care of the effects of damage 

on the buckling, transverse vibration and parametric 

resonance behavior of the structural elements, considering 

the in-plane non uniform stress distribution, due to various 

damage parameters. These results will provide information 

regarding structures pertaining to aerospace applications for 

which weight is a prime design parameter.

2. Mathematical Formulation

A plate like beam structure (Fig. 1) under in-plane 

harmonic load, P(t) is modelled by using the finite element 

method. 

The harmonic loading P (t) is expressed as (Bolotin (1964))

where, 

Ps= =static component of the parametric loading

Pt= =dynamic component of the parametric loading

= frequency of the harmonic loading

α= static load factor

β= dynamic load factor

= critical buckling load of plate like beam.

values for α and β range from 0 to 1.

A shear correction factor, K=5/6 [Moorthy et al. (1990), 

Fig. 1. Schematic diagram showing a typical plate like beam geometry with damage patch and representations of damage location.

Table 1. Material properties of each composite layer [Reddy (1984b) and Moorthy et al. (1990)] and dimension of the plate like beam used for 

                 present study.
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Udar and Datta (2007)] has been chosen to accommodate 

the effect of non-uniform strain distribution along the 

thickness. To validate the formulation’s applicability for 

isotropic materials with results available in literature, the 

isotropic material was merely treated as a special case of 

composite material with E11=E22 and v=0.3. 

In the current study, the two ends of the plate like beam 

can have any of the three boundary conditions namely simply 

supported, clamped and free, denoted by symbols S, C, and 

F, respectively. The other two edges are free. The numerical 

constraints applied against each boundary condition are 

tabulated in Table 2.

2.1 Anisotropic damage

In a two dimensional structure, viz. a thin plate like beam, 

anisotropic damage is parametrically incorporated into the 

formulation by considering the parameter i. This parameter 

is essentially a representation of reduction in effective area 

and is given by

(1)

Where  is the effective area (with unit normal) after 

damage and   are the three orthogonal directions. For a thin 

plate like beam only 1 and 2 need to be considered. 1 

represents the damage in the direction of the fibre while 2  

refers to orthogonal damage. This method of parametrically 

modelling damage in any anisotropic material was proposed 

by Valliappan et al. (1990). Using this formulation, a damaged 

stress-strain matrix for a two dimensional laminate is written 

as

(2)

where, 

(3)

This relation is then transformed to the general coordinate 

system as with the general undamaged cases. It can also 

be noted that by constraining the values of 1 and 2, one 

can yield a damage formulation for an isotropic material as 

proposed by Prabhakara and Datta (1993).

The damaged area has been considered as a square patch 

(Fig.1). The parameters 1 and 2 determine the extent of 

damage. The parameter  denotes the area of the damage 

patch, while a＊ and b＊ denote the location of the central 

point for the damaged patch. The damaged area in FEM 

formulation is represented by number of finite elements 

across which the damage is extended along the X and Y 

direction and as a percentage of the total area ( ). For e.g. 3 

× 1(  = 7%), 2 × 2(  = 9%), 3 × 2(  = 14%) and 4 × 2(  = 18%), 

for a mesh size of 22 × 2.

2.2 Non-dimensionalization of parameters

For convenience of analysis and comparison, the model 

parameters and results are presented in non-dimensional 

form leaving them independent of geometry and material 

property values. The non-dimensionalization parameters 

Table 3. Non-dimensionalization of parameters

Table 2. Boundary conditions and Numerical constraints
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are presented in Table 3 [Reddy (1984a), Moorthy et al. 

(1990)]. The parameter used to non-dimensionlize isotropic 

problems is the flexural rigidity of the panel and is given by 

D=Eh3/12(1-v2).

2.3 Solution technique

A generalized equation of motion can be written to 

generate various classes of problems.

(4)

If , i.e. the loading 

consists of a static and time dependent part (harmonic 

loading), dynamic stability problems are established. Certain 

‘zones’ corresponding to the ratio (Pt/Ps) and the excitation 

frequency, Ω, will become unstable. This phenomenon is 

known as parametric resonance. The governing differential 

equation takes the form of the Mathieu - Hill equation 

(Bolotin, 1964). The instability regions can be obtained 

using various methods such as Floquet’s theory, Lindstet 

- Poincare’ technique or the method of multiple scales 

(Nayfeh, 1981). 

Using modal transformation, Eq.(4) is modified in the 

following form [Nayfeh (1981), Udar and Datta (2007)]

(5)

where the terminologies are explained in the above 

references.

