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Abstract

This paper presents formation reconfiguration using impulsive control input for spacecraft formation flying. Spacecraft in a 

formation should change the formation size and/or geometry according to the mission requirements and space environment. 

To modify the formation radius and geometry with respect to the leader spacecraft, the follower spacecraft generates 

additional control inputs; the two impulsive control inputs are general control type of the spacecraft system. For the impulsive 

control input, Lambert’s problem is modified to construct the transfer orbit in relative motion, given two position vectors at the 

initial and final time. Moreover, the numerical simulation results show the transfer trajectories to resize the formation radius 

in the radial/along-track plane formation and in the along-track/cross-track plane formation. In addition, the maneuver 

characteristics are described by comparing the differential orbital elements between the reference orbit and transfer orbit in 

the radial/along-track plane formation and along-track/cross-track plane formation.
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1. Introduction

Spacecraft formation flying has been widely investigated 

due to increasing interests in the design of clusters and 

their application. Multiple spacecraft in formation have 

many advantages in terms of flexibility, reliability, financial 

benefits, and high image resolution compared to a single large 

spacecraft. Autonomous formation flying has been developed 

for future space missions in many countries. National 

Aeronautics and Space Administration (NASA) provided the 

Earth-Observing 1 (EO-1), StarLight (ST) series, Terrestrial 

Planet Finder (TPF), Micro-Arcsecond X-ray Imaging Mission 

(MAXIM), and Magnetospheric Multiscale (MMS) mission 

using multiple spacecraft [1-4]. Moreover, European Space 

Agency (ESA) developed the Cluster II mission, the Dawin, the 

X-ray Evolving Universe Spectroscopy (XEUS) missions, and 

PROBA-3 consisting of multiple spacecraft for various missions 

[5, 6]. The Laser Interferometer Space Antenna (LISA) was 

designed to develop a space-based gravitational wave detector 

by NASA and ESA. During the spacecraft operation, formation 

reconfiguration may be needed to change the formation radius 

and/or geometry according to the mission requirements. For 

formation reconfiguration, the follower spacecraft should 

modify the orbit with respect to the leader spacecraft by 

additional control inputs. 

Lots of works on the maneuver problem have been solved in 

an inertial frame. The goals of the traditional maneuver problem 

are to change the orbit size or shape of a single spacecraft 

with respect to a planet considering mission requirements, 

and to minimize the control effort during the maneuver. For 

spacecraft formation, on the other hand, the formation can be 

reconfigured by increasing or decreasing the formation radius 

and/or changing the formation geometry through maneuver 

in relative motion with respect to the leader spacecraft. This 

transfer between two orbits can be generally performed by 

impulsive control input. The traditional maneuver problem 

for spacecraft orbit transfer has been solved by two impulsive 

control inputs. The Hohmann transfer is well known as two-

burn minimum fuel transfer in circular coplanar orbits [7, 

8]. For the general two-impulse maneuver problem between 

two fixed position vectors with the specified flight time, 

the transfer orbit can be determined by solving Lambert's 
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problem [8-10], and therefore the required velocity vectors 

of the resulting transfer orbit can be calculated at the initial 

and final time. Many researchers utilized Lambert's problem 

to obtain the transfer trajectory between two orbits with 

respect to a planet [11-13]. Won considered minimum-fuel 

and minimum-time orbit transfer problem in two coplanar 

elliptic orbits [11]. Prussing considered the minimum-

fuel impulsive spacecraft trajectory through the multiple-

revolution [12], and Shen and Tsiotras studied the optimal 

fixed-time, two-impulse rendezvous problem between two 

satellites in coplanar circular orbit using multiple-revolution 

Lambert's problem [13]. 

Although the traditional maneuver problem has been 

widely studied, the formation reconfiguration problem 

is different from that because the formation of multiple 

spacecraft is expressed by the relative motion dynamics 

with respect to the leader spacecraft, not a planet. Vaddi 

et al. studied the formation reconfiguration problem using 

impulsive control based on Gauss's variational equation [14], 

and Ketema considered the optimal transfer problem using 

two impulsive control inputs considering the relative motion 

of the spacecraft formation [15]. However, the transfer 

method for the follower spacecraft from one orbit to another 

with respect to the leader spacecraft in the local frame, 

where the initial and final positions, velocities, transfer time, 

and orbital elements of the leader spacecraft are specified, 

has not been sufficiently investigated. In this study, the 

traditional spacecraft maneuver method, Lambert’s 

problem, is modified to design the transfer orbit trajectory of 

the follower spacecraft, where two relative position vectors 

and the flight time in the local frame are given. Furthermore, 

the characteristics of the formation reconfiguration in two 

formation geometries, radial/along-track plane formation 

and along-track/cross-track plane formation, are analyzed 

in terms of the orbital elements. The numerical simulation 

results show that the transfer trajectories are designed to 

resize the formation radius in two formation geometries.

