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Abstract

This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. 

KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin 

mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in 

the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design 

parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. 

They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists 

of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before 

the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System 

Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic 

devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison 

of parachute on the high speed taxiing were performed. 
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1. Introduction

KC-100 is a prop single-engine civil aircraft that 

was developed to obtain a type certificate KAS(Korean 

Airworthiness Standards) Part 23 from KCACC (Korea Civil 

Aviation Certification Center). According to the KAS part23, 

newly developed general light aviation airplane should 

recover from the spin.

The spin maneuver is divided into three stages as depicted 

in Fig.1 - incipient spin, developed spin, and spin recovery. 

During the incipient spin stage, deliberate spin is initiated by 

slowing the airplane speed in order to increase the yawing 

motion. Incipient spin is the transition between the departure 

and the developed spin. In this phase, aircraft flight path is 

changed from horizontal to vertical, and the angle-of-attack 

of aircraft is increased. This results in the fall in the deep 

spin. In a steady, developed spin, aerodynamic and inertia 

forces come into balance. Yaw, roll, pitch rates, as well as 

angle-of-attack, descent rate, pitch rate are set to a steady 

value. In this stage, it is difficult to solve the dynamics of 

the steady spin due to the complexity of the aerodynamic 

forces. Fully developed spin is primarily due to the yawing 

motion. In the spin recovery stage, the applications of an 

anti-spin yawing moment are necessary to recovery from 

the aircraft spin. Even though KC-100 is designed to recover 

from a spin condition, emergent spin recovery device should 

be equipped in the aspect of safety. Prior to the discussion 

of KC-100 SRPS design, analytical and experimental spin 
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prediction methods are briefly introduced below. In October 

1926, Gates and Bryant performed a survey on the “Spinning 

of Aeroplanes”. Here, the equations that were required for 

calculating the equilibrium spins were described. Irving and 

Batson performed a continuous rotation balance in a wind 

tunnel. This test was performed between 1925 and 1935 and 

this provided aerodynamic coefficient data and also a good 

insight into aircraft spinning. The capability to calculate 

steady spin conditions from rotary balance data was revived 

by Dr. Bazzochi in 1975. Waye performed a flight test to study 

the opening forces of a 9m diameter Ribbon parachute by 

which 344kg payload was recovered [1].

This paper deals with spin theory, the design of SRPS 

and the inspection procedures that are as shown in Fig.2. 

This paper also discusses on the results of deployment and 

jettison of SRPS on the high speed taxiing test.

2. Spin theory

2.1 Dynamics of spinning

Understanding the basic principles of spinning is essential 

in the stage of developing a new aircraft from a preliminary 

design to detailed design, and flight test. Moreover, 

consideration of steady spin stage is important as it implies a 

stable equilibrium flight condition from which the recovery 

may be impossible. So, the theoretical approach usually 

begins from the equations of motion for quasi-steady state 

spin conditions. Equation of motion is described as follows 

and it is assumed that the acceleration of the airplane does 

not exist. Drag is equal to weight, lift is equal to centrifugal 
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force, and the side forces are neglected.

Force equilibrium can be expressed as follows,

(1)

(2)

Moment equilibrium can be expressed as follows,

(3)

(4)

(5)

Angular velocities of pitch, roll, yaw are functions of the 

spin rate and angular velocity ω at spin axis. Fig.3 shows the 

equilibrium of the steady motion state.

Airplane has an angle of attack α, side slip angle β. σ means 

flight path angle about the spin axis.

(6)

By substituting eq.(2) into eq.(6), σ can be expressed as 

eq.(7). Moreover, p,q,r represent the angular velocities of 

pitch, roll, and yaw. They can be summarized as eq.(8)~(10).

(7)

(8)

(9)

(10)

By substituting eq.(8)~(10) into eq.(3)~(5), each 

aerodynamic derivatives Cl,Cm,Cn can be obtained as 

follows,

(11)

(12)

(13)

Where, Ω is dimensionless spin rate, S is wing area of 

the airplane, b is span length, c is mean aerodynamic 

chord(MAC) and IX, IY, IZ is the moment of inertia about 

each axis.

