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Abstract

This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter 

method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation 

is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the 

least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain 

map over the region, determined by position error covariance. It is shown that the method could provide a more accurate 

solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares 

measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied 

in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to 

compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence 

probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after 

determining which of the filter properties is more significant at each mission.
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1. Introduction

Terrain referenced navigation (TRN) estimates an aircraft 

status, by using a radar altimeter to measure distance 

between terrain and the aircraft. TRN has been widely 

investigated since the 1980s [1-5], and it is usually integrated 

with an inertial navigation system (INS), to prevent drift error. 

The integration scheme is similar to the well-known GPS/

INS navigation. TRN compensates for drift, and provides a 

bounded navigation solution.

Filtering methods, such as a Kalman filter (KF), can 

be applied to TRN. However, because of the nonlinearity 

of the measurement equation, the KF cannot be used 

directly. Alternatively, an extended KF (EKF) linearizing 

measurement equation could be adopted. The linearized 

equation requires terrain slope calculation, for which the 

slope could be estimated, using the terrain map. When the 

position error between true and estimated positions is small, 

the estimated slope would be accurate; however, because of 

terrain nonlinearity, the accuracy may degrade as the position 

error increases. Because the Jacobian matrix of measurement 

equations in the EKF consists of the terrain slope, inaccuracy 

of the slope estimation could break the filter consistency. In 

other words, conventional EKF may no longer be valid, with 

large position error covariance. To overcome such a problem, 

various strategies have been employed in TRN, such as a bank 

of KFs [1], a particle filter [2], and an unscented KF [3].

In addition, Hostetler and Anderas [4] proposed the slope 

estimation method, using the least squares in EKF-based 

TRN. The method searches the best slope, in the least squares 

sense, representing the terrain map over the linearization 

region determined by the position error covariance. Reference 

[5] utilizes linear regression, composed by two least squares 

at latitude and longitude axes, respectively. In this paper, two 

slope estimation methods modifying the previous method 

[5] are proposed. One is planar regression, estimating the 
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slope using a plane, instead of the two lines of the previous 

linear regression. The method could incorporate correlation 

of the two axes, so the slopes could be more accurate than 

the previous one. The other method is weighted planar 

regression. By considering that the state is estimated using a 

Gaussian probability density function (pdf) in a KF, additional 

weights formed by the Gaussian pdf are multiplied to the 

proposed planar regression. Two Monte Carlo simulations 

are performed, to compare the performance between the 

previous and two proposed methods, by considering the 

filter divergence probability and convergence speed.

This paper is summarized as follows. Strapdown INS 

kinematics and EKF-based TRN are introduced in Section 

2. In Section 3, the previous and two proposed slope 

estimation methods are discussed. Monte Carlo simulations 

are conducted to compare performances between the three 

methods in Section 4, and a conclusion is given in Section 5.

2. Extended Kalman Filter Formulation

Strapdown INS kinematics are adopted to propagate 

aircraft status. An error-state is propagated, instead of the 

full-state, and the kinematic equations are described as

(1)

The error-state  is the difference between 

the estimated state  and true state . The term

 is composed of

of errors of position, velocity, Euler angle, IMU biases and 

barometer bias.  is a noise vector depending on the 

IMU specification, and components of F and G matrices 

determined by the aircraft status are derived in [6].

Measurements equations expressing the sensor outputs of 

radar altimeter and pressure altimeter are such that

(2)

where, ,  and  are sensor 

outputs, random noise and bias terms, respectively. ,  and 

h are latitude, longitude and height, respectively. Function 

hDB( , ) provides a terrain altitude at the ( , ) position. 

Eq. (2) can be re-written in error-state form, by linearizing 

the equation at , as

(3)

where,

(4)

Now, the error-state EKF can be directly formulated using 

kinematic equations, measurement equations and Jacobian 

matrices F, G and H.

3. Terrain Slope Estimation Methods

The Jacobian matrices in Eqs. (1) and (4) are state-

dependent, and this may cause filter divergence. In TRN 

in general, nonlinearity is more profound in measurement 

equation, than in kinematics. Jacobian H consists of terrain 

slope terms, so accurate slope estimation is essential to 

preserve filter stability. With the imprecise slope estimation, 

false fix of EKF could occur, and the filter could become 

unstable.