Eq.(5) is solved using the method of multiple scales 

(MMS) (Nayfeh, 1981) to obtain the boundaries of the simple 

and combination parametric zones of instability. When the 

frequency of the excitation is close to the sum or difference 

of two natural frequencies of the system, a combination 

resonance of the summed type or difference type exists 

between the various modes. The nearness of Ω to  

can be expressed by introducing the detuning parameter , 

which is defined by

(6)

where,  is obtained from the solution of the following 

quadratic equation,

(7)

where, the constants A, B and C are explained in ref. Nayfeh 

(1981).

The two roots of Eq.(7) correspond to two boundaries of 

the dynamic instability region. The case m=n gives the simple 

resonance zone and the case  gives the combination 

resonance zone of the summed type or the difference type 

as explained by Kim and Choo (2000). The critical dynamic 

load factor,  corresponds to the value of β for which the 

expression B2-4AC is equal to zero. For the values of β less 

than , Eq.(7) gives complex roots which means that 

dynamic instability cannot occur.

2.4 Definition of ‘onset’ and ‘width’

For tabulating and plotting the characteristics and 

variation of the simple and combination resonance instability 

regions due to various factors, the traditional frequency-

ratio against dynamic load factor curves is inadequate. In 

order to do so, two terms are introduced – ‘onset’ and ‘width’ 

of an instability region. The onset of any region is the point 

corresponding to β=0.0. At this point, the lower and the 

upper bounds of the instability region are the same. The 

width of the instability region is defined as the span enclosed 

by the lower and upper bounds of the region at β=0.8. This 

value can be taken to be a representation of the area of the 

instability region itself. This is a reasonable assumption as 

the instability zones, if any, are well developed at such high 

values of the dynamic load factor.

 

3. Results and Discussion

To check the validity of the present finite element 

formulation for plate like beams, a series of convergence and 

comparison studies have been carried out. A convergence 

study is carried out to select the optimum mesh sizes for the 

purpose of numerical computation. The results obtained 

from the limiting cases of the formulation are tallied against 

available results in order to validate the accuracy of the 

present formulation.

Table 4 shows convergence results for the natural 

frequencies of a fixed-free isotropic and composite plate like 

beam. For this study, a mesh size of 22×2  has been chosen. 

Table 5 presents non-dimensional free vibration 

frequencies and buckling loads for isotropic beams under 

various boundary conditions, and compared them with 

those reported by Goyal and Kapania (2007). Free vibration 

frequencies for composite beams are shown in Table 6. The 

results are in good agreement with Maiti and Sinha (1994).

Table 7 lists the non-dimensional free-vibration 

frequencies and buckling loads for cantilevered, angle-ply 

composite laminates. The results obtained are in agreement 

with that presented by Goyal and Kapania (2007). Further, 

these results are a prerequisite to the MMS formulation that 

computes the parametric resonance instability zones.

Primary instability regions or the simple resonance 

zones for a square, which simply supported isotropic plates 
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for different static and dynamic load factors (α and β) are 

shown in Table 8 and indicate good agreement with those 

reported by Hutt and Salam (1971). The validity of the MMS 

formulation has also been checked for the determination 

of instability zones for a cantilevered, cross-ply (0/90/90/0) 

panel.

For cases where damage has been considered, the damage 

parameters, 1, 2,  and its location on the plate like beam 

are of importance. The direction of damage with respect to 

fibre orientation has significant influence in the static and 

dynamic instability characteristics of the plate like beam. A 

reduction in stiffness in the direction of fibre influences the 

buckling, vibration and dynamic instability characteristics 

more profoundly than a reduction of stiffness occurring in 

a direction perpendicular to the fibre orientation. So, the 

damage parameter 2 is set at 0.1, while the intensity of 

damage represented by the damage ratio 1/ 2 is varied 

from 0.0 to 9.0. A mild damage may be represented with a 

damage ratio of 0.0 ≤ 1/ 2 ≤ 3.0, while heavy damage may 

be denoted by the range of values, 7.0 ≤ 1/ 2 ≤ 9.0.

The effect of damage on the dynamics of structure 

influence vibration and buckling characteristics which 

affects the dynamic instability behaviour of plate like beam 

structural elements. Variation of the non-dimensional 

fundamental natural frequency and buckling load with 

damage ratio for a C-F (0/90/0) cross-ply composite plate 

like beam with the thickness ratio (b/h) = 100 are shown in 

Figs. 2(a) and 2(b). It can be observed that the introduction 

of damage reduces the frequency and the buckling load in 

comparison to the undamaged cases. The general trend of 

variations is found valid irrespective of boundary conditions 

applied at the ends of the plate like beam and for different 

ply orientations.