(14)

3. Design of KC-100 SRPS
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as the forebody effects. These effects are a function of  the 

ratio DP/DB, LT/DB. If these parameters are small then, the 

parachute produces considerable wake effects. Moreover, 

deploying the small parachute in a large forebody causes 

considerable loss in the parachute drag and this may affect 

the stability of parachute. DB, DP is diameter of the forebody, 

parachute, respectively and LT is the relative distance 

between the forebody and the parachute. Fig.4 shows the 

drag effects according to DP/DB, LT/DB.
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3.1.2 Porosity effects

Porosity is related to the parachute drag, stability, and 

opening force. Parachute drag, opening forces, and oscillation 

decrease with an increase in the porosity as shown in Fig.5. 

Decrease in the osicllation and opening forces is desirable, 

but decrease in the drag is undesirable.

3.1.3 Altitude effects

According to the U.S. Army Air Corps, the parachute 

opening forces at 40,000ft are about 4 times greater than the 

forces that are measured at 7000ft. This is despite the inflation 

of parachute at the same dynamic pressure. Moreover, nylon 

parachute has considerably lower opening forces compared 

to the silk parachute. This is as shown in Fig.6 and it may be 

due to the difference in the elongation between the nylon 

and silk.

3.1.4 Aeroelasticity effects

Airplane in connection with the parachute is simplified as 

shown in Fig.7.

Equation of motion is described as follows,

(15)

(16)

Suppose,

1. Gravity is neglected as it acts uniformly on the system.

2. Forebody drag is negligible compared to the parachute.

3. Internal viscous damping is ignored.

4. Dynamic pressure is constant throughout the inflation.

Eq.(15)-(16) can be combined to eq.(17)

(17)

where,

f (t/tF)=CDS/CD0S0 : non-dimensional drag area

qs=ρ[ẋ1(0)]2/2 : dynamic pressure at initial inflation

ω=(k/m2+k/m1)1/2 : natural frequency

ξ=(x2-x1)

Fig.8 shows the solution of eq.(17) that is calculated by 

using the Duhamel’s integral. It shows plots of load factor 

M, versus the ratio of the filling time to the natural system 

period(tF/T). Decrease in the filling time tF, and increase 

in the system period T, results in the increase of maximum 

opening forces. The ratio between the maximum opening 

forces against the product of the maximum drag area and 

dynamic pressure is commonly referred to as the opening 

load factor. It is directly related to the aeroelastic properties.

where, M=(m2ẍ2/qsCDS0)max, T=2π/ω

3.2 Parameter determination

The inflation shape of a parachute canopy depends on 

the type and geometric design of a canopy (flat, conical, 
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triconical, hemispherical). It also depends on the canopy 

porosity, and on the suspension-line length.

Operation conditions of SRPS are determined as follows.

λ MTOW : 3600(lb)

λ Rate of descent : 183.94(ft/sec)

λ Deployment altitude : 8000(ft)

3.2.1 Parachute type

Although slotted parachute generally has a lower drag 

coefficient compared to the solid textile parachute, it has 

excellent stability during deployment. In the case of KC-100 

SRPS, conical ribbon canopy has been selected. It has been 

selected due to it’s superior stability, low opening force, and 

high drag coefficient as shown in Fig.9.

3.2.2 Parachute sizing

Determination of the correct parachute size and riser 

length is important in the design of SRPS. Riser legnth 

controls the position of the parachute in the wake of the 

spinning airplane. This affects the force that the parachute 
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4. SRPS system validation

4.1 System function test

4.1.1 Stray voltage check

Connectors should be disconnected to check stray 

voltage. A/C ground, and pyro related pin continuity are 

the prerequisites. Table 2 shows the pin assignment that is 

related to deployment and jettison.

4.1.2 Measurement test setup

Integrated lab test is required to ensure the function of 

SRPS. Airborne System Break-out Test Box (SBTB) is used to 

validate a normal operation, and the parachute firing of SRPS 

is as shown in Fig.11. It consists of a control panel, deploy 

switch, control electronic module, SBTB and ARM(Attach 

Release Mechanism). Control system supplies power, and 

it checks the data status. SBTB simulates the firing of the 

pyrotechnic devices that are being installed on a tractor 

rocket and ARM. ARM functions locks the features in order 

to fix the parachute. Tractor rocket is used to help in the 

deployment of a parachute without reaction force. As shown 

in Fig.12, Circuits of SBTB consists of data acquisition part, 

pyro current measuring part. Resistors that are connected to 

DAQ are large enough compared to that of pyro. So, the test 

circuit can be simplified as a serial circuit of control panel 

and SBTB.