This paper is organized as follows. In Section 2, the relative 

motion dynamics are described. Spacecraft formation 

reconfiguration using impulsive control input is derived in 

Section 3, and the numerical simulation results and analysis 

to verify the formation reconfiguration are shown in Section 

4. Finally, conclusion is presented in Section 5.

2. Spacecraft Relative Motion Dynamics

The inertial coordinate system and a rotating local 

coordinate system are defined for spacecraft formation 

flying. As shown in Fig. 1, the inertial coordinate system {X, 

Y, Z} is attached to the center of the Earth, and a rotating 

local-vertical-local-horizontal (LVLH) Cartesian frame {x, 

y, z} is attached to the center of the leader spacecraft. The 

x-axis points in the radial direction, the y-axis points in the 

along-track direction, and the z-axis is perpendicular to 

the orbital plane and points in the direction of the angular 

momentum vector. 
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where 3
  is the angular velocity, and 3f


 and 3ff


 are external forces acting on the 

leader and follower spacecraft, respectively. When the external forces are only acted on a central 

gravitational field, the nonlinear relative dynamics for elliptic reference orbits can be represented as 

follows:

 

 

  z

y

x

u
zyxR

zz

u
zyxR

yyxxy

u
RzyxR

xRxyyx

















2/3222

2/3222

2

22/3222

2

)(

)(
2

)(

)(2















 (3) 

where   is the gravitational coefficient,   is the argument of latitude of the leader spacecraft, 
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where a is the semi-major axis, e is the eccentricity,   is the true anomaly, and 3/ an   is the 

natural frequency of the reference orbit. 

Equation (3) can be expressed using the true anomaly   as a free variable, because   of the 
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2. Spacecraft Relative Motion Dynamics 

The inertial coordinate system and a rotating local coordinate system are defined for the spacecraft 

formation flying. As shown in Fig. 1, the inertial coordinate system  ZYX ,,  is attached to the 

center of the Earth, and a rotating local-vertical-local-horizontal (LVLH) Cartesian frame  zyx ,,  is 

attached to the center of the leader spacecraft. The x-axis points in the radial direction, the y-axis

points in the along-track direction, and the z-axis is perpendicular to the orbital plane and points in the 

direction of the angular momentum vector.   300  RR


 denotes the position vector of the 

leader spacecraft and   3 zyx
  is the relative position vector of the follower spacecraft with 

respect to the leader spacecraft in the LVLH frame. Then, the position of each follower spacecraft 

within a formation is given by 




 RR f  (1) 

The nonlinear equation of the relative motion for elliptic reference orbits can be represented as 

ff f

   2  (2) 

Fig. 1. Local Vertical Local Horizontal frame Fig. 1. �Local Vertical Local Horizontal frame
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radial, along-track, and cross-track direction, respectively. 

In orbital mechanics, the radius and angular velocity of the 

leader spacecraft are given as [16]
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Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 
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The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 
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Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

, as shown in Fig. 2, is defined by the cosine law as 

follows:

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

(8)

In Fig. 2, F is the primary focus which is the location of the 

Earth, 

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

 and 

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

 are the position vectors at the initial time t1 

and the final time t2, and 

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

 is the transfer angle between two 

position vectors defined by

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T .

(9)

The direction of flight can be defined by the transfer angle; 

the spacecraft moves along the short way when 

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T ., and 

it moves along the long way when 

6 

transformation of Eq. (5) and the assumption that |||| R


 , the relative motion equation can be 

expressed as follows: 

z

y

x

u
en
ez

e
z

e
ez

u
en
ey

e
ex

e
ey

e
exy

u
en
ey

e
ex

e
eyx

e
ex

42

32

42

32

42

32

)cos1(
)1(

cos1
1'

cos1
sin2''

)cos1(
)1(

cos1
sin

cos1
sin2'

cos1
sin2'2''

)cos1(
)1(

cos1
sin2

cos1
cos3'2'

cos1
sin2''






























































 (7) 

Using Eq. (7), the maneuver problem for the formation reconfiguration is solved and the initial and 

final conditions are selected in the true anomaly domain to meet the periodicity condition as presented 

in Ref. [17]. 

