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Abstract

This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros 

and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods 

for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully 

selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are 

compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, 

minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study 

apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, 

important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS 

applications to the aerospace engineering problems are demonstrated to prove this point.   
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1. Introduction

The pseudospectral (PS) method is a direct collocation 

method, which generally outperforms indirect methods, 

owing to their large radii of convergence, and solves nonlinear 

optimal control problems (NOCPs) with any type of constraint 

[1-4]. In a PS method, the collocation points are specially 

designed to utilize the highly accurate quadrature formulas 

and the corresponding analysis converges at an exponential 

rate for problems with a smooth and well-behaved solution 

[5-7]. In this strategy, Legendre or Chebyshev interpolating 

polynomials are typically used to approximate states and 

controls in the continuous time domain. This paper focuses on 

a method based on Legendre polynomials for PS collocation. 

The set of collocation points, which are typically 

used in the Legendre PS method, are classified as Legendre-

Gauss (LG), Legendre-Gauss-Radau (LGR), flipped Legendre-

Gauss-Radau (FLGR), and Legendre-Gauss-Lobatto (LGL) 

points, depending on how the end points are incorporated. 

Because the initial and final state conditions are generally 

imposed on an NOCP, the LGL points, which include two end 

points, are the most obvious choice. However, recent studies 

[7, 8] have revealed that the costate and control estimates 

using LGL points exhibit noisy and inaccurate behaviors. In 

contrast, Williams [9] successfully implemented LGL points 

via the integration method for a constrained Van der Pol 

oscillator problem, which demonstrated excellent agreement 

for both primal and dual solutions.

Another issue with the PS method is related to the methods 

of approximating the underlying dynamic equations. The 

integration method uses the quadrature formula after 

converting system dynamics into an integration form. 

Alternatively, the differentiation method directly applies 

a differention matrix to the derivative term of the state to 

obtain a system of nonlinear algebraic equations (NAEs). The 

differentiation method is generally preferred to the integration 

method beacuse the related Jacobian matrix is more sparse 

than in the integration method. However, differentiation 

methods still require a quadrature approximation to the 

system dynamics to predict the terminal states when the 
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final end point is not included in the collocation points as in 

the LG and LGR methods [6-8]. Also, convergence with the 

differentiation method is more sensitive to accuracy than the 

integration method in the initial estimates of the solution. 

This paper investigates the effect of each selectable 

combination of transcription techniques on numerical 

convergence and solution accuracy of the Legendre PS 

method. Because the numerical characteristics of each 

approach are highly affected by the type of NOCP and by 

the constraints, we carefully selected six test problems with 

analytic solutions from various studies in the literature 

[7,10-12] to encompass a wide range of NOCPs, such as the 

minimum time, minimum energy, and problems with or 

without state and control constraints. Convergence history 

and accuracy in predicting the states and controls for each 

problem are throughly investigated using the results with 

applicable combinations. Therefore, the results of this 

study can be used to identify the numerical advantages and 

disadvantages of each combination among transcription 

techniques, from which the best one can be selected 

considering each characteristics of the NOCP. Finally, 

various applications of the PS methods to the aircraft and 

spacecraft flight dynamics are demonstrated to show that the 

PS method can be a useful tool in solving complex aerospace 

engineering problems and in designing an optimal trajectory. 

2. Pseudospectral Transcription Techniques

The NOCP suited to this study is represented by the 

standard Bolza form [10, 12] over a time interval of 

2

incorporated. Because the initial and final state conditions are generally imposed on an NOCP, the LGL points, which 

include two end points, are the most obvious choice. However, recent studies [7, 8] have revealed that the costate and 

control estimates using LGL points exhibit noisy and inaccurate behaviors. In contrast, Williams [9] successfully 

implemented LGL points via the integration method for a constrained Van der Pol oscillator problem, which 

demonstrated excellent agreement for both primal and dual solutions. 

Another issue with the PS method is related to the methods of approximating the underlying dynamic equations. The 

integration method uses the quadrature formula after converting system dynamics into an integration form. 

Alternatively, the differentiation method directly applies a differention matrix to the derivative term of the state to 
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This paper investigates the effect of each selectable combination of transcription techniques on numerical 

convergence and solution accuracy of the Legendre PS method. Because the numerical characteristics of each approach 

are highly affected by the type of NOCP and by the constraints, we carefully selected six test problems with analytic 

solutions from various studies in the literature [7,10-12] to encompass a wide range of NOCPs, such as the minimum 

time, minimum energy, and problems with or without state and control constraints. Convergence history and accuracy 

in predicting the states and controls for each problem are throughly investigated using the results with applicable 

combinations. Therefore, the results of this study can be used to identify the numerical advantages and disadvantages of 

each combination among transcription techniques, from which the best one can be selected considering each 

characteristics of the NOCP. Finally, various applications of the PS methods to the aircraft and spacecraft flight 

dynamics are demonstrated to show that the PS method can be a useful tool in solving complex aerospace engineering 

problems and in designing an optimal trajectory.  

2. PSEUDOSPECTRAL TRANSCRIPTION TECHNIQUES 

The NOCP suited to this study is represented by the standard Bolza form [10, 12] over a time interval of ],[ 0 fttt

for a general nonlinear dynamical system as   

 

for a general nonlinear dynamical system as  
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where mg , nh , 0x , and fx  represent the path constraints, end constraints, initial states, and final states, respectively. 

Eqs (1)-(3) can be transcribed into a solvable nonlinear programming problem (NLP) using the Legendre PS method 

after applying the affine transformation 1)/()(2 00  tttt f  and using collocation points  K
kk 0  [5, 6]. For this 

purpose, the integration and differentiation for a function )(f  are typically approximated using the PS transcription 

formulas as shown in (4)-(6). 
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 

respectively.

The quadrature weights, the differentiation and integration matrices can be computed with extremely high accuracy 

using orthogonal basis functions. The Legendre PS methods utilize the Legendre polynomials as orthogonal basis 

functions, which are orthogonal to the unit weight function over the interval ]1,1[ . The quadrature formula is 

defined using the set of quadrature (or collocation) points and their corresponding weights. The most commonly used 

sets are LG, LGR, FLGR, and LGL points. The (K+1) collocation points for each set are defined by the roots of the 

polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 

point. The FLR and FLGR points contain one of the end points. The weights   Kk
kkw 
0 are summarized in Table A2 for 

each set of collocation points. The computational domain typically includes both end points to impose the initial and 

final conditions. This domain can be divided by (N+1) computational nodes  11 10  N  . A unified defintion 

for computational nodes and corresponding weights for a different set of the collocation points can be achieved using 
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 

respectively.