4.1.3 Lab test results

Operating sequences should proceed in the following 

order  – pyro mechanical lock, deployment, and release. 

Fig.13 shows the simulated firing signal that is measured in 

the SBTB.

5. Installation & inspection

5.1 Installation

SRPS consists of a parachute, deployment button, cockpit 

control system, Attach Release Mechanism (ARM), tractor 

rocket, and parachute tube & pack assembly. SRC control 

panel of T-50 is shown in Fig.14 and it contains a power 

switch, light to check either safe or arm state, deployment, 

and jettison lever. Those of KC-100 are divided into three 

components namely; control panel, deployment switch, and 

electronics module unlike T-50. Both KC-100 and T-50 use 

the same ARM that contains 1 pyro-lock initiator, 2 cutter 

initiators to cut and lock the parachute. And tractor rocket 

is used to deploy the parachute unlike the mortar system of 
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T-50, F-16 combat aircrafts. The tractor rocket is suited for 

small aircrafts as there are less reaction forces that influence 

the aircrafts compared to the mortar system. Parachute pack 

assembly contains a parachute canopy, riser, and deployment 

bag. Parachute and riser are contained within an extraction 

tube. The ribbon-type parachute that is robust and damage-

tolerant is used in SRPS. It will be mounted externally on the 

aircraft. Parahute system will be initiated from the DEPLOY 

command. Fig.15 shows the components of SRPS of KC-100. 

Fig.16 shows the aircraft installation configuration of the 

SRC.

5.2 Inspection

5.2.1 Stray voltage check

Prior to the operation of SRPS, SRC connectors that are 

installed in the aircraft should be validated. As shown in 

Fig.17, stray voltages, continuity checks of wires that are 

related to deployment, mechanical lock and jettison should 

be performed.

5.2.2 Normal operation test

Confirm if the lights of a control panel are flashing. After 

the PBIT(Periodic Built In Test) check which implies the 

validation of power quality, mechanical lock position, pyro-

technic related circuits that correspond to the light should be 

on either in the safe or arm position.

5.2.3 Firing sequence test

The purpose of this test is to validate the sequence and 

current at the instance of firing a rocket and the pyrotechnic 

devices are being installed on ARM. In order to simulate 

it, the red cables between the aircraft and SBTB should be 

connected. If on deployment, jettison buttons are pressed 

when black cables are connected then, explosion of rocket 

will occur. Unlike the lab firing test, when black cables are 

connected to the aircraft, fault may occur as the requirements 

of mechanical lock and deployment & release resistance 

should be respectively below 2.5Ω, 3.8Ω. In this case, it is 

reasonable to substitute the resistor position onto the bypass 

position on the SBTB. But once red cables are connected 

to perform the firing sequence test, keep in mind that 

plug position have to convert bypass into resistor position. 
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Otherwise SBTB may be damaged. Fig.18 shows the SRC 

test setup. Table 3 shows the firing sequence test results. SD 

Amps, time, OR Amps represent Step-down current(Amp), 

time delay(msec) respectively. In a normal operation, 

minimum 4amp SD current, and above 10msec time delay 

should be measured. Therfore, as shown in Table 3, the firing 

sequence tests are well performed.

6. Deployment on taxiing

Before the deployment of SRPS in a critical spin/stall 

conditions, it should be carefully deployed and released 

on the HST(High Speed Taxiing) in order to validate the 

structural integrity, reliability, and susceptibility. Deployment 

test on HST for KC-100 is proceeded at a decreasing 

velocity condition with respect to safety. Fig.19 shows the 

measurement results of velocity, parachute opening force 

at the instant of deployment and jettison. Fig.20 shows the 

linear regression of a parachute opening force. Even though 

the test is performed in the ground, opening forces of 

parachute can be estimated when the aircraft fell into a spin 

mode. Table 4 shows the opening forces when the parachute 

is deployed in a spin mode. When considering the trends of 

the deployment test results, opening forces of KC-100 are 

similar to those of KT-1. Fig.21 shows the still pictures during 

the deployment test.
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Fig. 20. �Linear regression of the SRC deployment test results on taxiing
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7. Discussions

Based on the taxiing test results, opening forces in the spin 

state are obtained as described in Table 4. In order to reduce 

the reaction forces, the canopy is designed large compared to 

KT-1. Moreover, the conservative load related design factors 

are used in considering the uncertainties of spin conditions.

