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Abstract

This work investigates the orbital perturbations of the cubesats that lie on LEO due to Earth albedo. The motivation for this 

paper originated in the investigation of the orbital perturbations for closed- Earth pico-satellites due to the sunlight reflected 

by the Earth (the albedo). Having assumed that the Sun lies on the equator, the albedo irradiance is calculated using a 

numerical model in which irradiance depends on the geographical latitude, longitude and altitude of the satellite. However, in 

the present work the longitude dependency is disregarded. Albedo force and acceleration components are formulated using 

a detailed model in a geocentric equatorial system in which the Earth is an oblate spheroid. Lagrange planetary equations in 

its Gaussian form are used to analyze the orbital changes when e≠0 and i≠0 . Based on the Earth’s reflectivity data measured 

by NASA Total Ozone Mapping Spectrometer (TOMS project), the orbital perturbations are calculated for some cubesats. The 

outcome of the numerical test shows that the albedo force has a significant contribution on the orbital perturbations of the 

pico-satellite which can affect the satellite life time. 

Key words: �cubesat specifications, terrestrial albedo, NASA Total Ozone Mapping Spectrometer (TOMS Project), radiative force, 

geocentric equatorial coordinate systems, Lagrange planetary equations.

1. Introduction

Recently, there is significant interest in developing a new 

class of standardized pico-satellites called cubesats. Cubesats 

have been the best choice for universities and research 

institutes toward starting space technology developments. 

The mass of the cubesat is restricted to be 1 kg and its size is 

confined to be .1 m on all sides. This small size is considered 

as the main advantage of cubesats which enable them to be 

launched as an auxiliary payload and result in less cost and 

test requirements. The surface of the cubesat is covered by six 

aluminum plates, each of which has a solar chip attached to 

it. The majority of these satellites are placed in a low Earth sun 

synchronous orbit (the inclination is close to 98o) [1] and [11].   

Many factors affect the satellite orbital motion. The Earth 

gravitational field has the master role in perturbing the 

satellite dynamical motion. However, the non-gravitational 

factors (e.g. solar radiation pressure, air drag, luni-solar 

attraction… etc) play a significant role in perturbing the orbital 

motion. Several authors have performed a suite of studies and 

models to illustrate those effects on various types of satellites 

and orbits. Over the last few years, a vast knowledge of natural 

radiation pressure effects on satellite dynamics and rotation 

has been achieved. The main contribution of the natural 

radiation pressure is due to the direct solar radiation so a 

variety of models were constructed to estimate their force 

[2], [3], [9], [11], and [19]. The second main contribution of 

radiation forces is due to the Earth reflected radiation known 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	*	 Ph.D, Corresponding Author : Asmaa_2000_2000@yahoo.com
		  **	 Ph.D



DOI:10.5139/IJASS.2013.14.2.193 194

Int’l J. of Aeronautical & Space Sci. 14(2), 193-199 (2013)

as the albedo. It is an extremely complex phenomenon which 

shows relevant spatial and temporal variations. Albedo 

depends upon the reflectivity of the illuminated surface of 

the Earth that is visible to the spacecraft, the solar angle, and 

the position of the spacecraft in space. Moreover, it depends 

on seasonal variations and geographical longitude and 

latitude of the Earth surface that is illuminated by the Sun 

and seen by the satellite [4], [6] and [17].

Based on a new numerical modeling of the albedo in which 

the irradiance is calculated depending on the geographical 

latitude, longitude and altitude of the satellite, the main 

issue of this work is to investigate the orbital perturbations of 

the cubesats lying on LEO due to Earth albedo.

1.1 The Albedo Irradiance

The albedo irradiance, which reaches the satellite surface, 

is determined using a numerical model. This model is based 

on partitioning the Earth surface into a number of cells 

forming a grid. Then the incident solar irradiance on each 

cell is used to calculate the total radiant flux. The total albedo 

irradiance, S, at the satellite surface is given by [4] and [6]:
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solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 
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where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 
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                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is the set of grid points that are illuminated 

by the Sun and visible by the satellite, 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is the 

reflectivity of the grid points of latitude 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 and longitude 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

, 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is the incident solar irradiance 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is 

the unit vector normal to the grid cell and ρsun are ρset unit 

vectors directed from the grid center to the Sun and satellite 

, respectively. The cell area 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is found using the surface 

revolutions as in [4] and [6]:

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

(2)

where 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 and rE is the Earth mean radius. 