The quadrature weights, the differentiation and integration matrices can be computed with extremely high accuracy 

using orthogonal basis functions. The Legendre PS methods utilize the Legendre polynomials as orthogonal basis 

functions, which are orthogonal to the unit weight function over the interval ]1,1[ . The quadrature formula is 

defined using the set of quadrature (or collocation) points and their corresponding weights. The most commonly used 

sets are LG, LGR, FLGR, and LGL points. The (K+1) collocation points for each set are defined by the roots of the 

polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 

point. The FLR and FLGR points contain one of the end points. The weights   Kk
kkw 
0 are summarized in Table A2 for 

each set of collocation points. The computational domain typically includes both end points to impose the initial and 

final conditions. This domain can be divided by (N+1) computational nodes  11 10  N  . A unified defintion 

for computational nodes and corresponding weights for a different set of the collocation points can be achieved using 
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where gm, hn, xo, and xf represent the path constraints, end 

constraints, initial states, and final states, respectively. 

Eqs (1)-(3) can be transcribed into a solvable nonlinear 

programming problem (NLP) using the Legendre PS method 

after applying the affine transformation τ=2(t-to)/(tf-to)-1  

and using collocation points 
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 

respectively.

The quadrature weights, the differentiation and integration matrices can be computed with extremely high accuracy 

using orthogonal basis functions. The Legendre PS methods utilize the Legendre polynomials as orthogonal basis 

functions, which are orthogonal to the unit weight function over the interval ]1,1[ . The quadrature formula is 

defined using the set of quadrature (or collocation) points and their corresponding weights. The most commonly used 

sets are LG, LGR, FLGR, and LGL points. The (K+1) collocation points for each set are defined by the roots of the 

polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 

point. The FLR and FLGR points contain one of the end points. The weights   Kk
kkw 
0 are summarized in Table A2 for 

each set of collocation points. The computational domain typically includes both end points to impose the initial and 

final conditions. This domain can be divided by (N+1) computational nodes  11 10  N  . A unified defintion 
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 [5, 6]. For this purpose, 

the integration and differentiation for a function f(τ) are 

typically approximated using the PS transcription formulas 

as shown in (4)-(6).
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 

respectively.

The quadrature weights, the differentiation and integration matrices can be computed with extremely high accuracy 

using orthogonal basis functions. The Legendre PS methods utilize the Legendre polynomials as orthogonal basis 

functions, which are orthogonal to the unit weight function over the interval ]1,1[ . The quadrature formula is 

defined using the set of quadrature (or collocation) points and their corresponding weights. The most commonly used 

sets are LG, LGR, FLGR, and LGL points. The (K+1) collocation points for each set are defined by the roots of the 

polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 

point. The FLR and FLGR points contain one of the end points. The weights   Kk
kkw 
0 are summarized in Table A2 for 

each set of collocation points. The computational domain typically includes both end points to impose the initial and 

final conditions. This domain can be divided by (N+1) computational nodes  11 10  N  . A unified defintion 

for computational nodes and corresponding weights for a different set of the collocation points can be achieved using 
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 
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where mg , nh , 0x , and fx  represent the path constraints, end constraints, initial states, and final states, respectively. 

Eqs (1)-(3) can be transcribed into a solvable nonlinear programming problem (NLP) using the Legendre PS method 
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where jw , kjI , and kjD , represent the quadrature weight, the elements in the integration and differentiation matrices, 

respectively.

The quadrature weights, the differentiation and integration matrices can be computed with extremely high accuracy 

using orthogonal basis functions. The Legendre PS methods utilize the Legendre polynomials as orthogonal basis 

functions, which are orthogonal to the unit weight function over the interval ]1,1[ . The quadrature formula is 

defined using the set of quadrature (or collocation) points and their corresponding weights. The most commonly used 

sets are LG, LGR, FLGR, and LGL points. The (K+1) collocation points for each set are defined by the roots of the 

polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 

point. The FLR and FLGR points contain one of the end points. The weights   Kk
kkw 
0 are summarized in Table A2 for 

each set of collocation points. The computational domain typically includes both end points to impose the initial and 

final conditions. This domain can be divided by (N+1) computational nodes  11 10  N  . A unified defintion 

for computational nodes and corresponding weights for a different set of the collocation points can be achieved using 
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polynomial equations, as listed in Table A1 in Appendix A. Fig. 1 shows the distribution of six points (with K = 5) for 

each set of collocation points. The LGL points include both end points whereas the LG points do not include either end 
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The objective function shown in (1) can be straightforwardly approximated using (4) and the constraints defined by (3) 

can be satisfied at each of collocation points. As the results of the above approximations, the NOCP defined through 

(1)-(3) can be transformed into a solvable NLP.  

The NLP formulated both for the differentiation and integration methods are solved using the robust SQP (rSQP) 

algorithm proposed by Fabien [13]. The algorithmic details are illustrated in [14] with its applications to both the 

example NLP test problems and to the NOCP analyses. Another important point in selecting a transcription method is 

related to the prediction capability of the boundary control. If one of the end points is not included in the set of 

collocation points, as in LG, LGR, and FLGR methods, the boundary controls at such points cannot be predicted. 

Therefore, these controls should be estimated when required for applications. A simple extrapolation method or a 

rigorous prediction method using Pontryagin’s minimum principle [6] can be utilized. However, this paper does not 

address this topic. 

3. COMPARATIVE STUDIES USING NOCP TEST PROBLEMS 

Fig. 1. ��Distribution of collocation points.
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integration methods are solved using the robust SQP 

(rSQP) algorithm proposed by Fabien [13]. The algorithmic 

details are illustrated in [14] with its applications to both 

the example NLP test problems and to the NOCP analyses. 
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is related to the prediction capability of the boundary 

control. If one of the end points is not included in the set 
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the boundary controls at such points cannot be predicted. 