3. Formation Reconfiguration using Impulsive Control Input

3.1 Lambert’s Problem 

Lambert's theorem states that the flight time from one point to another depends on the semi-major 

axis of transfer orbit, the distance of the initial and final points of the arc from the center of force, and 

the length of the chord joining the points. The chord length, c, between two position vectors 1r
  and 

2r
 , as shown in Fig. 2, is defined by the cosine law as follows: 

)cos(2 21
2

2
2

1 Trrrrc   (8) 

In Fig. 2, F is the primary focus which is the location of the Earth, 1r
  and 2r

  are the position 

vectors at the initial time 1t  and the final time 2t , and T  is the transfer angle between two 

position vectors defined by 

21

21)cos(
rr
rr

T




  (9)

The direction of flight can be defined by the transfer angle; the spacecraft moves along the short way 

when  T , and it moves along the long way when  T ..
To determine the transfer orbit between two position 

vectors, two foci and semi-major axis should be found. From 

the definition of the ellipse, the location of the vacant focus 

and semi-major axis of the transfer orbit can be determined. 

As shown in Fig. 2, two circles can be drawn having 2a-r1 and 

2a-r2 as radii and points P1 and P2 as centers, respectively, 

since the sum of the distance from the foci to any point on 

the ellipse equals twice the semi-major axis as 2a=r1+(2a-

r1)=r2+(2a-r2). As a result, two intersected points, F' and F'', 

are determined as shown in Fig. 2, which are the candidate 

7 

Fig. 2. Geometry for the Lambert’s problem 

To determine the transfer orbit between two position vectors, two foci and semi-major axis should 

be found. From the definition of the ellipse, the location of the vacant focus and semi-major axis a of 

the transfer orbit can be determined. As shown in Fig. 2, two circles can be drawn having 12 ra 

and 22 ra   as radii and points 1P  and 2P  as centers, respectively, since the sum of the distance 

from the foci to any point on the ellipse equals twice the semi-major axis as 

)2()2(2 2211 rarrara  . As a result, two intersected points, F' and F'', are determined as 

shown in Fig. 2, which are the candidate locations of other focus of the transfer orbit. Using two 

vacant foci, two elliptic orbits can be obtained as shown in Fig. 2. Note from Fig. 2 that two ellipses 

have different eccentricities; the ellipse with vacant focus F' has the smaller eccentricity, and the 

ellipse with F'' has the larger eccentricity. The location of vacant focus depends on the semi-major 

axis of the transfer orbit, and therefore the semi-major axis should be determined carefully through 

iterative calculation for the minimum energy. 

When the transfer orbit is determined, the velocity vectors of the transfer orbit at the initial and 

final time, 1,tv  and 2,tv , as shown in Fig. 3, can be calculated by the Kepler's equation. 

Consequently, the velocity changes 1v  and 2v  at 1t  and 2t  can be obtained as 

Fig. 2. Geometry for Lambert’s proble



DOI:10.5139/IJASS.2013.14.2.183 186

Int’l J. of Aeronautical & Space Sci. 14(2), 183-192 (2013)
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foci, two elliptic orbits can be obtained as shown in Fig. 2. 
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as follows: 
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The relative position vectors of the follower spacecraft with respect to the leader spacecraft, 
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2   at the initial time 1t  and the final time 2t  in the LVLH frame, respectively, 
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Fig. 4. Orbit transfer for follower spacecraft 
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The position vectors of the follower spacecraft with respect to the Earth at 1t  and 2t  in the ECI 

(Earth Centered Inertial) frame can be written as 
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







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rR

rR
 (15) 

where 3
1 r  and 3

2 r  are the position vectors of the leader spacecraft in the ECI frame at  

1t  and 2t , respectively. 