FEM analysis of SRPS in spin conditions is also performed 

to validate the test results. Fig.22 shows the finite element 

model that is used for spin recovery assembly structures. 

Table 5 shows the resultant opening forces that are calculated 

in each spin stage. Compared to the FEM analysis with test 

results, the test results seem to be as reasonable results. 

Fig.23 shows the definition of a half cone angle and angle to 

HRP(Horizontal Reference Plane).

8. Conclusion

SRPS of KC-100 is designed and tested on HST(High Speed 

Taxiing) in order to obtain a type certificate of KAS(Korean 

Airworthiness Standard) Part23 from the KCACC. Prior to 

the detailed design, researches on the major aerodynamic, 

structural factors that influence the spin recovery system are 

performed. Moreover, FEM analysis is conducted to validate 

the SRPS structural limit. Before the deployment test on HST, 

lab test and operation check are carefully done. Even though 

the parachute system is not deployed in an emergency spin 

state, deployment and jettison of parachute on HST are 

successfully performed. By conducting linear regression of 

taxiing test results, opening forces in each spin conditions 

are estimated. Based on these results, it is considered that 

SRPS are well designed.

Acknowledgements

This work was supported by Aviation Safety R&D Program 

through the Korea Institute of Construction & Transportation 

Technology Evaluation and Planning(KICTEP) funded by 

Ministry of Land, Transport and Maritime Affairs(MLTM) of 

ROK.

References

[1] Zdobyskaw, G., and Alfred, B., “Theoretical, 

experimental and in-flight spin investigations for an executive 

light airplane”, 23rd Cogress of International Council of the 

Astronautical Sciences, Toronto, Canada, 2002.

[2] Stough, H. P., “A summary of spin-recovery parachute 

experience on light airplanes”, AIAA Paper 90-1316, 1990, 

pp.393-402.

[3] Mohaghegh, F., and Jahannama, M. R., “Parachute 

filling time  : A criterion to classify parachute types”, 19th 

AIAA Aerodynamic decelerator systems technology conference 

and seminar, Williamburg, VA, 2007. 

 

 

7. Discussions 
 

Based on the taxiing test results, opening forces in 
the spin state are obtained as described in Table 4. In 
order to reduce the reaction forces, the canopy is 
designed large compared to KT-1. Moreover, the 
conservative load related design factors are used in 
considering the uncertainties of spin conditions.  
 FEM analysis of SRPS in spin conditions is also 
performed to validate the test results. Fig.22 shows 
the finite element model that is used for spin recovery 
assembly structures. Table 5 shows the resultant 
opening forces that are calculated in each spin stage. 
Compared to the FEM analysis with test results, the 
test results seem to be as reasonable results. Fig.23 
shows the definition of a half cone angle and angle to 
HRP(Horizontal Reference Plane). 
 

Table 4 Estimated opening force results in spin 
state compared to KT-1  

 

 
Fig. 22 FEM modelling of KC-100 

 
 

Table 5 FEM analysis results 

 
 

 
Fig. 23 Aircraft configuration 

 
 
 

8. Conclusion 
 

SRPS of KC-100 is designed and tested on 
HST(High Speed Taxiing) in order to obtain a type 
certificate of KAS(Korean Airworthiness Standard) 
Part23 from the KCACC. Prior to the detailed design, 
researches on the major aerodynamic, structural 
factors that influence the spin recovery system are 
performed. Moreover, FEM analysis is conducted to 
validate the SRPS structural limit. Before the 
deployment test on HST, lab test and operation check 
are carefully done. Even though the parachute system 
is not deployed in an emergency spin state, 
deployment and jettison of parachute on HST are 
successfully performed. By conducting linear 
regression of taxiing test results, opening forces in 
each spin conditions are estimated. Based on these 
results, it is considered that SRPS are well designed. 
 
 

Acknowledgement 
 

This work was supported by Aviation Safety R&D 
Program through the Korea Institute of Construction 
& Transportation Technology Evaluation and 
Planning(KICTEP) funded by Ministry of Land, 
Transport and Maritime Affairs(MLTM) of ROK. 

