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Abstract

The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper 

mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-

sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter 

(FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state 

equation is implemented according to the spacecraft’s kinematic attitude model, while the residual error models of GPS and 

star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors’ different 

update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To 

improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based 

on the principle of  residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms 

the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem 

encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice 

malfunctions correctly and effectively
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1. Introduction

In the field of precise attitude determination for spacecraft in 

near Earth orbit, it is possible to utilize many attitude sensors: 

3-Axis Rate Gyros, Star-Sensor, Sun-Sensor, Magnetometer, 

Infrared Horizon-Sensor, etc. These sensors offer various 

kinds of information, and thus lead to different attitude 

determination strategies. Methods such as the optimized 

TRIAD method [1], Q-method [2], Unscented Kalman Filter 

(UKF) [3], as well as the FKF method described in this paper, 

are prevalent. Basically, they are implemented according to 

the kinematic model of spacecraft attitude motion, achieving 

information fusion and global optimal estimation. By taking 

advantage of multi-sensors’ information while avoiding 

their disadvantages, these methods acquire higher attitude 

determination accuracy, and higher malfunction tolerance 

capacity. Thus it is possible to obtain attitude estimation that 

is better than single sensor observation accuracy. Or in other 

words, to fulfill the same attitude determination accuracy 

requirement of a system, it presumably decreases the demand 

in performance indices of each sensor, remarkably reducing 

the total budget of the attitude determination system [4]. 

However, the characteristics of different sensors differ greatly. 

As for the three attitude sensors utilized in this paper: 3-Axis 

Rate Gyros have excellent performance in a short period, 

whereas the residuals of observation attitude will accumulate 

quickly, and result in unacceptable accuracy in the long term; 

GPS is lower in price and mass, but it will be jammed easily by 

complicated space circumstance and high-dynamic relative 

motion between GPS satellites and the spacecraft; and Star-

Sensor is known to be the best attitude sensor, however, it 

will be interrupted by sunlight, and reflective light from the 

earth. What is more, it is extremely expensive, exerting great 

pressure on the attitude determination system budget [5].
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Another complex problem is the information fusion 

strategy of sensors. Generally speaking, the Kalman filter 

is a classical recursive filter, with good performance in 

dealing with white noise, and achieving optimal estimation 

[6]. To cope with the fusion process of useful information, 

Pearson issued the Federated Kalman Filter method, which 

introduces a process of erecting several subsystem filters, and 

centralizing the final information fusion step in a main filter, 

which eventually outputs the global estimation of a complex 

system [7]. Besides, these sensors have different update 

rates, bringing unavoidable interference to the ultimate 

information fusion process. To utilize all these information 

effectively, a variable step size state prediction Kalman 

filter is established. It updates and predicts a sensor’s state, 

when the sensor is in update gaps. When all the sensors’ 

observation data are accessible, their data are then allowed 

to be involved in a filtering process [8].

This paper is organized as follows: In section 2, two 

subsystem Kalman filters are established. In section 3, an FKF 

is established to acquire global estimation, and fault tolerant 

design is added, on the basis of  residual verification of the 

attitude determination system. Then, two variable step size 

state prediction methods are derived. Numerical simulation 

and analysis are described in section 4. Ultimately, in section 

5, the main conclusions and discussions are illustrated.

2. Subsystem Kalman Filter

2.1 Gyros/GPS Kalman Filter

The attitude determination residuals in quaternion form 

are set as main state variables, while the biases between the 

GPS’s outputted attitude and estimated attitude are set as 

observation variables.

2.1.1 State Equation

The state equation is designed by kinematic attitude 

motion, and is described in quaternion form as:

(1)

where, q is the quaternion form of attitude; and 

 means angular rate. The bias between real 

attitude quaternion q and estimated attitude quaternion  is 

set as . Its incremental form is:

(2)

Substituting equation (2) into equation (1), the following 

equation is obtained: 

(3)

where,  denotes the residual error of the angular rate. 