In conventional EKF, terrain slopes are estimated by 

taking partial derivatives along the latitude and longitude at 

the estimated position . This method is valid when ; 

however, estimation accuracy decreases as the position 

error becomes larger. To remedy such a problem, stochastic 

linearization (SL) is suggested in [4]. SL utilizes the least 

squares method to obtain the slopes. Fig. 1 depicts the 

method. In [5], two linear regressions are performed to 

obtain the slopes.

(5)

where,  and  are the sums of squares of residual 

errors along the two axes, respectively. Nx and Ny are the 

number of points to be used in least squares. The linearization 

region related to position covariance determines Nx and 

Ny.  and  denote each position in the estimated region, 

and their mean position is represented by  and . Terrain 

Fig. 1.  Terrain slope estimation, using least squares
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slopes are defined by a, b, and optimal slopes minimizing 

the sum of squares can be obtained using ,  

 conditions.

(6)

The variance of residual error shown in Fig. 1 can be given 

by

(7)

which is added to the sensor noise covariance, to incorporate 

the linearization error of slope estimation.

3.1 Planar Regression Method

In previous research [5], two linear regressions are 

applied, to derive terrain slopes at each axis. One axis is fixed, 

while the slope of the other axis is computed. For example, 

longitude is fixed at the mean position , when latitude slope 

 is obtained in Eq. (6). However, as the linearization 

region becomes larger, estimated slopes become inaccurate, 

because variation of the terrain altitude is coupled in the two 

axes. For such a case, a planar (bilinear) regression method 

could be proposed, to consider the coupling as

(8)

The two separate sums in Eq. (5) are merged into one 

summation over the linearization region. The optimal slopes 

minimizing   can be found by

(9)

In comparison with the linear regression of Eq. (6), the 

longitude  is no longer fixed to the mean value   in latitude 

slope estimation. The linearization error of planar regression 

is

(10)

The planar regression method using a plane instead of 

two lines could reflect the correlation of two axes in terrain 

altitude. By doing so, estimated slopes could be estimated 

more accurately than using linear regression, and it could 

enhance filter stability.

3.2 Weighted Least Squares Method

In a Kalman filter, the state is estimated based on 

a Gaussian probability density function (pdf). This 

characteristic could be applied in terrain slope estimation. 

In Eq. (8), the square of residual error is computed at 

each position in the linearization region. However, the 

probabilities of the estimated positions are different. To 

incorporate the difference, a Gaussian pdf can be utilized to 

generate a weight term at each position. By augmenting the 

weight, Eq. (8) can be modified to a weighted least squares 

problem, as

(11)

where,

(12)

 is a 2×2 matrix consisting of the estimated position 

Fig. 2.  Terrain slope estimation, using unweighted least squares

Fig. 3.  Terrain slope estimation, using weighted least squares
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covariance. The corresponding optimal slopes, and variance 

of linearization errors, are given by

(13)

(14)

Figures 2 and 3 depict the two slope estimation methods, 

unweighted least squares (LS) and weighted least squares 

(WLS). The estimated slopes are different, in spite of the 

same terrain and position covariance. The weighted residual 

error is represented by the shaded area. We can see that the 

weights are even in LS, whereas larger weights are multiplied 

for adjacent regions in WLS. From a probabilistic view, the 

probability that the true position is in the near region is higher, 

than in the far region. So, commonly, the slope of WLS could 

be more accurate than that of LS, and the filter convergence 

speed could be faster. However, the true position might be 

distant, and in that case, the conservative LS solution could 

be more applicable in maintaining filter stability. In fact, 

the true position is unknown, so in the next section, Monte 

Carlo simulation is conducted for various position errors, to 

compare the filter stability and convergence time between 

the two methods.

4. Simulation Results

The two proposed methods, planar regressions with 
unweighted and weighted least squares, are applied in 
artificial missions. Monte Carlo simulation is performed by 
varying the initial position, and estimated error of the initial 
position. Figure 4 describes 101 mission trajectories, with 
various starting points. The other simulation conditions are 
summarized in Table 1. Initial position errors at each starting 
point are drawn in Fig. 5. Eight samples are positioned in 
each error radius, defined by multiplication of the estimated 
standard deviation of the position error . The other initial 
errors are defined in Table 2. In addition, an initial error 
covariance is initialized with square of the errors, except 
that the position covariance is fixed, with the square of the 
smallest error radius .