 
References 

 
[1] Zdobyskaw, G., and Alfred, B., “Theoretical, 
experimental and in-flight spin investigations for an 
executive light airplane”, 23rd Cogress of 
International Council of the Astronautical Sciences, 
Toronto, Canada, 2002.  
[2] Stough, H. P., “A summary of spin-recovery 
parachute experience on light airplanes”, AIAA Paper 
90-1316, 1990, pp.393-402.  
[3] Mohaghegh, F., and Jahannama, M. R., 
“Parachute filling time : A criterion to classify 
parachute types”, 19th AIAA Aerodynamic 
decelerator systems technology conference and 
seminar, Williamburg, VA, 2007.  

Table 4. �Estimated opening force results in spin state compared to 
KT-1

 

 

7. Discussions 
 

Based on the taxiing test results, opening forces in 
the spin state are obtained as described in Table 4. In 
order to reduce the reaction forces, the canopy is 
designed large compared to KT-1. Moreover, the 
conservative load related design factors are used in 
considering the uncertainties of spin conditions.  
 FEM analysis of SRPS in spin conditions is also 
performed to validate the test results. Fig.22 shows 
the finite element model that is used for spin recovery 
assembly structures. Table 5 shows the resultant 
opening forces that are calculated in each spin stage. 
Compared to the FEM analysis with test results, the 
test results seem to be as reasonable results. Fig.23 
shows the definition of a half cone angle and angle to 
HRP(Horizontal Reference Plane). 
 

Table 4 Estimated opening force results in spin 
state compared to KT-1  

 

 
Fig. 22 FEM modelling of KC-100 

 
 

Table 5 FEM analysis results 

 
 

 
Fig. 23 Aircraft configuration 

 
 
 

8. Conclusion 
 

SRPS of KC-100 is designed and tested on 
HST(High Speed Taxiing) in order to obtain a type 
certificate of KAS(Korean Airworthiness Standard) 
Part23 from the KCACC. Prior to the detailed design, 
researches on the major aerodynamic, structural 
factors that influence the spin recovery system are 
performed. Moreover, FEM analysis is conducted to 
validate the SRPS structural limit. Before the 
deployment test on HST, lab test and operation check 
are carefully done. Even though the parachute system 
is not deployed in an emergency spin state, 
deployment and jettison of parachute on HST are 
successfully performed. By conducting linear 
regression of taxiing test results, opening forces in 
each spin conditions are estimated. Based on these 
results, it is considered that SRPS are well designed. 
 
 

Acknowledgement 
 

This work was supported by Aviation Safety R&D 
Program through the Korea Institute of Construction 
& Transportation Technology Evaluation and 
Planning(KICTEP) funded by Ministry of Land, 
Transport and Maritime Affairs(MLTM) of ROK. 

 
References 

 
[1] Zdobyskaw, G., and Alfred, B., “Theoretical, 
experimental and in-flight spin investigations for an 
executive light airplane”, 23rd Cogress of 
International Council of the Astronautical Sciences, 
Toronto, Canada, 2002.  
[2] Stough, H. P., “A summary of spin-recovery 
parachute experience on light airplanes”, AIAA Paper 
90-1316, 1990, pp.393-402.  
[3] Mohaghegh, F., and Jahannama, M. R., 
“Parachute filling time : A criterion to classify 
parachute types”, 19th AIAA Aerodynamic 
decelerator systems technology conference and 
seminar, Williamburg, VA, 2007.  

Fig. 22. FEM modelling of KC-100

 

 

7. Discussions 
 

Based on the taxiing test results, opening forces in 
the spin state are obtained as described in Table 4. In 
order to reduce the reaction forces, the canopy is 
designed large compared to KT-1. Moreover, the 
conservative load related design factors are used in 
considering the uncertainties of spin conditions.  
 FEM analysis of SRPS in spin conditions is also 
performed to validate the test results. Fig.22 shows 
the finite element model that is used for spin recovery 
assembly structures. Table 5 shows the resultant 
opening forces that are calculated in each spin stage. 
Compared to the FEM analysis with test results, the 
test results seem to be as reasonable results. Fig.23 
shows the definition of a half cone angle and angle to 
HRP(Horizontal Reference Plane). 
 