It was obvious that the albedo irradiance had a large 

dependency on the geographical latitude of the grid points. 

The maximum albedo is observed over the poles and 

decreased by moving away from them and towards the 

shadow side of the Earth. Moreover, there is a significant 

dependency on the longitude and the solar angle, where 

albedo has maximum values for low solar angles [6], [16] 

and [17]. However, as previously mentioned, the longitude 

dependency is disregarded in this work.

These equations represent the albedo contribution of 

a single Earth cell. However, the sunlit area visible to the 

satellite is decomposed into a definite number of cells. So, 

the total albedo irradiance reaching to the satellite can be 

obtained by summing up the contribution of each cell [6] 

and [17]:

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

(3)

where k is defined as the number of illuminated Earth cells 

visible from the satellite.

1.2 The Albedo Force.

The total radiant force exerted on a flat non-perfectly 

reflecting surface is given by [13]:                                       

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

(4)

where,

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

(5)

where 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 

 is a unit vector directed through the force direction, 

c is the speed of light and S is the radiation irradiance at 

the satellite surface, 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the  is the radiation incident angle to the 

satellite surface normal, β is the satellite surface specularity, 

ρ' is the satellite surface reflectivity, Bf and Bb are the non-

Lambartian coefficient of the front and back surfaces of 

the spacecraft, respectively, α' is the spacecraft absorption 

coefficient, and εf and εb are the front and back satellite 

surface emissivity, respectively. 

For non-perfectly reflecting surfaces, the force vector, 

-3- 

where Sun SatV V  is the set of grid points that are illuminated by the Sun and visible by the satellite,  ( , )g g    is 

the reflectivity of the grid points of latitude g   and longitude g , 2
0 1367 /AME W m  is the incident solar 

irradiance ˆCn   is the unit vector normal to the grid cell and 늿 andSun Sat   are unit vectors directed from the 

grid center to the Sun and satellite , respectively. The cell area ( )C gA   is found using the surface revolutions 

as in [4] and [6]: 

                                       2( ) [cos( ) cos( )]
2 2

g g
C g g E g gA r

 
        ,                                                 (2) 

where 1.25 , 1o o
g g    and  Er  is the Earth mean radius.  

 It was obvious that the albedo irradiance had a large dependency on the geographical latitude of the grid 

points. The maximum albedo is observed over the poles and decreased by moving away from them and 

towards the shadow side of the Earth. Moreover, there is a significant dependency on the longitude and the 

solar angle, where albedo has maximum values for low solar angles [6], [16] and [17]. However, as 

previously mentioned, the longitude dependency is disregarded in this work. 

These equations represent the albedo contribution of a single Earth cell. However, the sunlit area visible to 

the satellite is decomposed into a definite number of cells. So, the total albedo irradiance reaching to the 

satellite can be obtained by summing up the contribution of each cell [6] and [17]: 

                                                   
1

k

total i
i

S S


  ,                                                                                      (3) 

where k is defined as the number of illuminated Earth cells visible from the satellite. 

1.2 The Albedo Force. 

The total radiant force exerted on a flat non-perfectly reflecting surface is given by [13]:                     

                                                                  ˆf f m                                                                            (4) 

where, 

                       



4 3

1 22 2 2

4 cos 2(1 )( (1 ) )cos

{( (1 ) ) (1 ) }cos

f f b b
f

f b

f f b b
f

f b

B BSAf B
C

B B
B

  
                

  
          

  

                          (5) 

where m̂  is a unit vector directed through the force direction, c is the speed of light and S  is the radiation 

irradiance at the satellite surface,   is the radiation incident angle to the satellite surface normal,   is the 
, is not directed normal to the surface. But, it inclines by an 

angle 

-4- 

satellite surface specularity,   is the satellite surface reflectivity, fB  and bB  are the non-Lambartian 
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coefficient, and f and b  are the front and back satellite surface emissivity, respectively.  