Therefore, these controls should be estimated when required 

for applications. A simple extrapolation method or a rigorous 

prediction method using Pontryagin’s minimum principle 
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3. ��Comparative Studies Using Nocp Test 
Problems

The comparative studies on various collocation techniques 

are conducted with six test problems with analytic solutions, 

which are defined in Appendix B. Table 1 summarizes the 

character of each problem using the identification number 

(ID) and carefully selected studies from the literature [7,10-

12] to consider the problem-dependent properties of each 

method. If not specifically mentioned, the following analysis 

conditions are commonly applied to initialize solutions in a 

unified manner and to define the termination conditions of 

the iterative NLP process.

. ��For the problems with a free final time, the final time is 

initially set to seven seconds.

. ��When the final states are not prescribed, states are 

initialized with the initial states; otherwise, they are 

estimated using the linear interpolation.

. ��The initial estimate of control is set to zero. In a case 

when the control is constrained by both upper and lower 

limits, it is initialized with the averaged value.

. ��When the differentiation method is used, the differential 

approximation of system dynamics in (8) is applied with 

the modified differentiation matrix, if required, for all 

the collocation points. 

. ��Analyses are conducted with 40 computational nodes 

and terminated when the maximum constraint violation 

is less than 10-6 and one of the following conditions is 

met.

i) ��The norm of the Lagrangian function gradient for the 

NLP is less than 10-4.

ii) ��The norm of the merit function gradient for the line 

search algorithm is less than 10-4.

The PS methods are implemented using the Fortran 95 

and executed on the Intel Core i7 CUP 960. The maximum 

constraint violation VC used as one of the termination 

conditions is defined as follows:
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Figures 1-6 present the analysis results for each NOCP test problem (TP1-TP6). The convergence characteristics and 

the prediction accuracy are compared with respect to the varying transcription techniques. For all test problems, the 

analyses converge to the analytical solution with the present initialization method, which proves that the Legendre PS 

method has a large radius of convergence. The integration method generally outperforms the differentiation method for 

most test problems except for the cases of TP2, in which no differerences are clearly discernible in convergence 

characterics. The convergence and the accuracy of the difference method generally shows a higher dependency on the 

types of collocation points than those with the integration method. The integration method provides approximately the 

same level of accuracy regradless of the types of collocation points, whereas the analyses using the differenciation 

method exhibit poor accuracy with LGR and LGL points compared to those with the LG and FLGR points. 

Figures 2-7 present the analysis results for each NOCP test 

problem (TP1-TP6). The convergence characteristics and 

the prediction accuracy are compared with respect to the 

varying transcription techniques. For all test problems, the 

Table 1. Summary of NOCP test problems
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(a) Differentiation method                             (b) Integration method 

Figure 1. Comparison of analysis results for TP1 (minimum energy problem with non-smooth solution) 
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analyses converge to the analytical solution with the present 

initialization method, which proves that the Legendre PS 

method has a large radius of convergence. The integration 

method generally outperforms the differentiation method 

for most test problems except for the cases of TP2, in which 

no differerences are clearly discernible in convergence 
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10
-6

10
-4

10
-2

10
0

co
st

 fu
nc

tio
n 

er
ro

r |
   

J|

: differentiation, LG
: differentiation, LGR
: differentiation, FLGR
: differentiation, LGL

       
10

-6

10
-4

10
-2

10
0

co
st

 fu
nc

tio
n 

er
ro

r |
   

J|

: integration, LG
: integration, LGR
: integration, FLGR
: integration, LGL

                                                           (a) Differentiation method                                                                        (b) Integration method

Fig. 2. Comparison of analysis results for TP1 (minimum energy problem with non-smooth solution)

6

Table 1. Summary of NOCP test problems 

ID Descriptions and sources 

TP1* minimum energy problem with bounded control and non-smooth [7] 

TP2 minimum energy problem with path constraint and non-smooth solution and [10] 

TP3* minimum time problem with bounded control [11] 

TP4* Brachistochrone problem without path constraint [10] 

TP5* Brachistochrone problem with path constraint [10] 

TP6* Singular problem with bounded control [12] 

(note: * denotes problems with free final time) 
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Figure 2. Comparison of analysis results for TP2 (minimum energy problem with path constraint) 
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Figure 3. Comparison of analysis results for TP3 (minimum time problem with bounded control) 
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characterics. The convergence and the accuracy of the 

difference method generally shows a higher dependency on 

the types of collocation points than those with the integration 

method. The integration method provides approximately the 

same level of accuracy regradless of the types of collocation 

points, whereas the analyses using the differenciation 

method exhibit poor accuracy with LGR and LGL points 

compared to those with the LG and FLGR points.
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Figure 5. Comparison of analysis results for TP5 (Brachistochrone problem with path constraint) 
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The convergence characteristics and the prediction 

accuracy are indicated in the following figures. Fig. 8 

demonstrates the norms of absolute errors in states and 

control predictions with respect to the number of iterations 

for TP1 using the integration method and the LG points. 

The control estimate exhibits a relatively large error around 

the initial time and at the time with a control discontinuity. 

Because the control is constrained with upper and lower 

Submission to IJASS 8
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Figure 5. Comparison of analysis results for TP5 (Brachistochrone problem with path constraint) 
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Figure 6. Comparison of analysis results for TP6 (singular problem with path constraint) 

The convergence characteristics and the prediction accuracy are indicated in the following figures. Fig. 7 

demonstrates the norms of absolute errors in states and control predictions with respect to the number of iterations for 

TP1 using the integration method and the LG points. The control estimate exhibits a relatively large error around the 

initial time and at the time with a control discontinuity. Because the control is constrained with upper and lower limits, 

the averaged value of 1.5 is used as the initial guess over all the computational nodes. The poor convergence around the 

initial time is related to the decrease in quadrature weights at collocation points near the initial time. This effect is also 

noted in Fig. 8 and Fig. 10 for TP2 and TP6, respectively. While the maximum error of the state prediction is decreased 

by two orders of magnitude compared to the first iteration, the control input still has a large discrepancy with the 

analytical solution. For the case of TP 6, the discernible error in the control prediction exists even after 8000 iterations, 

as shown in Fig.10.
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Fig. 7. Comparison of analysis results for TP6 (singular problem with path constraint)
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limits, the averaged value of 1.5 is used as the initial guess 

over all the computational nodes. The poor convergence 

around the initial time is related to the decrease in 

quadrature weights at collocation points near the initial 

time. This effect is also noted in Fig. 9 and Fig. 11 for TP2 

and TP6, respectively. While the maximum error of the 

state prediction is decreased by two orders of magnitude 

compared to the first iteration, the control input still has a 

large discrepancy with the analytical solution. For the case 

of TP 6, the discernible error in the control prediction exists 
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Figure 6. Comparison of analysis results for TP6 (singular problem with path constraint) 
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Brachistochrone problem with a path constraint (TP5) are represented in Fig. 9. Both the control and the states are 

predicted with an extremely poor convergence rate, especially around the final end point. On the contrary, the results for 

the singular problem (TP6) in Fig. 10 demonstrate that the prediction accuracy of the control near both the end points 

Fig. 10. ��Analysis results for LG points with integration method de-
pending on number of iterations for TP5
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even after 8000 iterations, as shown in Fig.11. 