Let us define the velocity vectors of the follower spacecraft at 1t  and 2t  in the ECI frame as 

3
1 V


 and 3
2 V


, respectively. Given two position vectors, 3
1 R


 and 3
2 R


, the 

transfer orbit for the follower spacecraft can be determined through the Lambert's problem as 

explained in the previous section. The transfer angle can be defined by 

21

21)cos(
RR
RR

T




  (16) 

The chord length is determined as 

(13)
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)cos(2 21
2
2

2
1 TRRRRc   (17) 

Using T  and c, the Lambert's problem can provide the velocities of the transfer orbit, 3
,1 tV


and 3
,2 tV


, as shown in Fig. 4. The transfer time for the elliptic orbit is defined from the Kepler's 

equation as follows [7, 8]: 

    1122

3

sinsin2 EeEEeEkat  


 (18) 

where 12 ttt  , and 1E  and 2E  are eccentric anomalies at 1t  and 2t . In this study, multiple 

revolutions are not considered, and then k2  term in Eq. (18) can be ignored. Equation (18) can be 

rewritten as 

  21
3 sinsin EEeEat   (19) 

where 12 EEE  . To solve the Kepler's equation, the universal variable,  , is adopted in this 

study, which relates energy and angular momentum [8]. The universal variable,   is defined as 

follows:

Ea  (20) 

In addition, parameters 2s  and 3s  are defined as [8] 

3322
sin,cos1
E

EEs
E

Es








  (21) 

Using Eqs. (20) and (21), Eq. (19) can be expressed as 

 21
33

3
3 sinsinsin EEeaEast    (22) 

With trigonometric identity, 212121 sincoscossin)sin( aaaaaa  , Eq. (22) can be rewritten as 

    1221
3

3
3 cossincossin EeEEeEast    (23) 

The relation between eccentric anomaly E and true anomaly   is defined by [7, 8] 

1cos
coscos





Ee

Ee  (24) 

(17)
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Fig. 4. �Orbit transfer for follower spacecraft
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Finally, the relative velocity vectors in the LVLH frame and the orbital elements of the transfer orbit 
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the orbital elements of the transfer orbit can be found.

4. Numerical Simulation and Analysis

In this section, numerical simulations are performed 

for the maneuver problem of formation reconfiguration. 

Using impulsive control input, two maneuvering cases are 

considered to verify the formation reconfiguration in relative 

motion: change of the formation radius, rd, (i) in the radial/
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along-track plane formation (RAPF) and (ii) in the along-

track/cross-track plane formation (ACPF).

4.1 Radial/Along-Track Plane Formation

In this section, the maneuver for formation reconfiguration 

in the RAPF is performed using impulsive control input. The 

orbital elements of the leader spacecraft are summarized 

in Table 1. To change the formation radius in the RAPF, we 

consider a situation that the follower spacecraft moves from 

the initial formation radius of 5,000 m to the final formation 

radius of 10,000 m. The initial and final conditions are 

selected to satisfy the periodicity and zero offset condition 

according to the formation geometry as presented in Ref. 

[17]. The initial and final conditions of the follower spacecraft 

in the LVLH frame are summarized in Table 2. The flight 

time is obtained as 5166.4 seconds given the initial and final 

conditions as described in Table 2.

Figures 5–7 show the simulation results for maneuvering 

in the RAPF. Figure 5 shows the trajectories of the leader 

and follower spacecraft in the ECI frame; the normal line 

denotes the trajectory of the leader spacecraft and the thick 

line shows the transfer trajectory of the follower spacecraft. 

As shown in Fig. 5, it is difficult to understand the relative 

motion of the follower spacecraft with respect to the leader 

spacecraft in the ECI frame. Instead, Fig. 6 shows the transfer 

trajectory of the follower spacecraft in the LVLH frame. As 

shown in Fig. 6, the follower spacecraft moves from the 

initial position to the final position on the x-y plane in the 

LVLH frame. Figure 7 describes the relative velocity history 

of the follower spacecraft during the maneuver. In Fig. 7, the 

triangle denotes specified relative velocities at the initial and 

final time in the LVLH frame given in Table 2. As a result, the 

difference between the resulting velocity from the modified 

Lambert’s problem and the specified velocity is equal to 

the required velocity change for the orbit transfer. Table 3 

summarizes the relative velocities of the follower spacecraft 

and the velocity change, △V, for the reconfiguration 

maneuver in the RAPF. 