For non-perfectly reflecting surfaces, the force vector, m̂ , is not directed normal to the surface. But, 

it inclines by an angle , known as the cone angle, to the incident direction as depicted in figure 1. So, the 

force components in the incident direction will be: 
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     It is worth noting that the spacecraft is decomposed into a finite number of small elementary surfaces. 

Consequently, the total force acting on the cubesat is considered to be the sum of all forces acting on each 
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where k is the number of satellite surfaces and ( )ia t . 
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where ea  is the Earth’s Equatorial radius, ef   is the Earth’s flattening, g is the geodetic latitude of the grid 

point, h is the height above  sea level and   is the sidereal time. 
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where   is the longitude of the ascending node,   is the argument of perigee,   is the true anomaly , i  the 

inclination, a  is the semi-major axis and e  is the eccentricity.  Using the geocentric coordinate system, the 

incident radiation vector is:  
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2.4 Acceleration Components 

The acceleration experienced by a satellite of mass M and cross sectional area A is: 
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a
M
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The radial components of the disturbing accelerations, S is given by:  

ˆ.S a r
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On account of the different area to mass ration of each cubesat, the constant �� � ��� � ����  is used for 

1U cubesat, where �� � ��� � ����  is used for 2U cubesat and �� � ��� � ����  is used for 3U cubesat in 

case the radiation falls normal to the satellite surface (i.e. � � �).  

     Perturbations of the orbital elements 

For orbits of 0e   and 0i  , the effect of radiation pressure on the satellite’s orbital elements; the semi-

major axis a , the eccentricity e , the mean anomaly M, the inclination i , the longitude of the node   and the 

argument of the perigee  can be evaluated using the general perturbation equations of Gauss [18].  

The variation of M contains both mean motion of the osculating ellipse and the effect of the perturbations. 

So, to find an element that changes slowly with a time derivative going to zero, a new variable,  , will be 

defined as [18]: 

 

                                    ( )M t    ,             ( )
o

t

t

n t dt  


                                                       (20) 

where ( )M t  is the osculating mean anomaly at time t and n  is the mean motion. The perturbation 

equations are obtained as functions of the acceleration components S , T and W  as the following [18]: 
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     It is worth noting that the spacecraft is decomposed into a finite number of small elementary surfaces. 

Consequently, the total force acting on the cubesat is considered to be the sum of all forces acting on each 

elementary surface [3], [10] and [14]. At a given time, the total radiant acceleration affecting the spacecraft 
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where k is the number of satellite surfaces and ( )ia t . 

2.5 Albedo force on Cubesats                                                                                                                      

     The Cubesat is a cube shaped picosatellite constrained to CalPoly’s specifications. The structure of these 

cubesats may be consisted of one cube “1U”, two cubes “2U” or three cubes “3U” as specified in table 1 [5] 
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[5] and [12]:    

 Component Material Thermal finishing Absorption 

coefficient �̀ 

Emissivity 

� 

Aluminium frame  Aluminium 5052 

alloy  

Alodine 0.08 0.15 

Aluminium frame 

rails 

Aluminium 6061 

or 7075 alloy  

Hard anodized 0.88 0.88 

 Inside Aluminium Aluminium 7075 Alodine - 0.1 

The Cubesat configuration  Mass (kg) Dimensions 

1U 1    ���� � �� �� � ������ 

2U 2 ���� � �� �� � ����  

3U 4 ���� � �� �� � ���� 

Table 1 Area and mass of 1U and 3U cubesats.  
Table 2. Main characteristics of the cubesat external structure

-7- 

2

2

2 2

3 1( ( (1 ) )
2 2

1 3(1 ) ) (1 )( (1 ) )cos
2 2

1 1 1(2 ( ) (1 ) )cos2 (1
2 2 2

)( (1 ) )co

f f b b
f

sat f b

f f b b
f

f b

f f b b
s f d s

f b

f f b b
f

f b

B BS AW B
c M

B B
B

B B
B

B B
B

 
    

  

 
       

 

 
    

 

 
    

 

        


         



         




    





1 2

1 2

1s3 cos4
2

[ cos sin sin( ) sin cos ]cos .G i G i

   

   

 
    

                                           (18) 

 

     It is worth noting that the spacecraft is decomposed into a finite number of small elementary surfaces. 