According to the criterion of quaternion multiplication:

(4)

The error quaternion is such a small value that 

, so

(5)

where,  denotes a high-order infinitesimal 

value. Neglecting the second-order and subsequent 

infinitesimal segment, the linearized quaternion equation is 

described as:

(6)

The superscript a represents the anti-symmetrical 

transformation process of a matrix.

(7)

On the basis of the gyro’ observation equation, equation 

(6) is transformed into:

(8)

 represents the gyros’ measurement noise. In this paper, 

the residual error of attitude is in quaternion form, and the 

gyros’ time correlated drift d and gyros’ constant drift b are 

also selected as state variables:

(9)

Thus, the state equation is described as below,

(10)

where,
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(11)

 is the correlated time constant. According to the 

standard Extended Kalman Filtering process:

(12)

where,  is the state transition matrix from tk-1 to tk. 

Assuming that t=tk-1,

(13)

where, T is the filtering cycle of filter; and Wk-1 is the sequence 

of system noise, fulfilling the following condition:

(14)

where, Qk denotes the error variance matrix of state.

(15)

 represents the mean square deviation of the gyros’ drift 

white noise.

2.1.2 Observation Equation

The output of the GPS dual-baselines attitude 

determination system is in Euler-angle form. The residuals 

(difference between GPS observed attitude and estimated 

attitude) of GPS observation are selected as the observation 

variables in the Extended Kalman Filter. 

(16)

Then, the observation equation is described as below:

(17)

Equation (17) is then linearized into:

(18)

where, Hk is the relevant matrix of the observed variables. 

Since the quaternion value twice the Euler angle when the 

attitude is of tiny value, the observation matrix is derived as:

(19)

Vk is the sequence of observation noise, fulfilling the 

following condition:

(20)

Rk is the error variance matrix of the observation variables.

2.2 Gyros/Star-sensor Kalman Filter

In this filter, the residuals between the star-sensor’s 

attitude observation (in quaternion form) and estimated 

attitude are set as observation variables. To correspond 

to the estimated attitude, it is necessary to transform the 

quaternion attitude into Euler angles, as described in the 

following equations:

Firstly, all the quaternion must be in unit vector form:

(21)

Thus, the Euler attitude can be calculated by:

(22)

where,  represent three Euler angles: yaw, pitch and 

roll, respectively.

 

3. Kalman Filtering Strategy 

Two Kalman filtering strategies are utilized in this paper: 

the variable step size state prediction Kalman filter and the 

Federated Kalman Filter.

3.1 Variable Step Size State Prediction Kalman Filter

Different attitude sensors have different update rates, so 

it is crucial to utilize their data at maximum efficiency. In 

this paper, the gyros have a much higher update rate (20Hz), 

than the GPS (1Hz) and star-sensor (5Hz). In the variable 

step size state prediction Kalman filtering process, if the 

observation data of the GPS and star-sensor are unavailable, 

only the filters’ state variables are updated. As soon as 

the observation information is accessible, both state and 

observation variables are simultaneously updated.

3.1.1 Prediction without Observation Update

During the update gap of GPS and star-sensor at instant 

, these two sensors do not output any 
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observation information. Then, the gyros’ data is utilized, to 

predict state variables:

(23)

where,  is the filtering cycle, and is set as the gyros’ update 

period (0.05s); and  is the state transition matrix. 

The prediction of error covariance matrix is described as:

(24)

3.1.2 Observation Update

Taking the star-sensor as an example, the star-sensor’s 

output is possible at instant , then the prediction 

process of state and observation variables is described as:

(25)

3.1.3 Calibrating Quaternion and Gyros’ Drift

After acquiring the optimal prediction state:

(26)

Calibrating the gyros’ time related drift, and constant drift:

(27)

Thus the calibrated state in quaternion form is:

(28)

Considering the constraint that the magnitude of 

quaternion equals to 1:

(29)

3.2 Federated Kalman Filtering Strategy

The Federated Kalman Filter consists of two independent 

subsystem filters, and one main filter, which fuses the 

subsystem filters’ information, and outputs the global 

estimation. It introduces the feedback of global estimation, 

and leads to a higher fault tolerant capacity.

