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Abstract

Generally, Low Earth Orbit (LEO) satellites are used to collect image or video from earth’s surface. The collected data are 

stored on-board and/or transmitted to the main ground station directly or via polar ground station using terrestrial line. Today, 

an intersatellite link between a LEO and a GEO satellite allows transmission of the collected data to the main ground station 

through the GEO satellite. In this study, an approach for a continuous communication starting from LEO through GEO to 

ground station is proposed by determining the optimum ground station locations. In doing so, diverse ground stations help to 

determine the GEO orbit as well. Cross-correlation of the long term daily rainfall averages are multiplied with the logarithmic 

correlation of the sites to calculate the joint correlation of the diverse ground station locations. The minimum values of 

this joint correlation yield the optimum locations of the ground stations for Q/V-band communication and satellite control 

operations.  Results for several case studies are listed.
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1. Introduction

The collected data from earth by LEO satellites can be 

transmitted to the ground station directly or through a polar 

ground station by means of a terrestrial line [1]. Using a 

LEO communication link rather than a GEO link makes the 

operation relatively longer and dependent to other countries’ 

territories. 

The optical intersatellite communication between a LEO 

and a GEO has been investigated for a couple of decades 

[2] and been utilized starting from 2001 [3, 4]. Intersatellite 

communications can be by means of radio frequency (RF) 

or optical link. But recently, optical link is becoming more 

popular and some experiments with higher data rates are 

succeeded between LEO and GEO satellites [3]. Compared 

to the RF intersatellite communication, an optical link offers 

benefits such as; less mass, less power, higher data rates, 

more robustness to interferences etc. [5]. As for the GEO to 

ground station communication, higher bandwidth shall be 

implemented in order to be compatible with the optical link. 

Since the Ku-band spectrum is already saturated, higher 

frequency bands such as Q/V at about 40-50 GHz ranges are 

becoming popular [6]. On the other hand, above 10 GHz, rain 

attenuation becomes more severe and needs to be considered 

for in satellite communication systems [7]. Different kinds 

of fade mitigation techniques like ‘adaptive coding and 

modulation’ and ‘site-diversity’ are also suggested in 

literature [8-10] as an alternative to the over designed systems 
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implementing higher link budget margins. 

In literature, numerous studies exist that focus on the optical 

link acquisition and communication [3-5]. GEO satellite 

position accuracy is crucial to establish the intersatellite 

link. Accurate position information simplifies the Pointing 

Acquisition and Tracking (PAT) phase completion [11]. 

Traditionally, distances between ground antenna together 

with the satellite and the azimuth-elevation angles of the 

ground station antenna are used to determine the satellite 

orbit.  Using a single ground site requires a high precision 

tracking antenna to determine the GEO orbit. However, 

using two or more geographically separated ground stations 

provide a less complex and less costly system to determine 

the accurate GEO satellite position [12].

This study proposes a method to determine the optimum 

dual ground station locations for ranging (turnaround 

ranging (TAR)) as well as higher bandwidth GEO to ground 

Q/V-band satellite communications. In section 2, an overall 

system is described including a sketch of the system. In 

section 3, the design constraints are given. In section 

4, derivations of the cross-correlation and logarithmic 

correlations of the dual ground sites are supplied. Section 

5 summarizes the case studies for the Q/V-band (40 GHz) 

downlink. For this study, 99.95% link availability has been 

targeted.

2. System description

Figure 1 below shows the unscaled view of the whole 

system including a LEO satellite that collects the data to 

transmit to the GEO via an optical link, and a GEO satellite 

that relays the data to the operation center via an RF link, and 

ground station(s) that are receiving the data coming from the 

GEO satellite.

As known, intersatellite link operations between LEO and 

GEO are critical in terms of synchronization. All information 

supplied by the LEO satellite shall reach to ground in near 

real-time via GEO satellite. That is why, weather conditions 

shall not be an obstacle for the relaying GEO satellite. So, 

in parallel to the LEO to GEO link acquisition, GEO to 

ground RF link is equally important for the uninterrupted 

communication. Higher data rate imposes higher bandwidth 

as well as higher frequency bands like Ka or Q/V [13]. 

Satellite communication above 10 GHz gets affected from 

rain attenuation critically and sufficient margin needs to 

be considered in the communication link budgets. So, to 

maximize the reliability of the aforementioned RF link, site-

diversity shall be implemented to mitigate fading due to rain. 