Brachistochrone problem with a path constraint (TP5) 

are represented in Fig. 10. Both the control and the states 

are predicted with an extremely poor convergence rate, 

especially around the final end point. On the contrary, the 

results for the singular problem (TP6) in Fig. 11 demonstrate 

that the prediction accuracy of the control near both the end 

points presents little improvement, even after 8000 iterations. 

Therefore, for most case, more accurate computations are 

achievable only with an increased number of computational 

nodes at the sacrifice of a convergence rate.

Table 2 compares the number of iterations required to 

achive the maximum constraint violation of less than 10-5 

with 40 computational nodes for each method and test 

problem. Nearly the same convergence can be obtained 

regardless of the types of collocation points. Notably, the 

integration method outperforms the differentiation method 

for  TP1, TP3, TP4, and TP5.

The important findings from the comparative studies of 

this paper can be summarized as follows.

(i) ��The integration method shows faster convergence 

and higher accuracy than the differentiation method 

for most test problems, which is closely related to 

the condition number of the adapted Karush–Kuhn–

Tucker (KKT) system. 

(ii) ��Also, the integration method is much less sensitive to 

the types of collocation points than the differentiation 

method which exhibits poor accuracy in the state 

and control solutions with LGR and LGL points as 

compared to those with the LG and FLGR points.

(iii) ��With any of LG, LGR, FLGR, and LGL points, the PS 

method presents extremely slow convergence around 

two end points.

4. Applications To Aerospace Problems

This section intends to present the example applications 

of the PS techniques to the aerospace engineering problems, 

which are generally large scale in their NLP formulations 

and are characterized by complex dynamic models. 

Recently, the authors performed a series of intensive studies 

to apply the PS methods in solving different aerospace 

problems. The important results closely related to this paper 

are summarized in this section. Firstly, the optimal take-

off trajectory of the propeller-driven airplane considering 

the regulatory requirements has been analyzed using the 

high fidelity mathematical model [15, 16]. In addition, the 

optimum moon landing problems with varying altitudes of 

the parking orbit and the rotorcraft autorotational landing 

problems are investigated through [17, 18], respectively. In 

parallel with these studies, various brand-new algorithms 

were proposed to efficiently handle the large scale problems, 

to enhance computational efficiency, and to remove the 

limitations posed by the standard PS approaches [18-20]. All 

these studies utilized the important findings of the present 

study and the integration methods are applied using the LGL 

collocation points. Consequently, the main results of the 

studies are recapitulated to provide useful guideline for the 

efficient application of PS to the aerospace problems. 

4.1. ��Optimum take-off trajectory of a propeller-driv-
en airplane.

The NOCP that can achieve an optimum take-off trajectory 

of a propeller-driven airplane is formulated considering the 

Korean Airworthiness Standards for Very Light Airplanes 

(KAS-VLA). It states that the VLA should achieve a height of 

15 m above the ground and a velocity greater than 1.3 times 

the stall speed VS1 within the landing distance of less than 

500 m. The take-off procedure consists of the ground run, 

rotation, and initial climb to a safe maneuvering altitude as 

shown in Fig. 12. Detailed NOCP formulations using the high 

fidelity math model and the results of the analysis with the 

KLA-100 airplane data can be found in [21].

The take-off trajectory is generated by assumming that 

the VLA has 1.1VS1 at the end of the take-off rotation. The 

NOCP to determine the landing distance xf is formulated 

using the VLA math model and the regulatoty requirements 

with the flap angle of 25 degrees(δFlap=25deg). Using the 

states and controls given in (9), the corresponding NOCP are 

Table 2. ��Comparison of the number of iterations and the maximum 

constraint violation ≤10-5
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presents little improvement, even after 8000 iterations. Therefore, for most case, more accurate computations are 
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Node TP1 TP2 TP3 TP4 TP5 TP6
integration method 

LG 205 38 184 473 439 53 
LGR 211 38 185 476 439 53 
LGRF 211 38 177 474 433 53 
LGL 211 38 188 477 439 53 

dfferentiation method 
 LG 269 38 243 497 493 53 

LGR 271 38 256 499 499 53 
LGRF 254 38 243 494 490 53 
LGL 280 38 255 496 498 53 

The important findings from the comparative studies of this paper can be summarized as follows. 

(i) The integration method shows faster convergence and higher accuracy than the differentiation method for most 

test problems, which is closely related to the condition number of the adapted Karush–Kuhn–Tucker (KKT) 

system.  

(ii) Also, the integration method is much less sensitive to the types of collocation points than the differentiation 

method which exhibits poor accuracy in the state and control solutions with LGR and LGL points as compared 

to those with the LG and FLGR points. 

(iii) With any of LG, LGR, FLGR, and LGL points, the PS method presents extremely slow convergence around two 

end points. 

4. APPLICATIONS TO AEROSPACE PROBLEMS 

This section intends to present the example applications of the PS techniques to the aerospace engineering problems, 

which are generally large scale in their NLP formulations and are characterized by complex dynamic models. Recently, 

the authors performed a series of intensive studies to apply the PS methods in solving different aerospace problems. The 

important results closely related to this paper are summarized in this section. Firstly, the optimal take-off trajectory of 

the propeller-driven airplane considering the regulatory requirements has been analyzed using the high fidelity 

mathematical model [15, 16]. In addition, the optimum moon landing problems with varying altitudes of the parking 

orbit and the rotorcraft autorotational landing problems are investigated through [17, 18], respectively. In parallel with 
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these studies, various brand-new algorithms were proposed to efficiently handle the large scale problems, to enhance 

computational efficiency, and to remove the limitations posed by the standard PS approaches [18-20]. All these studies 

utilized the important findings of the present study and the integration methods are applied using the LGL collocation 

points. Consequently, the main results of the studies are recapitulated to provide useful guideline for the efficient 

application of PS to the aerospace problems.  