3.2.1 Filtering Strategy

Fig. 1 describes the FKF designed in this paper.

The output of the subsystem is the state estimation X 

and error covariance matrix P [9], and β is the information 

allocation coefficient. In the main filter, all information is 

fused, based on the equations:

(30)

The significance of this method is obvious: if the 

precision of  is very bad, namely Pi is very large, then its 

contribution   to final estimations should be very 

small. It is also significant to choose appropriate information 

allocation coefficients, while utilizing FKF [10]. In this paper, 

an adaptive coefficient choosing strategy is used:

(31)

where, tr represents the trace of a matrix.

Then, these feedbacks are utilized, to replace the 

subsystems’ filtering information, when global estimation 

is obtained after fusion of the subsystem’ state and error 

Fig. 1. Flow chart of the Federated Kalman filter
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covariance matrix in the main filter.

(32)

The update sequence of three sensors in 1 second is 

described in Fig. 2.

Obviously, all three sensors update at the instant when the 

GPS updates. It is a cycle of an integral FKF filtering process. 

3.2.2 Malfunction Warning Factor

A malfunction warning factor, for checking whether or not 

a subsystem meets malfunction, is indispensable. There are 

two main checking methods: state  verification strategy, 

and  residual verification strategy. The former method does 

not introduce observation information, thus it is insensitive 

to detecting an observation sensor’s malfunction, while 

the latter method overcomes this disadvantage [11]. The   

residual verification strategy is briefly described as below.

As for a subsystem Kalman filter, its residual is:

(33)

where, the state vector is predicted by the equation:

(34)

According to the filtering theorem, the residual is white 

noise with dispersion, as:

(35)

Assuming a malfunction function as:

(36)

It follows a  distribution with n (the dimensions of the 

observation vector) freedom. Then a malfunction warning 

factor is assumed as:

(37)

where, i denotes the index of subsystem filters. If 0<lk≤1, 

it means that no malfunction exists, while the opposite 

condition illustrates malfunction. TD represents the criterion 

of fault warning, and is determined by the statistical result of 

numerous calibrated experiments for a specified system [12].

Obviously, when malfunction occurs in a subsystem, 

its output should not be input into the main Kalman filter, 

or at least its weight should be decreased significantly. 

In this paper, the former conducting method is utilized, 

and the corrected output of FKF is utilized to replace the 

malfunctioned subsystem’s observation information. 

Assuming that the first subsystem goes wrong, all its 

information should be ignored. Then the final estimations of 

the system state variables are:

(38)

Updating the malfunctioned subsystem’s observation 

information as:

(39)

These two procedures assist in decreasing the impact of 

malfunction to a maximum extent.

4. Simulation and Analysis

The main performance indexes of the three sensors are 

described in Table.1.

Fig. 3 describes the attitude determination accuracy, by 

utilizing the GPS only.

Obviously, the attitude determination accuracy is very low, 

before the double-differenced integer ambiguities are fixed 

by the LAMBDA method [13]. However, with the progressive 

improvement of the fixing success rate, the determination 

accuracy tends to be much better, with the best statistical 

accuracy of (0.08°, 0.08°, 0.06°, STD) in Euler angles. Thus, 

the time of successfully resolving the integer ambiguity must 

be considered. In the following segment of this paper, all GPS 

observation data is collected, after the LAMBDA method has 

consecutively worked for more than 70 seconds (the time 

of 100% fixing success rate, got by 1000 times Monte Carlo 

Fig. 2. The update sequence of three sensors in 1 second (color repre-
sents update instant) Fig. 3. Euler attitude determination accuracy by the GPS
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statistical result).

Fig. 4 describes the attitude determination accuracy 

trends of the two subsystem filters and FKF.