3. ��Determination of constraints for ground 
station locations

There are couple of orbit determination methodologies 

that are in use for GEO satellites. One of them is to use a 

single antenna, with azimuth, elevation and range between 

the antenna and the GEO satellite information. Another 

method is to use multiple antennas by 2-way or 4-way range 

information between two physically separated antennas to 

the GEO satellite that is named as TAR [12, 14]. If the ranging 

measurements have better accuracy, the angle (azimuth, 

elevation) information of the antennas are of secondary 

importance as they are relatively less accurate compared 

to the ranging [12]. Moreover, even though using single 

station or dual station has almost same accuracy on orbit 

determination, dual station procurements, setup and 

operations are significantly cheaper because of less stringent 

specifications. That is why, the GEO satellite operators 

are paying attention on TAR systems which employs dual 

stations because of its benefits such as cost, establishment, 

operation, dependability etc. But there are a couple of 

restrictions that need to be addressed due to geographical, 

political issues and spacecraft antenna beam width etc. [12].

The key parameter in TAR system is the separation distance 

between the two sites. The desired range and angular 

accuracies of the measurements imposes this separation 

between the sites. The required minimum separation, dt, for 

any given desired accuracy can be calculated as in Eq. (1) 

[12].
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guarantees receiving higher Effective Isotropic Radiated 

Power (EIRP) levels at both sites. Moreover, there is a 

relationship between the beam size and the corresponding 

satellite antenna gain that affects the data rate of the link. 

The satellite antenna’s gain is inversely proportional to 

the square of the antenna beam width. However, the spot 

beam is directly proportional to the antenna beam width. 

Thus, increase in the size of the spot beam causes increase 

in footprint, decrease on antenna gain and data rate [15]. 

The diameter of the GEO satellite spot beam, ‘ds’, which uses 

parabolic antenna, can be derived from half power beam 

width as in Eq. (2);
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Decision of the optimum ground station locations 

requires them to be inside this defined ring and have less 

simultaneous rainfall occurrences as well. 

4. Determination of ground station location 

As detailed in section 2 and 3, large-scale site-diversity 

is used. To determine the optimum ground stations, a 

minimum number of key design parameters such as 

satellite antenna diameter, corresponding beam width and 

measurement accuracies of ground antennas are utilized. 

In addition to that, long term rainfall statistical data for the 

country are used to pinpoint cities with less correlated rain 

regimes. Long term correlation coefficient of daily rainfall 

averages is found by using Eq. (5) below, 
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shown in Fig. 3 below summarizes the process for optimum 

site location determination.

5. ��Case study for determination of ground 
station

Turkey is investigated for our case study. Logarithmic 

correlations, daily simultaneous rainfall correlations and 

joint correlation coefficients are calculated for all possible 

city pairs. For the long term daily rainfall averages, the 

meteorological data from 1974 to 2014 provided by Turkish 

State Meteorological Service, are used. Fig. 4 below shows 

the joint correlation coefficients of the city pairs in Turkey 

which are separated from each other less than 700 km. 

Figure 4 demonstrates that some city pairs have higher 

joint correlations due to their similar rain regimes and closer 

distance. However, some city pairs apart from each other 

between 200 to 400 km, have less or even negative joint 

correlations which makes them more attractive for optimum 

ground station locations. This is due to less correlation on 

rain regime and farther separation at the same time.

The design constants that are used in calculation of the 

optimum locations are listed in Table 1. 

For different case studies, range accuracy is taken to be 

varying between 10 and 20 meters and the angular accuracy 

between 5 and 10 mdeg [11]. Couple of cases are listed in 

Table 2 by using different ground station capabilities. For 

the spot beams, three different GEO satellite antennas and 

corresponding spot beams are selected to calculate each 

example case in Table 2. 

To find the optimum ground stations, flow chart as 

shown in Fig. 3 is used and joint correlations are calculated 

for all city pairs inside the corresponding ring. After that, 

the city pairs, that have minimum ρ, listed in Table 3, 
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Fig.4. Joint correlation of cities in Turkey 

Fig. 4 demonstrates that some city pairs have higher joint correlations due to their similar rain regimes 

and closer distance. However, some city pairs apart from each other between 200 to 400 km, have less or 

even negative joint correlations which makes them more attractive for optimum ground station locations. 