4.2 Along-Track/Cross-Track Plane Formation

In this section, the maneuver for formation reconfiguration 

in the ACPF is performed using impulsive control input. The 

orbital elements of the leader spacecraft are same as previous 

section. To change the formation radius in the ACPF, we 

consider a situation in which the follower spacecraft moves 

Table 1. Orbital elements of leader spacecraft

13 

formation geometry as presented in Ref. [17]. The initial and final conditions of the follower 

spacecraft in the LVLH frame are summarized in Table 2. The flight time is obtained as 5166.4 

seconds given the initial and final conditions as described in Table 2.

Table 1. Orbital elements of leader spacecraft 

Parameter Value

a (m) 710000.1 

e 0.1 

i 66.01 

  (deg) 277 

  (deg) 45 

Table 2. Initial and final condition (RAPF) 

 Initial condition Final condition

dr  (m) 5,000 10,000 

  (deg) 98 262 

Position (m) [2593.5592, -734.1464, 0] [-5187.1185, -1468.2929, 0] 

Velocity  [-364.5010, -5260.8447, 0] [-729.0020, 10521.6894, 0] 

Figures 5–7 show the simulation results for maneuvering in the RAPF. Figure 5 shows the 

trajectories of the leader and follower spacecraft in the ECI frame; the normal line denotes the 

trajectory of the leader spacecraft and the thick line shows the transfer trajectory of the follower 

spacecraft. As shown in Fig. 5, it is difficult to understand the relative motion of the follower 

spacecraft with respect to the leader spacecraft in the ECI frame. Instead, Fig. 6 shows the transfer 

trajectory of the follower spacecraft in the LVLH frame. As shown in Fig. 6, the follower spacecraft 

moves from the initial position to the final position on the x-y plane in the LVLH frame. Figure 7 

describes the relative velocity history of the follower spacecraft during the maneuver. In Fig. 7, the 

triangle denotes specified relative velocities at the initial and final time in the LVLH frame given in 

Table 2. As a result, the difference between the resulting velocity from the modified Lambert's 

Table 2. Initial and final condition (RAPF)

13 

formation geometry as presented in Ref. [17]. The initial and final conditions of the follower 

spacecraft in the LVLH frame are summarized in Table 2. The flight time is obtained as 5166.4 

seconds given the initial and final conditions as described in Table 2.

Table 1. Orbital elements of leader spacecraft 

Parameter Value

a (m) 710000.1 

e 0.1 

i 66.01 

  (deg) 277 

  (deg) 45 

Table 2. Initial and final condition (RAPF) 

 Initial condition Final condition

dr  (m) 5,000 10,000 

  (deg) 98 262 

Position (m) [2593.5592, -734.1464, 0] [-5187.1185, -1468.2929, 0] 

Velocity  [-364.5010, -5260.8447, 0] [-729.0020, 10521.6894, 0] 

Figures 5–7 show the simulation results for maneuvering in the RAPF. Figure 5 shows the 

trajectories of the leader and follower spacecraft in the ECI frame; the normal line denotes the 

trajectory of the leader spacecraft and the thick line shows the transfer trajectory of the follower 

spacecraft. As shown in Fig. 5, it is difficult to understand the relative motion of the follower 

spacecraft with respect to the leader spacecraft in the ECI frame. Instead, Fig. 6 shows the transfer 

trajectory of the follower spacecraft in the LVLH frame. As shown in Fig. 6, the follower spacecraft 

moves from the initial position to the final position on the x-y plane in the LVLH frame. Figure 7 

describes the relative velocity history of the follower spacecraft during the maneuver. In Fig. 7, the 

triangle denotes specified relative velocities at the initial and final time in the LVLH frame given in 

Table 2. As a result, the difference between the resulting velocity from the modified Lambert's 

14 

problem and the specified velocity is equal to the required velocity change for the orbit transfer. Table 

3 summarizes the relative velocities of the follower spacecraft and the velocity change, V , for the 

reconfiguration maneuver in the RAPF.  