In Fig. 4, the blue line stands for the accuracy of the Gyros/

GPS filter, the red line represents the Gyros/Star-sensor 

filter, and the green line denotes the final accuracy of the 

FKF. Clearly, the accuracy of the Gyros/Star-sensor filter 

converges quickly, while that of the Gyros/GPS converges 

much slower. FKF’s accuracy almost coincides with that of 

the Gyros/Star-sensor. Their statistical results are illustrated 

in Table 2.

The final global estimation of FKF nearly approaches the 

Gyro/Star-sensor’s result. That is mainly because both gyros 

and star-sensor are of much higher observation accuracy 

than the GPS, thus the Gyro/Star-sensor subsystem occupies 

a larger weight in FKF. In this process, the fault warning 

criteria (TD) of two subsystem filters are obtained. 

Assume that from 1000s to 1200s, the star-sensor is in 

fault, with malfunctioned observation accuracy at 10 times 

worse than usual. From 1400s to 1600s, the GPS runs out at 

the same level. The attitude determination accuracy of FKF 

and the two subsystem filters are described in Fig. 5.

Clearly, FKF is influenced drastically when the star-sensor 

malfunctions, because the FKF considers the star-sensor as 

normal accuracy, and does not adapt its weight. However, in 

this period, it still performs better than the malfunctioned 

Gyros/Star-sensor subsystem, indicating that the Gyros/GPS 

subsystem works effectively, to calibrate the FKF. When the 

GPS is in malfunction, the  FKF is hardly being interrupted, 

because it occupies a slight weight in the FKF. As a whole, the 

FKF has a good malfunction tolerance performance. Table 3 

describes the statistical results.

To check the performance of malfunction-modified 

procedure, another simulation with the same malfunction 

condition is analyzed. The varying trend of malfunction 

warning factors in this simulation circumstance is described 

in Fig. 6.

Obviously, the malfunction warning factors alarm 

all malfunction periods precisely and correctly. Adding 

malfunction tolerant design to the FKF, the attitude 

determination accuracy compared with no-malfunction FKF, 

and malfunction un-modified FKF, is described in Fig. 7.

Table 1. Simulation parameters

Fig. 4. The attitude determination accuracy trends by three Kalman filters

Table 2. Statistical result of Euler attitude (1800s, STD)
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It can be seen from Fig. 7 that the FKF with the modified 

malfunction procedure achieves better accuracy than the 

un-modified one. The statistical results are described in 

Table 4.

Clearly, after being modified by the strategy proposed in 

this paper, the FKF’s final attitude determination accuracy 

approximately approaches the no-malfunction situation. 

This indicates that the strategy effectively avoids the impact 

of malfunction.

5. Conclusion and Discussion

In this paper, an attitude determination strategy for 

spacecraft based on the information fusion of Gyros/

GPS/Star-sensor was demonstrated. In the information 

fusion process, two subsystem Kalman filters were firstly 

established. To cope with the problem of the different sensors’ 

update rates, they were both designed with variable step size 

state prediction strategies. Finally, an FKF with malfunction 

warning design was established; the output of the subsystem 

filters’ state and error covariance matrix were selected as the 

input of the main filter. The final result indicated that the FKF 

effectively negated the impact of possible malfunction.

This paper analyzed these problems based on the 

numerical simulation process; however, it did not take into 

consideration a sophisticated model of each sensor, and 

the simulation circumstance was of relatively ideal quality. 

In real applications, the pre-processing of real space-borne 

sensor data is another important problem. Besides, the FKF 

designed in this paper could not consistently obtain optimal 

estimation. These issues should be paid attention to in future 

research.
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Fig. 5. The attitude determination accuracy, when malfunctions occur 
            in a subsystem

Table 4. Statistical result of the Euler attitude (1800s, STD)Table 3. Statistical result of the Euler attitude (1800s, STD)

Fig. 6. Malfunction warning factors of two subsystem filters

Fig. 7. Three kinds of FKF accuracy
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