Figs. 3(a) and 3(b) show the variations of the non-

dimensional fundamental natural frequency and buckling 

load with the location of damage for the cross-ply and angle-

ply clamped-simply supported (C-S) plate like beam. It can 

be observed that both vibration and buckling behaviour 

improve for the damage position near the simply supported 

end. Further, the cross-ply plate like beam has better 

vibration and buckling characteristics compared to the 

angle-ply configuration. Similar results are also observed for 

the clamped-free (C-F) composite plate like beam.

The effects of the damage area for various centrally 

damaged, cantilevered, composite plate like beams have 

been obtained. Tables 9 and 10 show the variations of 

frequency and buckling load for centrally located damage 

patches of various sizes and having damage intensities of 

( 1/ 2) = 1.0 (mild) and ( 1/ 2) = 9.0 (heavy).

The drop in fundamental natural frequency in the 

heavily damaged case when compared to mild damage is 

as expected. The fundamental natural frequency drops for 

all plies as the damage area is increased. Also, the cross-

ply plate like beams (0/90/0) have a higher fundamental 

frequency than their angle ply counterparts ( /- / ) and 

the values decrease as  increases until =45o. The increase 

in the damage area decreases the buckling load as expected 

Table 4. Convergence study of non-dimensional free vibration fre
quencies of cantilevered isotropic (a/b = 10, b/h = 10, E11 = 
E22 = 70 GP a, G12 = G13 = G23 = 26.923 GPa and ν12 = 0.3), sym-
metric, cross-ply (0/90/90/0) and asymmetric angle-ply (45/-
45/45/-45) plate like beams. (a/b = 10, b/h = 10, E11 /E22 = 40 
GP a, G12 /E22 = G13 /E22 = 0.6 GP a, G23 /E22 = 0.5 GPa and ν12 = 
0.25).

Table 6. Non-dimensional free vibration frequencies for cantilevered, 
unidirectional, composite beams. Fibre orientation: (θ/θ/θ/
θ). a/b = 20, b/h = 0.5. The results are compared to those re-
ported by Maiti and Sinha (1994).

Table 5. Non-dimensional free-vibration frequencies and buckling 
loads for isotropic beams under various boundary condi-
tions. a/b=10, b/h=100. The results are compared to those 
reported by Goyal and Kapania (2007).

Table 7. Non-dimensional free-vibration frequencies and buckling 
loads for cantilevered, angle-ply composite laminates. a/b = 
60, b/h = 0.5. The results are compared to those reported by 
Goyal and Kapania (2007). Non-dimensional parameters
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physically. The cross-ply plate like beam (0/90/0) has better 

buckling characteristics than its angle-ply ( /- / ) counter 

parts. Just like the free-vibration characteristics, the values 

decrease as  increases until =45o.

Simple and combination resonance type dynamic 

instability characteristics for the composite plate like beam 

with variation of damage parameters have been studied, for 

different static and dynamic load factors of the harmonic 

load. For the present analysis, second order MMS has been 

used to obtain the zones of instability. The static load factor, 

α is taken as 0.2 and the dynamic load factor, β is varied from 

0.0 to 1.0.

It has been observed that unlike free vibration and 

buckling characteristics, parametric resonance instability 

zones are not greatly affected by damage intensity. However, 

there exist few cases where the change in the intensity of 

damage influences certain combination resonance zones.

The location of damage has a greater influence on Table 8. Non-dimensional excitation frequencies corresponding to 
lower and upper bounds of the primary instability region of 
a square, simply supported isotropic plate. Thickness ratio, 
b/h = 100. Load width, c/b = 100. The values have been com-
pared with those reported by Hutt and Salam. (1971).

Table 9. Variation of non-dimensional fundamental natural frequency 
with damage area for cantilevered composite plate like 
beams with thickness ratio b/h = 100.  = 0.1.

         

                                                                                               (a)                                                                                                (b) 

Fig. 2. Variation of (a) natural frequency and (b) buckling load of a centrally damaged, cantilevered (0/90/0) cross-ply plate like beam with 
b/ h=100.  