Fig. 5. Trajectory of two spacecraft in ECI frame (RAPF) 

Fig. 6. Trajectory of follower spacecraft in LVLH frame (RAPF) 

Fig. 5. Trajectory of two spacecraft in ECI frame (RAPF)
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problem and the specified velocity is equal to the required velocity change for the orbit transfer. Table 

3 summarizes the relative velocities of the follower spacecraft and the velocity change, V , for the 

reconfiguration maneuver in the RAPF.  
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Fig. 7. Velocity history of follower spacecraft (RAPF) 

Table 3. Solution of modified Lambert’s problem (RAPF) 

 Initial value Final value
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tV  (m/s) [0.1328, -0.6606, 0] [-0.2523, 1.0638, 0] 

V  (m/s) [0.1726, -0.6606, 0] [0.1726, -1.0638, 0] 

Total V [0.3453, 1.7244, 0] Norm: 1.7587 

4.2 Along-Track/Cross-Track Plane Formation 

In this section, the maneuver for the formation reconfiguration in the ACPF is performed using 

impulsive control input. The orbital elements of the leader spacecraft are same as previous section. To 

change the formation radius in the ACPF, we consider a situation that the follower spacecraft moves 

from the initial formation radius of 5,000 m to the final formation radius of 10,000 m. The initial and 

final conditions of the follower spacecraft in the LVLH frame are given by formation geometry in 

Table 4 as presented in Ref. [17].   
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from the initial formation radius of 5,000 m to the final 

formation radius of 10,000 m. The initial and final conditions 

of the follower spacecraft in the LVLH frame are given by 

formation geometry in Table 4 as presented in Ref. [17].  

Figures 8–9 show the simulation results for formation 

reconfiguration using impulsive control input in the 
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Figures 8–9 show the simulation results for formation reconfiguration using the impulsive control 

input in the ACPF. Figure 8 shows the transfer trajectory of the follower spacecraft with respect to the 

leader spacecraft in the LVLH frame. Figure 9 shows the velocity history of the follower spacecraft 

during the maneuver. In Fig. 9, the triangle denotes specified velocities at the initial and final time in 

the LVLH frame given in Table 4. Therefore, the required velocity change can be obtained by 

computing the difference between the resulting velocity from the modified Lambert's problem and the 

specified velocity. Table 5 summarizes the velocities of the follower spacecraft and V  for the 

maneuver in the ACPF. 

Fig. 8. Trajectory of follower spacecraft in LVLH frame (ACPF) 
Fig. 8. Trajectory of follower spacecraft in LVLH frame (ACPF)
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Fig. 9. Velocity history of follower spacecraft (RAPF) 

Table 5. Solution of modified Lambert’s problem (ACPF) 

 Initial value Final value

velocity (m/s) [-0.2272, 0, -0.1315] [-0.4544, 0, -0.2630] 

tV  (m/s) [0.7622, -3.7804, -12.0337] [-1.4248, 6.0572, 11.6496] 

V  (m/s) [0.9894, -3.7804, -11.9022] [0.9705, -6.0572, -11.9126] 

Total V [1.9599, 9.8376, 23.8148] Norm: 25.8412 

4.3 Analysis 

In this section, the simulation results for the formation reconfiguration using the impulsive control 

input in the RAPF and ACPF are analyzed. The simulation results are investigated in terms of the 

difference of the orbital elements between the transfer orbit and the reference orbit with respect to the 

formation geometry. 

As described in Sections 4.1 and 4.2, the transfer orbits are generated where the initial and final 

positions are arbitrarily chosen in the RAPF and ACPF. By comparing with the orbital elements of the 

leader spacecraft in Table 1, it is seen that the transfer orbits of two formation reconfigurations have 

almost same orbital elements, as described in Fig. 5; however, some orbital elements are different. 

Table 6 summarizes the differences of the orbital elements: (i) between the reference orbit and the 

transfer orbit in the RAPF as described in Sections 4.1, and (ii) between the reference orbit and the 

transfer orbit in the ACPF in Section 4.2. These results show the maneuver characteristics of the 

Fig. 9. Velocity history of follower spacecraft (RAPF)
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191

Jonghee Bae    Spacecraft Formation Reconfiguration using Impulsive Control Input

http://ijass.org

ACPF. Figure 8 shows the transfer trajectory of the follower 

spacecraft with respect to the leader spacecraft in the LVLH 

frame. Figure 9 shows the velocity history of the follower 

spacecraft during the maneuver. In Fig. 9, the triangle 

denotes specified velocities at the initial and final time in 

the LVLH frame given in Table 4. Therefore, the required 

velocity change can be obtained by computing the difference 

between the resulting velocity from the modified Lambert’s 

problem and the specified velocity. Table 5 summarizes the 

velocities of the follower spacecraft and △V for the maneuver 

in the ACPF.