Consequently, the total force acting on the cubesat is considered to be the sum of all forces acting on each 

elementary surface [3], [10] and [14]. At a given time, the total radiant acceleration affecting the spacecraft 

is 

       
1

( ) ( )
k

i
i

a t a t


                                                                      (19) 

where k is the number of satellite surfaces and ( )ia t . 

2.5 Albedo force on Cubesats                                                                                                                      

     The Cubesat is a cube shaped picosatellite constrained to CalPoly’s specifications. The structure of these 

cubesats may be consisted of one cube “1U”, two cubes “2U” or three cubes “3U” as specified in table 1 [5] 

and [12].  

     

 

 

 

 

 

The cubesat’s thermo-optical properties are also constrained to CalPoly's specifications as tabulated in table2 

[5] and [12]:    

 Component Material Thermal finishing Absorption 

coefficient �̀ 

Emissivity 

� 

Aluminium frame  Aluminium 5052 

alloy  

Alodine 0.08 0.15 

Aluminium frame 

rails 

Aluminium 6061 

or 7075 alloy  

Hard anodized 0.88 0.88 

 Inside Aluminium Aluminium 7075 Alodine - 0.1 

The Cubesat configuration  Mass (kg) Dimensions 

1U 1    ���� � �� �� � ������ 

2U 2 ���� � �� �� � ����  

3U 4 ���� � �� �� � ���� 

Table 1 Area and mass of 1U and 3U cubesats.  

-8- 

panels  alloy 

Aluminium panels 

outside 

Aluminium 7075 

alloy 

Kepton foil 0.87 0.81 

Solar cells Triple junction 

GaAs cells 

Anti-reflecting coating 0.91 0.81 

PCBs FR4 - - .8 

Battery Pack Plastic - - .8 

 

 

Based on Eqs. 15, 17 and 18 and make use of the thermo-optical properties and area to mass ratio of cubesats, 

the acceleration components experienced by a cubesat are given by the following equations: 

1

2

1 [ cos (cos( )cos( ) sin ( )sin( )cos )

sin sin sin( )]cos .
sat

C SS r G i

G i

      


   

         

 


 

  

1

2

1 [ cos (cos ( )sin( ) sin ( )cos( ) cos )

sin sin sin( )]cos ,
sat

C ST G i

G i

      


   

        

 


 

1 2
1 [ cos sin sin( ) sin cos ]cos .
sat

C SW G i G i   


    

 

On account of the different area to mass ration of each cubesat, the constant �� � ��� � ����  is used for 
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For orbits of 0e   and 0i  , the effect of radiation pressure on the satellite’s orbital elements; the semi-

major axis a , the eccentricity e , the mean anomaly M, the inclination i , the longitude of the node   and the 

argument of the perigee  can be evaluated using the general perturbation equations of Gauss [18].  

The variation of M contains both mean motion of the osculating ellipse and the effect of the perturbations. 

So, to find an element that changes slowly with a time derivative going to zero, a new variable,  , will be 
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where ( )M t  is the osculating mean anomaly at time t and n  is the mean motion. The perturbation 

equations are obtained as functions of the acceleration components S , T and W  as the following [18]: 
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panels  alloy 

Aluminium panels 

outside 

Aluminium 7075 

alloy 

Kepton foil 0.87 0.81 

Solar cells Triple junction 

GaAs cells 

Anti-reflecting coating 0.91 0.81 

PCBs FR4 - - .8 

Battery Pack Plastic - - .8 
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where E is the eccentric anomaly.  