         

                                                                                 (a)                                                                                                                       (b) 

Fig. 3. Variation of (a) natural frequency and (b) buckling load with damage location for (0/90/0) cross-ply and (45/ - 45/45) angle-ply, C-S plate like 
beams. Damage area, ψ = 14%, Damage ratio Γ1 /Γ2 = 1.0, Γ = 0.1.
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parametric resonance instability zones than damage 

intensity. A rectangular damage patch of area,  = 14%, is 

considered and the effect of its location (a＊, b＊) on the 

laminate is studied. Figs. 4(a) and 4(b) plot the variation of 

the onset of instability regions (β = 0.0) due to the damage 

location for a moderately damaged ( 1/ 2 = 6.0) cantilevered 

angle-ply plate like beam. It can be observed that for 

combination resonance due to 1+ 3, 3+ 4, damage 

location has a negligible effect if any. In case of instability 

zones due to combination resonance of 1+ 4, 2+ 3, 2 

+ 4, the onset is delayed on the frequency ratio axis when 

the damage patch is located near the centre of the structure, 

i.e. 0.4 ≤ (a＊/a) ≤ 0.5, whereas it is advanced when located 

in proximity of the free end of the cantilevered structure, i.e. 

0.7 ≤ (a＊/a) ≤ 0.9. An inward shift of the onset indicates that 

the structure is more susceptible to instability.

The variation of the onset and width of parametric 

resonance instability zones for cantilevered cross-ply 

(0/90/90/0) and angle-ply (45/-45/45/-45) under the in-

plane harmonic load is presented in Tables 11 and 12, 

respectively. It can be observed that for the cross-ply case, 

only  regions of combination resonance 

exist while for the angle-ply case  

 regions of combination 

resonance exist for mild damage 1/ 2 = 1.0. In the most 

general sense, the onset of simple and combination 

resonance instability regions are advanced on the 

frequency ratio axis with an increase in damage area, 

, for most cases. Further, it can be observed from Tables 

11 and 12 that the width of the instability regions due 

to simple resonance decreases for both cross-ply and 

angle-ply cases. It is also clear from Tables 11 and 12 

that when the width of the instability regions due to 

combination resonance increases for the cross-ply case 

the same decreases for the angle-ply case. Thus, it must 

be concluded that when damage area is the criteria, 

Table 10. Variation of non-dimensional buckling load with damage 
area for cantilevered composite plate like beams with thick-
ness ratio  = 100,  = 0.1. 

Table 12. Variation of the width of simple and combination resonance zones for centrally damaged, cantilevered, cross-ply and angle-ply panels 
under in-plane harmonic loading. Damage ratio, Γ1 /Γ2 = 1.0. Γ2 = 0.1.

Table 11. Variation of the onset of simple and combination resonance zones for centrally damaged, cantilevered, cross-ply and angle-ply panels 
under in-plane harmonic loading. Damage ratio, Γ1 /Γ2 = 1.0. Γ2 = 0.1.
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angle-ply orientation is advantageous.

Figs. 5(a) and 5(b) show the simple and combination 

resonance instability regions of a mildly damaged cross-

ply, cantilevered plate like beam under in-plane harmonic 

load. As expected, the simple resonance instability regions 

become more prominent as compared to the combination 

resonance instability zones. It can be noted that 

combination resonance due to 1+ 3 exists in the cross-

ply case while those due to 1+ 2 and 2+ 4 are present 

in the angle-ply case.

The simple and combination resonance instability 

regions of a clamped-simply supported, mildly damaged 

cross-ply and angle-ply plate like beam under in-plane 

harmonic load is plotted in Figs. 6(a) and 6(b). The 

combination resonance instability zones are again less 

prominent than the simple resonance instability zones 

which can be clearly observed. It can also be noted that 

compared to the cantilevered case the onset is delayed in 

the frequency axis and the width of the instability zone has 

become narrow.

The effect of static load factor (α) on simple and 

combination resonance zones for the cross-ply and 

angle-ply plate like beam is significant. The variation 

for the onset and width of instability regions regarding 

simple and combination resonance regions with α for a 

mildly damaged edge loaded angle-ply (45/-45/45/-45) 

having a damage patch at the centre are plotted in Figs. 