4.3 Analysis

In this section, the simulation results for the formation 

reconfiguration using impulsive control input in the 

RAPF and ACPF are analyzed. The simulation results are 

investigated in terms of the difference of the orbital elements 

between the transfer orbit and reference orbit with respect to 

the formation geometry.

As described in Sections 4.1 and 4.2, the transfer orbits are 

generated where the initial and final positions are arbitrarily 

chosen in the RAPF and ACPF. By comparing with the 

orbital elements of the leader spacecraft in Table 1, it is seen 

that the transfer orbits of two formation reconfigurations 

have almost same orbital elements, as described in Fig. 

5; however, some orbital elements are different. Table 6 

summarizes the differences of the orbital elements: (i) 

between the reference orbit and the transfer orbit in the 

RAPF as described in Sections 4.1, and (ii) between the 

reference orbit and the transfer orbit in the ACPF in Section 

4.2. These results show the maneuver characteristics of 

relative motion in the RAPF and ACPF. As shown in Table 

6, the difference of the semi-major axis for the ACPF case 

is much larger than that for the RAPF case. This difference 

leads to the total velocity change △V for the formation 

reconfiguration; it can be seen in Tables 3 and 6 that △V 

for resizing the formation radius in the ACPF is increased 

compared with △V in the RAPF as △a in the ACPF becomes 

large. Furthermore, as represented in Table 6, the transfer 

between two orbits in RAPF produces a difference in orbital 

elements including the semi-major axis a, eccentricity e, 

and augment of perigee ω, which means that orbit transfer 

in the RAPF belongs to the coplanar maneuver. On the other 

hand, in the ACPF, not only a, e, and ω, but also inclination i 

and longitude of the ascending node Ω are changed during 

the maneuver, as shown in Table 6. It means that the orbit 

transfer in the ACPF is related to the combined maneuver of 

coplanar and non-coplanar maneuvers.

5. Conclusion

A formation reconfiguration using impulsive control 

input is developed for spacecraft formation flying. To 

transfer between two position vectors at initial and final 

time, two impulsive control inputs are generated through 

modification of the classical Lambert’s problem. The 

modified method provides the transfer orbit in relative 

motion for spacecraft formation flying, and therefore the 

follower spacecraft can change the formation radius and/or 

geometry with respect to the leader spacecraft. Numerical 

simulations are performed to solve the maneuver problem 

for formation reconfiguration in the RAPF and ACPF. 

These results show the maneuver characteristics of the 

transfer orbit with respect to the formation type. Through 

these result, it can be concluded that the transfer orbit 

for resizing formation radius in the RAPF is related to the 

coplanar maneuver, and transfer orbit in the ACPF belongs 

to the combined maneuver of coplanar and non-coplanar 

maneuvers.
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relative motion in the RAPF and ACPF. As shown in Table 6, the difference of the semi-major axis for 

the ACPF case is much larger than that for the RAPF case. This difference leads to the total velocity 

change V for the formation reconfiguration; it can be seen in Tables 3 and 6, V for resizing the 

formation radius in the ACPF is increased compared with V in the RAPF as a in the ACPF 

becomes large. Furthermore, as represented in Table 6, the transfer between two orbits in RAPF 

produces the difference in the orbital elements including a semi-major axis a, an eccentricity e, and an 

augment of perigee  , which means that the orbit transfer in the RAPF belongs to the coplanar 

maneuver. On the other hand, in the ACPF, not only a, e, and  , but also inclination i and longitude 

of the ascending node  are changed during the maneuver, as shown in Table 6. It means that the 

orbit transfer in the ACPF is related to the combined maneuver of coplanar and non-coplanar 

maneuvers. 

Table 6. Difference of orbital elements 

 RAPF ACPF 

a  (m) 1.2256 11.5291 

e 0.0002 0.0003 

i  (deg) 0 0.0015 

  (deg) 0 0.0013 

  (deg) 0.0013 0.0111 

5. Conclusion 

The formation reconfiguration using the impulsive control input is developed for spacecraft 

formation flying. To transfer between two position vectors at initial and final time, the two impulsive 

control inputs are generated throughout the modification of the classical Lambert’s problem. The 

modified method provides the transfer orbit in the relative motion for the spacecraft formation flying, 

and therefore the follower spacecraft can change the formation radius and/or geometry with respect to 

the leader spacecraft. Numerical simulations are performed to solve the maneuver problem for the 

formation reconfiguration in the RAPF and ACPF. These results show the maneuver characteristics of 
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