This is due to less correlation on rain regime and farther separation at the same time. 
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Rx antenna diameters (at both sites) Dr 5 m 
Rx antenna efficiencies (at both sites) ηRx 0.65 - 
Gas absorption losses (at both sites) Lg 1 dB 
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Table 2. Turkey case study for proposed system 
Example# δγ [m] δθ [mdeg] dt [km]

I 20 7 327.4 
II 20 8 287.5 
III 20 9 254.6 
IV 20 10 229.2 
V 10 10 114.6 
VI 15 10 171.9 

To find the optimum ground stations, flow chart as shown in Fig. 3 is used and joint correlations are 

calculated for all city pairs inside the corresponding ring. After that, the city pairs, that have minimum ρ, 

listed in Table 3, are detected. The cities are shown in Fig. 5 below. In the link budgets, the site-diversity 

gains of the locations are added too as per reference [18]. It should be noted here that, because of the 

relationship between GEO satellite antenna diameter and the spot beam size, the EIRP and corresponding 

Signal to Noise Ratio (SNR) levels will be different for each case. 

Table 3. Link budgets for example cases 
 D = 110 cm , 

ds = 302 km 
 D = 90 cm, 

 ds = 369 km 
 D = 60 cm, 

 ds = 553 km 
Ex. Site#1 Site#2 ρ dr  Site#1 Site#2  ρ dr  Site#1 Site#2 ρ  dr 

I ds<dt n/a  AR:20.9 TN:22.6 -0.0147 20.8  AR:17.3 TN:19.00 -0. 0147 112.8
II BG:24.8 KR:21.4 -0.0091 7.3  AR:20.9 BG:23.1 -0.0152 40.8  AR:17.5 BG:19.6 -0.0152 132.8
III AR:22.9 MS:25.8 -0.0113 23.7  AR:20.9 BG:23.1 -0.0152 57.2  AR:17.5 BG:19.6 -0.0152 149.2
IV AR:22.9 MS:25.8 -0.0113 36.4  AR:20.9 BG:23.1 -0.0152 69.9  AR:17.5 BG:19.6 -0.0152 161.9
V AT:19.2 KR:21.4 -0.0135 93.7  AR:20.9 BG:23.1 -0.0152 127.2  AR:17.5 BG:19.6 -0.0152 219.2
VI AR:22.3 RZ:13.0 -0.0132 65.1  AR:20.9 BG:23.1 -0.0152 98.65  AR:17.5 BG:19.6 -0.0152 190.6

AR: Ardahan, AT: Artvin, BG: Bingol, KR: Kars, MS: Mus, RZ: Rize, TN: Tunceli,  

 
Fig. 5. Possible ground station locations and Example I scenario (D=90cm) 
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are detected. The cities are shown in Fig. 5 below. In the 

link budgets, the site-diversity gains of the locations are 

added too as per reference [18]. It should be noted here 

that, because of the relationship between GEO satellite 

antenna diameter and the spot beam size, the EIRP and 

corresponding Signal to Noise Ratio (SNR) levels will be 

different for each case.

Figure 5 demonstrates Example I for D=90 cm. In this 

figure, the dt is shown in red circle with diameter of 327.4 

km, whereas ds is shown in blue circle with diameter of 369 

km. As can be seen from Fig. 5, AR, KR and TN are inside 

the same ring but AR-TN has the minimum ρ value. As in 

Example II for D=90 cm case, if the dr is enlarged by reducing 

the dt, AR-BG will become the selected city pair since they 

have smaller ρ value than AR-TN.

The cities appearing in Table 3 are the optimum pairs 

inside the defined rings. As detailed in flow chart at Fig. 3, 

if the desired city pair does not satisfy the communication 

requirements, practically dr can be enlarged to find another 

city pair which has smaller joint correlation (ρ).

On the other hand, it shall be noted that, having limited 

observability, may affect the orbit determination accuracy 

of the GEO satellite. Due to the weather conditions, some 

of the measurements may be lost in one of the stations or 

both of them at the same time. To be more precautious, not 

to degrade the performance of orbit determination of the 

GEO satellite, the measurement campaign durations need to 

be arranged with margins. In practice, at least 40% margin 

shall be implemented for measurements during a 48 hours 

campaign as TURKSAT does. 

6. Conclusion

The optimum locations of a dual ground station are 

determined by means of cross correlation of daily rainfall 

averages and logarithmic correlation of city pairs for both; 

GEO satellite orbit determination and high bandwidth/

data rate communication from a LEO to ground station(s) 

via a GEO satellite. The joint correlation of logarithmic 

correlation and daily rainfall averages are computed for 

all possible city pairs of Turkey. Depending on the ground 

station measurement accuracies, the required separation 

between the sites are determined. This separation satisfies 

the satellite communication link budget as well.
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