4.1. Optimum take-off trajectory of a propeller-driven airplane. 

The NOCP that can achieve an optimum take-off trajectory of a propeller-driven airplane is formulated considering the 

Korean Airworthiness Standards for Very Light Airplanes (KAS-VLA). It states that the VLA should achieve a height 

of 15 m above the ground and a velocity greater than 1.3 times the stall speed 1SV within the landing distance of less 

than 500 m. The take-off procedure consists of the ground run, rotation, and initial climb to a safe maneuvering altitude 

as shown in Fig. 11. Detailed NOCP formulations using the high fidelity math model and the results of the analysis with 

the KLA-100 airplane data can be found in [21]. 

 

Fig 11.  Take-off procedure of VLA ([21]) 
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Fig. 12. ��Take-off procedure of VLA ([21])
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formulated as shown in (10). The initial z-direction velocity 

w(t0) and the final longitudinal distance x(tf) are treated as 

the unknown states. Whereas, the other state variables are 

set to zeros at the initial time and to the trim states at the final 

time for three different cases of the prescribed final speed 

velocity nVS1(n=1.3, 1.4, 1.5).
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Fig 12. Optimal take-off trajectory and controls 

Table 3. Computed flight-time and take-off distance   

Final flight speed 13.1 sV 14.1 sV 15.1 sV
Flight time (sec) 3.17 3.49 3.90 
Final distance (m) 77 88 102 

The take-off trajectory is generated by assumming that the VLA has 11.1 SV at the end of the take-off rotation. The 

NOCP to determine the landing distance fx  is formulated using the VLA math model and the regulatoty requirements 
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The formulated NOCPs are solved using the integration method and the LGL nodes. Fig. 12 represents the variation 

of states and controls during the take-off procedure. Table 3 summarizes the estimated flight times and final distances 

with the different final flight speeds, which proves that the KLA-100 can meet the KAS-VLA regulations for the take-

off procedure. 

 

4.2. Optimum lunar landing trajectory of the spacecraft. 
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The formulated NOCPs are solved using the integration method and the LGL nodes. Fig. 12 represents the variation 

of states and controls during the take-off procedure. Table 3 summarizes the estimated flight times and final distances 

with the different final flight speeds, which proves that the KLA-100 can meet the KAS-VLA regulations for the take-

off procedure. 
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The formulated NOCPs are solved using the integration 

method and the LGL nodes. Fig. 13 represents the variation 

of states and controls during the take-off procedure. Table 3 

summarizes the estimated flight times and final distances 

with the different final flight speeds, which proves that the 

KLA-100 can meet the KAS-VLA regulations for the take-off 

procedure.

4.2. ��Optimum lunar landing trajectory of the space-
craft.

The optimum trajectories of the spacecraft are predicted 

for the soft lunar landing from the Moon’s parking orbit 

as shown in Fig. 14. The effects of the initial altitude of 

the parking orbit on the minimum fuel consumption are 

investigated. The objective function is defined using the 

consumed fuel mass and the final landing conditions are 

imposed as the constraints. The corresponding NOCP can be 

formulated with the spacecraft mass m(t), position r(t), and 

thrust vector T(t) as:
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The optimum trajectories of the spacecraft are predicted for the soft lunar landing from the Moon’s parking orbit as 

shown in Fig. 13. The effects of the initial altitude of the parking orbit on the minimum fuel consumption are 

investigated. The objective function is defined using the consumed fuel mass and the final landing conditions are 

imposed as the constraints. The corresponding NOCP can be formulated with the spacecraft mass )(tm , position )(tr ,

and thrust vector )(tT as:
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The main parameters for the spacecraft math model are listed in Table 4.  

Figure 14 shows the optimum trajectory and the variations in the spacecraft mass and thrust, which shows the fuel 

consumptions for each trajectory present minor variations with different initial altitudes. Therefore, the mission time 

and mission scenario of the spacecraft can be main factors in determining the initial altitude for the entry of the landing.   

Fig 13. Schematic diagram for soft lunar landing [17] 

Table 4. Parameters for lunar landing problem 
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Figure 14 shows the optimum trajectory and the variations in the spacecraft mass and thrust, which shows the fuel 

consumptions for each trajectory present minor variations with different initial altitudes. Therefore, the mission time 

and mission scenario of the spacecraft can be main factors in determining the initial altitude for the entry of the landing.   

Fig 13. Schematic diagram for soft lunar landing [17] 

Table 4. Parameters for lunar landing problem 

(12)

where

Submission to IJASS 

Received: December 11, 2014  Revised: April 7, 2015 Accepted: June 2, 2015 

15

The optimum trajectories of the spacecraft are predicted for the soft lunar landing from the Moon’s parking orbit as 

shown in Fig. 13. The effects of the initial altitude of the parking orbit on the minimum fuel consumption are 

investigated. The objective function is defined using the consumed fuel mass and the final landing conditions are 

imposed as the constraints. The corresponding NOCP can be formulated with the spacecraft mass )(tm , position )(tr ,

and thrust vector )(tT as:
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The main parameters for the spacecraft math model are listed in Table 4.  

Figure 14 shows the optimum trajectory and the variations in the spacecraft mass and thrust, which shows the fuel 

consumptions for each trajectory present minor variations with different initial altitudes. Therefore, the mission time 

and mission scenario of the spacecraft can be main factors in determining the initial altitude for the entry of the landing.   

Fig 13. Schematic diagram for soft lunar landing [17] 

Table 4. Parameters for lunar landing problem 

The main parameters for the spacecraft math model are 

listed in Table 4. 

Figure 15 shows the optimum trajectory and the 

variations in the spacecraft mass and thrust, which shows 

the fuel consumptions for each trajectory present minor 

variations with different initial altitudes. Therefore, the 

mission time and mission scenario of the spacecraft can be 
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these studies, various brand-new algorithms were proposed to efficiently handle the large scale problems, to enhance 

computational efficiency, and to remove the limitations posed by the standard PS approaches [18-20]. All these studies 

utilized the important findings of the present study and the integration methods are applied using the LGL collocation 

points. Consequently, the main results of the studies are recapitulated to provide useful guideline for the efficient 

application of PS to the aerospace problems.  