2. Numerical Application 

Having implemented the Earth’s reflectivity data measured by NASA’s Earth Probe satellite, which is part of 

the TOMS project (Total Ozone Mapping Spectrometer) [15], the Earth’s reflectivity as a function of 

latitudes is illustrated in fig. 2.   

 

 

 

 

 

 

 

 
Fig. 2 Latitude dependency of Earth’s reflectivity during the local summer 
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As illustrated in Fig. 2, the albedo has a maximum value of ~ 88 % over the latitude of 88.75 South 

(close to the South Pole). However, it has a minimum value �� ~ 1��8 % over the latitude of 1.25 South 

(close to the equator). 

In the present work, the albedo force is calculated for some LEO cubesats of different configuration and 

perigee heights. The results are tabulated in the following table:  
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value is in the order of ~ 10��� N which is experienced by a cubesat of ~ 823 perigee height.  

The dependency of the albedo force on the orbital eccentricity is studied. Some cubesats are chosen 

approximately for the same inclination and different eccentricities and arranged in ascending order 

according to their eccentricities. The results showed that albedo force depends directly on the 

orbital eccentricity as seen in table 2.     

 

 

 

 

 

 

  

 

 

Satellite NORD 
ID 

Perigee 
height 
[km]

i E Maximum Albedo 
Force[N] 

Minimum Albedo 
Force[N] 

XaTcobeo                  (1U) 38082 314.4 69.48o .068 1�� � 10�� 1�� � 10�� 
SEED                         (1U) 32791 613.8 97.78o 0.01 � � 10�� 1�� � 10�� 
CAPE 1                      (1U) 31130 650.3 97.89o .010 1�� � 10�� 1�� � 10�� 
CSTB 1                      (1U) 31122  651.9 97.86o 0.084 ��� � 10�� ��� � 10�� 
SAUDICOMSAT 6   (1U) 31121  655.1  97.85o 0.079 ��� � 10�� ��8 � 10�� 
SAUDICOMSAT 4   (1U) 31127  656.1  97.84o 0.069 ��� � 10�� ��� � 10�� 
SAUDICOMSAT 7   (1U) 31119  657.4  97.83o 0.061 ��� � 10��     � � 10�� 
SAUDICOMSAT 5   (1U) 31124  658.2  97.83o 0.052 ��8 � 10�� ��� � 10�� 
SAUDICOMSAT 3   (1U) 31125  659.1  97.83o 0.043 ��� � 10�� ��� � 10�� 
BEESAT                    (1U) 35933 714.8 98.35o .075 ��� � 10�� ��� � 10��� 
       
Cute-1.7+APD           (2U) 32785 616.7 97.78o .013 1�� � 10�� 1�� � 10�� 
            
CANX-2                    (3U) 32790  616.2  97.78o 0.014 1�� � 10�� ��� � 10�� 
MAST                       (3U) 31126 650.4 97.87o .094 ��8 � 10�� ��� � 10�� 
QUAKESAT             (3U) 27846 823.3 98.71o .083 ��� � 10�� 1�08 � 10��� 

Satellite i e Maximum Albedo 
Force[N] 

CSTB 1                     (1U)  97.86o 0.084 1�� � 10�� 
SAUDICOMSAT 6   (1U)  97.85o 0.079 1 � 10�� 
SAUDICOMSAT 4   (1U)  97.84o 0.069 ��� � 10�� 
SAUDICOMSAT 7   (1U)  97.83o 0.061 1�� � 10�� 
SAUDICOMSAT 5   (1U)  97.83o 0.052 ��8 � 10�� 
SAUDICOMSAT 3   (1U)  97.83o 0.043 ��� � 10�� 
CAPE 1                 (1U) 97.89o 0.010 ��1 � 10�� 

Table1.  Albedo force affecting on LEO cubesats of different perigee 
heights and area to mass ratio for one satellite revolution. 

Table2 Dependency of albedo force on the orbit eccentricity. 
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height. 

The dependency of the albedo force on the orbital 

eccentricity is studied. Some cubesats are chosen 

approximately for the same inclination and different 

eccentricities and arranged in ascending order according 

to their eccentricities. The results showed that albedo force 

depends directly on the orbital eccentricity as seen in table 2.    