4.1 Planar Regression Method

A performance comparison between the linear regression 
and planar regression is conducted. Table 3 represents 
the probability of filter divergence and convergence time 
according to the initial error radius in EKF, with the two 
methods. The convergence is defined as the position error in 
some boundary after a certain time, called the convergence 
time. In this simulation the grid distance of the map, 90m, is 
applied as the boundary. The last column in Table 3 denotes 
the weighted means of results at each initial error. A Gaussian 
pdf is applied as weights, and the values are 0.242 at 1  error 
radius, 0.054 at 2 , and 0.004 at 3 .

In Table 3, the probability of divergence increases as 
the position error grows, because the difference between 
the slopes at true and estimated positions becomes 

Table 1. Simulation conditions

Table 2. Initial state errors

Fig. 4. Trajectory samples

Fig. 5. Estimated position samples
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larger. Between the two slope estimation methods, 
the convergence times are similar, but the divergence 
probability is significantly reduced when the planar 
regression is employed. The simulation verifies that the 
slope could be estimated more accurately by using a plane, 
instead of two lines, and filter stability could be improved. 
Figures 6 and 7 describe the longitude error histories 
and planar trajectories at specific conditions, at 127.68o 
longitude and 300m initial error. In Fig. 6, the longitude 
error is well-bounded by the 3-sigma line with planar 
regression, but the filter is inconsistent and unstable in 
linear regression. The convergence characteristics can also 
be found in Fig. 7.

4.2 Weighted Least Squares Method

The filter properties of planar regressions with unweighted 
least squares (LS) and weighted least squares (WLS) are 
shown in Table 4. Simulation conditions and initial errors are 
summarized in Tables 1 and 2. In addition, the results of LS 
in Table 4 are identical with the planar regression results of 
Table 3. In Table 4, the convergence time is reduced about 20% 
in the smallest initial error 1 , when WLS is used instead of 
LS, while maintaining zero divergence probability. WLS uses 
larger weights than LS in adjacent regions, so the estimated 
slope could be more accurate when the initial error is small. 
Accurate estimation could make the filter convergence 

Fig. 6. Longitude error histories of linear (upper), and planar (bottom), 
regressions

Table 3. Filter properties of linear and planar regressions

Fig. 7. Two-dimensional trajectories of linear and planar regressions
Fig. 9. Two-dimensional trajectories of unweighted and weighted 

least squares

Fig. 8. Longitude error histories of unweighted (upper), and weighted 
(bottom), least squares
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speed faster. Figures 8 and 9 represent longitude errors and 
trajectories with 1  initial error at 127.5o longitude. In both 
graphs, the estimated position approaches the true position 
quicker with WLS, than with LS. 

However in Table 4, as initial error increases, the difference 
of convergence speeds shrinks, and the divergence 
probability of WLS rises more rapidly than of LS. The less 
stable performance than LS in large initial error is because 
the WLS applies small weights for the far region. For the large 
error case, slope estimation with LS could be more effective 
in preserving filter stability. In summary, the superiority 
between LS and WLS depends on the initial error magnitudes. 
In the last column in Table 4, two filter properties are 
averaged over various initial errors. Overall, the probability 
of divergence is lower with LS, but the convergence speed 
is faster with WLS. One of the slope estimation methods 
could be implemented, after determining which of the filter 
properties is more significant, at each mission.

5. Conclusion

Terrain slope estimation methods based on least squares 
are developed. One is the planar regression, which improves 
upon the previous linear regression, and the other is the 
weighted planar regression, which adds Gaussian-shaped 
weights to the proposed planar regression. Two Monte Carlo 
simulations are conducted to compare the performances 
between the previous and two proposed methods, by 
considering the filter divergence probability and convergence 
speed. In the first simulation, the probability of divergence 
is reduced, when planar regression is employed instead of 
linear regression. In the second simulation, the performance 
difference between planar regressions with weighted and 
unweighted least squares changes, as the initial error radius 
varies. After taking the averages over various initial errors, it 
is shown that the convergence time is shorter with weighted 
least squares; but the probability of divergence is lower 
with unweighted least squares. By considering which of the 
filter properties is more important at missions, either of the 

proposed slope estimation methods could be implemented.
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