4.1. Optimum take-off trajectory of a propeller-driven airplane. 

The NOCP that can achieve an optimum take-off trajectory of a propeller-driven airplane is formulated considering the 

Korean Airworthiness Standards for Very Light Airplanes (KAS-VLA). It states that the VLA should achieve a height 

of 15 m above the ground and a velocity greater than 1.3 times the stall speed 1SV within the landing distance of less 

than 500 m. The take-off procedure consists of the ground run, rotation, and initial climb to a safe maneuvering altitude 

as shown in Fig. 11. Detailed NOCP formulations using the high fidelity math model and the results of the analysis with 

the KLA-100 airplane data can be found in [21]. 

 

Fig 11.  Take-off procedure of VLA ([21]) 
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Fig 12. Optimal take-off trajectory and controls 

Table 3. Computed flight-time and take-off distance   

Final flight speed 13.1 sV 14.1 sV 15.1 sV
Flight time (sec) 3.17 3.49 3.90 
Final distance (m) 77 88 102 

The take-off trajectory is generated by assumming that the VLA has 11.1 SV at the end of the take-off rotation. The 

NOCP to determine the landing distance fx  is formulated using the VLA math model and the regulatoty requirements 

with the flap angle of 25 degrees( deg25Flap ). Using the states and controls given in (9), the corresponding NOCP are 

formulated as shown in (10). The initial z-direction velocity )( 0tw and the final longitudinal distance )( ftx are treated as 

the unknown states. Whereas, the other state variables are set to zeros at the initial time and to the trim states at the final

time for three different cases of the prescribed final speed velocity )5.1,4.1,3.1(1 nnVS .
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The formulated NOCPs are solved using the integration method and the LGL nodes. Fig. 12 represents the variation 

of states and controls during the take-off procedure. Table 3 summarizes the estimated flight times and final distances 

with the different final flight speeds, which proves that the KLA-100 can meet the KAS-VLA regulations for the take-

off procedure. 

 

4.2. Optimum lunar landing trajectory of the spacecraft. 

Fig. 13. ��Optimal take-off trajectory and controls
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The formulated NOCPs are solved using the integration method and the LGL nodes. Fig. 12 represents the variation 

of states and controls during the take-off procedure. Table 3 summarizes the estimated flight times and final distances 

with the different final flight speeds, which proves that the KLA-100 can meet the KAS-VLA regulations for the take-

off procedure. 

 

4.2. Optimum lunar landing trajectory of the spacecraft. 
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The optimum trajectories of the spacecraft are predicted for the soft lunar landing from the Moon’s parking orbit as 

shown in Fig. 13. The effects of the initial altitude of the parking orbit on the minimum fuel consumption are 

investigated. The objective function is defined using the consumed fuel mass and the final landing conditions are 

imposed as the constraints. The corresponding NOCP can be formulated with the spacecraft mass )(tm , position )(tr ,

and thrust vector )(tT as:
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The main parameters for the spacecraft math model are listed in Table 4.  

Figure 14 shows the optimum trajectory and the variations in the spacecraft mass and thrust, which shows the fuel 

consumptions for each trajectory present minor variations with different initial altitudes. Therefore, the mission time 

and mission scenario of the spacecraft can be main factors in determining the initial altitude for the entry of the landing.   

Fig 13. Schematic diagram for soft lunar landing [17] 

Table 4. Parameters for lunar landing problem 

Fig. 14. ��Schematic diagram for soft lunar landing [17]
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main factors in determining the initial altitude for the entry 

of the landing.  
4.3. Optimal autorotation trajectory of the rotorcraft

This study intends to use a high-fidelity rotorcraft 

model, which typically includes fast rotor dynamics, in 

the NOCP analyses to accurately predict the emergency 

procedures of the rotorcraft after the engine failure. For this 

purpose, the numerical time-scale separation techniques 

(NTSS) are proposed to separate the fast dynamics from 

the slow states of the rigid body during the NLP solution 

process [18]. Also, the applications of the moving horizon 

approach and the residualization method are proposed 

to guarantee solution convergence and to preserve the 

sensitivity of the cost and constraint functions to the fast 

states. The Helicopter Trim, Linearization and Simulation 

program [22-23] (HETLAS ) are used to model the BO-

105 helicopter. The flap, lead-lag, and RPM dynamics are 

selected for the blade motions in building the dynamic 

model. Therefore, the helicopter, states  and controls can 

be defined as follows:
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constraint functions to the fast states. The Helicopter Trim, Linearization and Simulation program [22-23] (HETLAS ) 

are used to model the BO-105 helicopter. The flap, lead-lag, and RPM dynamics are selected for the blade motions in 

building the dynamic model. Therefore, the helicopter, states , and controls can be defined as follows: 
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where Rx , Fx , Ix  ,and x  represent the rigid body, flap ( β ), inflow ( λ ) and RPM states, respectively. As the 

results of the high-fidelity math modeling, the system dynamics include 24 states and four controls. Furthermore, the 

states for ),,( xxx IF , which are not directly used for the control purposes, show relatively fast responses compared to 

those for the rigid body states Rx , which make the NOCP applications nearly impossible with the traditional PS 

approaches.  

Ref. 18 proposed the numerical time-scale separation techniques (NTSS) combined with a moving horizon approach 

for efficient time integration of the fast dynamics. This technique only allows us to define the design variables in the 

NLP formulation with the slow states. Therefore, it can greatly reduce the system size and is extremely efficient in 

solving the large scale aerospace problem with separable time scales. Table 5 compares the size of the NLP and the 

CPU time required for NOCP analyses for the autorotational landing problem of the BO-105 helicopter. It shows that 

the NTSS techniques incur minor increases in the CPU time even though the number of dynamic constraints for the fast 

dynamics double. Therefore, the NTSS techniques can effectively remove the limitations imposed by the traditional PS 

approaches.  

The results of the example applications of the PS method to the aerospace engineering problems show that the PS 

methods are efficiently applicable in analyzing the complex and large-scale aerospace problems. In addition, the 

selection of the best combination among the collocation points and the trascription methods can be cruicial as 

investigated through this paper.  