The mean orbital perturbations of the orbital elements are 

studied and illustrated in table 3.

Based on the tabulated results in table 3, the maximum 

perturbations of the semi-major axis, eccentricity and 

argument of perigee are in the order of ~10-4, 10-10 and 10-9, 

respectively. However, the minimum values are in the order 

of ~10-6, 10-12 and 10-11, respectively. 

The perturbations of the semi-major axis, eccentricity and 

argument of perigee of the satellite XaTcobeo are illustrated 

in details over one revolution in the following figs 3- 5:

As illustrated previous figures, the maximum albedo 

perturbations for the semi-major axis, eccentricity and 

argument of perigee were experienced by the satellite when 
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effects over one satellite revolution. 

Fig. 3 Perturbation of the semi-major axis of XaTcobeo due to albedo 
effects over one satellite revolution. 

Fig. 4 Perturbation of the orbit eccentricity of XaTcobeo due to albedo 
effects over one satellite revolution. 
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The mean orbital perturbations of the orbital elements are studied and illustrated in table 3. 
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As illustrated previous figures, the maximum albedo perturbations for the semi-major axis, eccentricity and 

argument of perigee were experienced by the satellite when it passes close to the Earths poles where the 

Earth’s reflected radiation has its maximum percentage. However, the minimum perturbations occurred 

when the satellite passes close to the Earths equator. 

3. Conclusion

    A simple analytical model of the terrestrial albedo force was constructed w.r.t. the geocentric equatorial              

coordinate system in which the Earth was considered as an oblate spheroid.  

The current numerical test has validated that the albedo force has significant contribution on the satellite   

dynamics and also a great dependency on the geodetic latitudes which depends on the satellite field of view. 

The maximum albedo force is in the order of ~ 10�� N. Nevertheless, the minimum value is in the order of ~ 

10��� N.  

The results show that the maximum perturbations of the semi-major axis, eccentricity and argument of 

perigee are in the order of 10��, 10��� and 10��,, respectively. However, the minimum values are in the 

order of ~10��, 10��� and 10���, respectively. Therefore, we can conclude that the effects of the albedo 

have a considerable disturbance on the orbit and it can affect the cubesats life time.  

 

4. Future work 

 In our future work, the Sun’s apparent path (the ecliptic) in the theoretical modelling and 

application will be considered. Moreover, the dependency of the albedo intensity on the Earth’s 

longitude is to be investigated. 

Fig. 5 Perturbation of the argument of perigee of XaTcobeo due to albedo 
effects over one satellite revolution. 

Fig. 5. �Perturbation of the argument of perigee of XaTcobeo due to albedo effects over one satellite revolution
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it passes close to the Earths poles where the Earth’s reflected 

radiation has its maximum percentage. However, the 

minimum perturbations occurred when the satellite passes 

close to the Earths equator.

3. Conclusion

A simple analytical model of the terrestrial albedo 

force was constructed w.r.t. the geocentric equatorial              

coordinate system in which the Earth was considered as an 

oblate spheroid. 

The current numerical test has validated that the albedo 

force has significant contribution on the satellite dynamics 

and also a great dependency on the geodetic latitudes which 

depends on the satellite field of view. The maximum albedo 

force is in the order of ~ 10-7 N. Nevertheless, the minimum 

value is in the order of ~ 10-10 N. 

The results show that the maximum perturbations of the 

semi-major axis, eccentricity and argument of perigee are 

in the order of 10-4, 10-10 and 10-9, respectively. However, 

the minimum values are in the order of 10-6, 10-12 and 10-11, 

respectively. Therefore, we can conclude that the effects of 

the albedo have a considerable disturbance on the orbit and 

it can affect the cubesats life time. 

4. Future work

In our future work, the Sun’s apparent path (the ecliptic) in 

the theoretical modelling and application will be considered. 

Moreover, the dependency of the albedo intensity on the 

Earth’s longitude is to be investigated.
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