Table 4 Estimated opening force results in spin 
state compared to KT-1  

 

 
Fig. 22 FEM modelling of KC-100 

 
 

Table 5 FEM analysis results 

 
 

 
Fig. 23 Aircraft configuration 

 
 
 

8. Conclusion 
 

SRPS of KC-100 is designed and tested on 
HST(High Speed Taxiing) in order to obtain a type 
certificate of KAS(Korean Airworthiness Standard) 
Part23 from the KCACC. Prior to the detailed design, 
researches on the major aerodynamic, structural 
factors that influence the spin recovery system are 
performed. Moreover, FEM analysis is conducted to 
validate the SRPS structural limit. Before the 
deployment test on HST, lab test and operation check 
are carefully done. Even though the parachute system 
is not deployed in an emergency spin state, 
deployment and jettison of parachute on HST are 
successfully performed. By conducting linear 
regression of taxiing test results, opening forces in 
each spin conditions are estimated. Based on these 
results, it is considered that SRPS are well designed. 
 
 

Acknowledgement 
 

This work was supported by Aviation Safety R&D 
Program through the Korea Institute of Construction 
& Transportation Technology Evaluation and 
Planning(KICTEP) funded by Ministry of Land, 
Transport and Maritime Affairs(MLTM) of ROK. 

 
References 

 
[1] Zdobyskaw, G., and Alfred, B., “Theoretical, 
experimental and in-flight spin investigations for an 
executive light airplane”, 23rd Cogress of 
International Council of the Astronautical Sciences, 
Toronto, Canada, 2002.  
[2] Stough, H. P., “A summary of spin-recovery 
parachute experience on light airplanes”, AIAA Paper 
90-1316, 1990, pp.393-402.  
[3] Mohaghegh, F., and Jahannama, M. R., 
“Parachute filling time : A criterion to classify 
parachute types”, 19th AIAA Aerodynamic 
decelerator systems technology conference and 
seminar, Williamburg, VA, 2007.  

Table 5. FEM analysis results

 

 

7. Discussions 
 

Based on the taxiing test results, opening forces in 
the spin state are obtained as described in Table 4. In 
order to reduce the reaction forces, the canopy is 
designed large compared to KT-1. Moreover, the 
conservative load related design factors are used in 
considering the uncertainties of spin conditions.  
 FEM analysis of SRPS in spin conditions is also 
performed to validate the test results. Fig.22 shows 
the finite element model that is used for spin recovery 
assembly structures. Table 5 shows the resultant 
opening forces that are calculated in each spin stage. 
Compared to the FEM analysis with test results, the 
test results seem to be as reasonable results. Fig.23 
shows the definition of a half cone angle and angle to 
HRP(Horizontal Reference Plane). 
 

Table 4 Estimated opening force results in spin 
state compared to KT-1  

 

 
Fig. 22 FEM modelling of KC-100 

 
 

Table 5 FEM analysis results 

 
 

 
Fig. 23 Aircraft configuration 

 
 
 

8. Conclusion 
 

SRPS of KC-100 is designed and tested on 
HST(High Speed Taxiing) in order to obtain a type 
certificate of KAS(Korean Airworthiness Standard) 
Part23 from the KCACC. Prior to the detailed design, 
researches on the major aerodynamic, structural 
factors that influence the spin recovery system are 
performed. Moreover, FEM analysis is conducted to 
validate the SRPS structural limit. Before the 
deployment test on HST, lab test and operation check 
are carefully done. Even though the parachute system 
is not deployed in an emergency spin state, 
deployment and jettison of parachute on HST are 
successfully performed. By conducting linear 
regression of taxiing test results, opening forces in 
each spin conditions are estimated. Based on these 
results, it is considered that SRPS are well designed. 
 
 

Acknowledgement 
 

This work was supported by Aviation Safety R&D 
Program through the Korea Institute of Construction 
& Transportation Technology Evaluation and 
Planning(KICTEP) funded by Ministry of Land, 
Transport and Maritime Affairs(MLTM) of ROK. 

 
References 

 
[1] Zdobyskaw, G., and Alfred, B., “Theoretical, 
experimental and in-flight spin investigations for an 
executive light airplane”, 23rd Cogress of 
International Council of the Astronautical Sciences, 
Toronto, Canada, 2002.  
[2] Stough, H. P., “A summary of spin-recovery 
parachute experience on light airplanes”, AIAA Paper 
90-1316, 1990, pp.393-402.  
[3] Mohaghegh, F., and Jahannama, M. R., 
“Parachute filling time : A criterion to classify 
parachute types”, 19th AIAA Aerodynamic 
decelerator systems technology conference and 
seminar, Williamburg, VA, 2007.  

Fig. 23. Aircraft configuration