Table 5. Comparison of system size and CPU time with a different number of segments for fast dynamics [18] 

Problem size and computing time 
Number of time segments for fast dynamics 

60 80 100 120 

(13)
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where XR, XF, XI and XΩ represent the rigid body, flap (β), 

inflow (λ) and RPM states, respectively. As the results of the 

high-fidelity math modeling, the system dynamics include 

24 states and four controls. Furthermore, the states for (XF, 

XI, XΩ), which are not directly used for the control purposes, 

show relatively fast responses compared to those for the rigid 

body states XR, which make the NOCP applications nearly 

impossible with the traditional PS approaches. 

Ref. 18 proposed the numerical time-scale separation 

techniques (NTSS) combined with a moving horizon 

approach for efficient time integration of the fast dynamics. 
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4.3. Optimal autorotation trajectory of the rotorcraft 

This study intends to use a high-fidelity rotorcraft model, which typically includes fast rotor dynamics, in the NOCP 

analyses to accurately predict the emergency procedures of the rotorcraft after the engine failure. For this purpose, the 

numerical time-scale separation techniques (NTSS) are proposed to separate the fast dynamics from the slow states of 

the rigid body during the NLP solution process [18]. Also, the applications of the moving horizon approach and the 

residualization method are proposed to guarantee solution convergence and to preserve the sensitivity of the cost and 

Submission to International Journal of Control, Automation, and Systems 16

0r = 1748.0 ~ 1838.0 km

maxT = 1.7 kg km/sec2

0g = 0.0098 km/sec2

 = 4902.7779 km3/sec2

spI =316.9 /sec

mr =1738.0 km 

0m =600 kg 

mrrh  00

0

20

40

60

80

100

A
lti

tu
de

(k
m

)

10km
40km
70km
100km

0

0.5

1

1.5

2

V
 (k

m
/s

)

300

350

400

450

500

550

600

650

S
pa

ce
cr

af
t M

as
s(

kg
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.5

0

0.5

1

1.5

2

Time(s)

Th
ru

st
(N

)

Fig.14 Variations of height, mass, and thrust 

4.3. Optimal autorotation trajectory of the rotorcraft 

This study intends to use a high-fidelity rotorcraft model, which typically includes fast rotor dynamics, in the NOCP 

analyses to accurately predict the emergency procedures of the rotorcraft after the engine failure. For this purpose, the 

numerical time-scale separation techniques (NTSS) are proposed to separate the fast dynamics from the slow states of 

the rigid body during the NLP solution process [18]. Also, the applications of the moving horizon approach and the 

residualization method are proposed to guarantee solution convergence and to preserve the sensitivity of the cost and 

Fig. 15. ��Variations of height, mass, and thrust
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Table 5. Comparison of system size and CPU time with different number of segments for fast dynamics [18] 

Problem size and computing time 
Number of time segments for fast dynamics 

60 80 100 120 

Number of NLP design variables 2041 (120 nodes) 

Number of NLP constraints 2654 (120 nodes) 

Number of fast dynamic constraints 6480 8640 10800 12960 

Average CPU time per iteration(sec) 33.5 37.5 38.4 42.06 
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This technique only allows us to define the design variables 

in the NLP formulation with the slow states. Therefore, it can 

greatly reduce the system size and is extremely efficient in 

solving the large scale aerospace problem with separable 

time scales. Table 5 compares the size of the NLP and the 

CPU time required for NOCP analyses for the autorotational 

landing problem of the BO-105 helicopter. It shows that the 

NTSS techniques incur minor increases in the CPU time 

even though the number of dynamic constraints for the 

fast dynamics double. Therefore, the NTSS techniques can 

effectively remove the limitations imposed by the traditional 

PS approaches. 

The results of the example applications of the PS method 

to the aerospace engineering problems show that the PS 

methods are efficiently applicable in analyzing the complex 

and large-scale aerospace problems. In addition, the 

selection of the best combination among the collocation 

points and the trascription methods can be cruicial as 

investigated through this paper.  

5. Conclusion

This paper focuses on investigating the pros and cons 

of various transciption techniques for the Legendre PS 

method. Comparative studies were conducted using six 

carefully seclected NOCP test problems to identify the 

best combination of collocation point types and of time 

integration methods. The Legendre PS method exhibits a 

strong convergence with the present initial approximation 

of the states and the control. For most test problems, the 

integration method outperformed the differentiation 

method with a better convergence rate and higher 

accuracy. The analyses using the differentiation method 

had a stronger dependency on the type of collocation 

points than those using the integration method. 

The LG and FLGR points generally provided better 

prediction accuracy than the LGR and LGL points for the 

differentiation method. The integration method provided 

nearly the same level of accuracy regardless of the type of 

collocation points. 

The analyses for the NOCPs with path constraints as 

well as for a singular problem demonstrated extremely 

poor prediction accuracy and a slow convergence rate with 

the given number of computational nodes around two 

end points. In these cases, a trade-off between prediction 

accuracy and convergence rate with an increase in the 

number of nodes is the best solution. In a case when the 

accurate estimation of the states and controls around the 

initial points is required as in the model predictive control, 

the PS method with slow convegence in predicting the 

intial controls can provide unstable divergent control 

inputs to the system. Although the study of the costate 

estimations will be a topic of a future study, the results of 

the present study of various types of test problems can be 

used for the best selection of transcription techniques with 

the PS method. Finally, the applications of the PS methods 

to the trajectory optimization for the aircaft and spacecraft 

were demonstrated and the results denote that the PS 

method can be a useful tool in solving complex aerospace 

engineering problems.

Acknowledgements

This work was support by the Faculty Research Fund of 

Konkuk University in 2012.

APPENDIX A. Quadrature weights, integra-
tion and differentiation matrices for the Leg-
endre PS methods

Table A1 shows formulas to compute the collocation 

points for each PS method and Table A2 represents the 

corresponding quadrature weights 
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APPENDIX A. Quadrature weights, integration and differentiation matrices for the Legendre PS methods 

Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 

corresponding quadrature weights Kk
kkw 
0}{  [5, 6]. The computational nodes and weights for the NOCP analysis are 

defined in Table A3. The differentiation and integration matrices can be built by using the following formulas: 
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Table A1. Polynomial equations to get quadrature points 
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 [5, 6]. The 

computational nodes and weights for the NOCP analysis 

are defined in Table A3. The differentiation and integration 

matrices can be built by using the following formulas:

Table A1. Polynomial equations to get quadrature points
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Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 

corresponding quadrature weights Kk
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Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 
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APPENDIX A. Quadrature weights, integration and differentiation matrices for the Legendre PS methods 

Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 

corresponding quadrature weights Kk
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0}{  [5, 6]. The computational nodes and weights for the NOCP analysis are 

defined in Table A3. The differentiation and integration matrices can be built by using the following formulas: 
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Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 

corresponding quadrature weights Kk
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defined in Table A3. The differentiation and integration matrices can be built by using the following formulas: 
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Remark: kK+1 is the leading coefficient of the (K+1)th order 

Legendre polynomial LK+1(τ)

APPENDIX B. NOCP Test Problems

[TP1] Minimum energy problem with bounded control [7]
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[TP2] Minimum energy problem with path constraints [10] 


1

0

2min dtuJ
subject to 


















u
x

x
x 2

2

1




, 

















1
0

0,2

0,1

x
x

, 




















1
0

,2

,1

f

f

x
x

,
12/1

)(1




l
ltx

The optimal solution is 
3/16* J

(i) lt 30 

 
















 






 



















 

l
t

ll
t

l
tluxx

3
1

3
2,

3
1,

3
11,,

23
**

2
*
1

(ii) ltl 313 
   0,0,,, **

2
*
1 luxx 

(iii) 131  tl with ltt 3/)1(1)( 

       





  )(1

3
2,)(1,)(1,, 23**

2
*
1 t

l
ttluxx 

[TP3] Minimum time problem with bounded control [11] 
ftJ min

subject to 


















u
x

x
x 2

2

1




, 

















2
3

0,2

0,1

x
x

, 



















0
0

,2

,1

f

f

x
x

, 1u

The optimal solution is 
)51(2,52 **  fs tt

(i) *0 stt  ,    1,2,325.0,, 2**
2

*
1  tttuxx

(ii) **
fs ttt  ,     1,,5.05.0,, *2**2**

2
*
1 fff ttttttuxx 

[TP4] Brachistochrone problem without constraints [10] 
ftJ min

subject to 
























ugx

ugx
x
x

sin2

cos2

2

2

2

1




, 

















0
0

0,2

0,1

x
x

,    Lx f ,1

The optimal solution with tt  2sin)(   is 

   

gLt

ttLttLuxx

f /

2
1,)(2,)(5.02,,

*

2**
2

*
1

















 

subject to

Submission to International Journal of Control, Automation, and Systems 20

APPENDIX B. NOCP Test Problems 

[TP1] Minimum energy problem with bounded control [7] 


ft
udtJ

0
min
subject to 



















gu

x
x
x 2

2

1




, 


















2

10

0,2

0,1

x
x

, 



















0
0

,2

,1

f

f

x
x

, 2.1
30




g
u

The optimal solution is 
 

)(3

3/5.0,3/5.15.042
***

0,2
**

0,1
2

0,20,2
*

sf

fsf

ttJ

xttxxxt





(i) *0 stt 

   0,5.1,75.0,, 0,20,10,2
2**

2
*
1 xtxtxtuxx 

(ii) **
fs ttt   with *

0,2 3 stx 

     3,5.1,5.175.0,, 0,1
2*2**

2
*
1   txtttuxx s

[TP2] Minimum energy problem with path constraints [10] 


1

0

2min dtuJ
subject to 


















u
x

x
x 2

2

1




, 

















1
0

0,2

0,1

x
x

, 




















1
0

,2

,1

f

f

x
x

,
12/1

)(1




l
ltx

The optimal solution is 
3/16* J

(i) lt 30 

 
















 






 



















 

l
t

ll
t

l
tluxx

3
1

3
2,

3
1,

3
11,,

23
**

2
*
1

(ii) ltl 313 
   0,0,,, **

2
*
1 luxx 

(iii) 131  tl with ltt 3/)1(1)( 

       





  )(1

3
2,)(1,)(1,, 23**

2
*
1 t

l
ttluxx 

[TP3] Minimum time problem with bounded control [11] 
ftJ min

subject to 


















u
x

x
x 2

2

1




, 

















2
3

0,2

0,1

x
x

, 



















0
0

,2

,1

f

f

x
x

, 1u

The optimal solution is 
)51(2,52 **  fs tt

(i) *0 stt  ,    1,2,325.0,, 2**
2

*
1  tttuxx

(ii) **
fs ttt  ,     1,,5.05.0,, *2**2**

2
*
1 fff ttttttuxx 

[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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
1

0

2min dtuJ
subject to 


















u
x

x
x 2

2

1




, 

















1
0

0,2

0,1

x
x

, 




















1
0

,2

,1

f

f

x
x

,
12/1

)(1




l
ltx

The optimal solution is 
3/16* J

(i) lt 30 

 
















 






 



















 

l
t

ll
t

l
tluxx

3
1

3
2,

3
1,

3
11,,

23
**

2
*
1

(ii) ltl 313 
   0,0,,, **

2
*
1 luxx 

(iii) 131  tl with ltt 3/)1(1)( 

       





  )(1

3
2,)(1,)(1,, 23**

2
*
1 t

l
ttluxx 

[TP3] Minimum time problem with bounded control [11] 
ftJ min

subject to 


















u
x

x
x 2

2

1




, 

















2
3

0,2

0,1

x
x

, 



















0
0

,2

,1

f

f

x
x

, 1u

The optimal solution is 
)51(2,52 **  fs tt

(i) *0 stt  ,    1,2,325.0,, 2**
2

*
1  tttuxx

(ii) **
fs ttt  ,     1,,5.05.0,, *2**2**

2
*
1 fff ttttttuxx 

[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP1] Minimum energy problem with bounded control [7] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10]
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[TP2] Minimum energy problem with path constraints [10] 
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[TP1] Minimum energy problem with bounded control [7] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10] 
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[TP2] Minimum energy problem with path constraints [10] 
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[TP4] Brachistochrone problem without constraints [10] 
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[TP5] Brachistochrone problem with path constraints [10]
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[TP5] Brachistochrone problem with path constraints [10] 
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[TP5] Brachistochrone problem with path constraints [10] 
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APPENDIX A. Quadrature weights, integration and differentiation matrices for the Legendre PS methods 

Table A1 shows formulas to compute the collocation points for each PS method and Table A2 represents the 

corresponding quadrature weights Kk
kkw 
0}{  [5, 6]. The computational nodes and weights for the NOCP analysis are 

defined in Table A3. The differentiation and integration matrices can be built by using the following formulas: 
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Table A1. Polynomial equations to get quadrature points 
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