7(a) and 7(b), respectively. Just like the cross-ply, the 

onset advances slightly on the frequency ratio axis with 

the increase in static load factor. Also, it can be observed 

that just like the cross-ply case, the width for most of the 

instability regions increases with the increase in static 

         

                                                                                 (a)                                                                                                                             (b) 

Fig. 4. Variation of onset (β = 0.0) of instability region of simple and combination resonance regions with location of damage shifting towards (a) 
clamped end and (b) free end for cantilevered angle-ply plate like beams. Damage ratio, Γ1 /Γ2 = 6.0. Γ2 = 0.1.

         

                                                                                 (a)                                                                                                                       (b) 

Fig. 5. Simple and combination resonance instability regions of cantilevered, mildly damaged, symmetric, plate like beams subjected to in-plane 
harmonic loading for (a) cross-ply and (b) angle-ply case. Damage ratio, Γ1 /Γ2 = 1.0. Γ2 = 0.1.
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load factor.

4. Conclusion

A static and dynamic instability study of a composite 

plate like beam having anisotropic damage and subjected 

to the harmonic axial load is presented in this paper. The 

results show the effects of damage and its location on the 

fundamental natural frequency, buckling load, and simple 

and combination resonance instability behaviour. The 

observations are summarized into the following points,

• Damage in composite plate like beams show strong 

orthogonality. It has been observed that damage in the 

direction of fibre results in steeper deterioration of both 

natural frequency and buckling characteristics. Damage 

in the orthogonal direction to fibre orientation has little 

influence on the fundamental natural frequency and 

buckling load characteristics.

• It can be concluded that the locations of damage do 

influence the frequency and buckling characteristics of the 

composite plate like beam chosen for the present study. A 

plate like beam of a certain lay-up is more sensitive to the 

location of damage. The present study reveals that cross ply 

lay-up causes noticeable variations in response behaviour 

with a shift in damage location. It was also observed from 

the present study that buckling behaviour improves when 

damage is located near less constrained boundaries.

• It has been observed that as the extension of damage or 

damage area increases it deteriorates the natural frequency 

and buckling characteristics irrespective of ply lay-up and 

ply orientation.

         

                                                                                 (a)                                                                                                                             (b) 

Fig. 6. Simple and combination resonance instability regions of Clamped-Simply supported, mildly damaged, symmetric, plate like beams sub
jected to in-plane harmonic loading for (a) cross-ply and (b) angle-ply case. Damage ratio, Γ1 /Γ2 = 1.0. Γ2 = 0.1.

         

                                                                                 (a)                                                                                                                       (b) 

Fig. 7. Variation of (a) onset and (b) width for cantilevered, (45/-45/45/-45) angle-ply plate like beams. Damage patch is located at the centre. Dam
age area, ψ = 14%. Damage ratio, Γ1 /Γ2 = 1.0. Γ2 = 0.1.
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• Damage location contributes more significantly to 

the parametric resonance instability characteristics than 

damage intensity. It can be concluded from the present 

study that parametric instability characteristics can make 

the structure more vulnerable and drive it to instability much 

earlier when damage is located towards less constrained 

boundaries than when located towards well constrained 

ones, like the clamped end.

• From the present study, the static component of 

harmonic excitation emerged as a very important parameter 

that has significant influence in determining the parametric 

instability zones. An increase in the static component of 

harmonic excitation is not a welcome development for the 

structural component as it drives the system into instability 

zones at much lower excitation frequencies and these new 

instability zones are wider than those existed for a lesser 

static load factor value.

• An increase in the damage area advances the onset of 

simple resonance instability zones further into the frequency 

ratio axis. The width of these regions increase as the onset is 

advanced on the frequency ratio axis and vice versa.

Notation

The following symbols are used in this paper:

a, b = dimensions of the plate like beam;

a＊, b＊=  x and y coordinates of the centre for the damage 
area;

Ai=  area of section of the undamaged laminate in  
direction;

Ai
＊=  reduced area (effective) of section of the damaged 

laminate in the  direction;

[D＊]= damaged stress strain matrix;
h = thickness of the plate like beam; 
[Ke]= elastic stiffness matrix;
[KG]= stress stiffness matrix for the unit load;
[K]= normalized stiffness matrix;
[M] = consistent mass matrix;
P (t) = magnitude of harmonic load at time t;
Pcr= non-dimensionalized buckling load;
{q} = global degrees of freedom;
u, v, w =  displacements in the X, Y and Z directions, 

respectively;

x, y= X and Y direction slopes;

,  = static and dynamic load factors, respectively;
 =  diagonal matrix of eigen values of the free vibration 

problem;
 = global degrees of freedom in normalized coordinates; 

 = extent of damage in a laminate in the  direction;
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