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Abstract

Traffic Collision Avoidance System (TCAS) is designed to enhance safety in aircraft operations, by reducing the incidences of 

mid-air collision between aircraft. The current version of TCAS provides only vertical resolution advisory to the pilots, if an 

aircraft’s collision with another is predicted to be imminent, while efforts to include horizontal resolution advisory have been 

made, as well. This paper introduces a collision resolution algorithm, which includes both vertical and horizontal avoidance 

maneuvers of aircraft. Also, the paper compares between the performance of the proposed algorithm and that of algorithms 

with only vertical or horizontal avoidance maneuver of aircraft.
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1. Introduction

TCAS is designed to prevent mid-air collisions between 

aircraft. However, the current version of TCAS does not 

perform a perfect role of aircraft collision detection and 

avoidance, hence mid-air collisions and near misses do 

occasionally occur [1].

The importance of aircraft collision detection and avoidance 

will increase, as the demand in air traffic is projected to 

grow continuously. In response to the growth in air traffic 

demand, the Joint Planning and Development Office (JPDO) 

of the United States has initiated a revolutionary concept of 

operation, known as the Next Generation Air Transportation 

System (NextGen), for future air traffic operations [2]. Under 

the NextGen, a new concept of operation allows aircraft 

more flexibility in changing its flight conditions, and a part of 

separation responsibility is sometimes delegated to individual 

aircraft. As a result, the aircraft’s ability for collision avoidance 

including TCAS should be further emphasized.

Intensive researches on collision detection and avoidance 

systems have been performed in the last few decades [3-8]. 

Prandini et al. have used a stochastic kinematic model of 

aircraft, with uncertainties represented by two-dimensional 

Brownian motion for short-term trajectory prediction 

[3]. Hwang et al. have proposed a probabilistic trajectory 

prediction algorithm, using a hybrid system aircraft 

dynamics model that allows various turn dynamics of aircraft 

to be considered, and therefore more accurate trajectory 
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prediction and conflict detection have become possible [4]. 

Trapani et al. have also suggested a horizontal resolution 

algorithm for aircraft collision avoidance by including 

the bank turn dynamics of aircraft [5]. The performance 

of various collision avoidance algorithms have also been 

investigated [6-7]. More comprehensive survey on collision 

modeling and avoidance algorithms is provided in the 

reference [8]. 

In this paper, we introduce a new collision resolution 

algorithm, which includes both vertical and horizontal 

maneuvers of aircraft. The algorithm is considered to be the 

combination of vertical resolution advisory in TCAS, and 

horizontal resolution with the dynamics of the aircraft’s bank 

turn. The probabilistic collision detection algorithm is also 

incorporated, and the performances of the proposed method 

were compared with those of the current TCAS vertical only 

algorithm in various situations. 

2. TCAS Algorithm 

TCAS is a collision detection avoidance system that 

prevents mid-air collision, along with structured airspace 

and various Air Traffic Control (ATC) procedures. The TCAS 

system helps pilots to visually acquire a potential threat 

and, if necessary, provides a last-minute collision avoidance 

advisory directly to the pilots [9].

The collision detection algorithm in TCAS consists of 

projecting aircraft’s positions into the future, and identifying 

a potential intruder, based on several key metrics, including 

the estimated vertical and slant-range separations between 

aircraft, and the time until the closest point of approach 

between aircraft. Table 1 shows the criterion of Traffic 

Advisory (TA) and Resolution Advisory (RA). If a predicted 

collision is classified as TA, the TCAS issues the TA alert in 

the cockpit. If the situation is considered as RA, the TCAS 

Table 1. Criterion of TA and RA (from reference [10])
Table 1. Criterion of TA and RA (from the reference [10]) 

Own altitude 

(feet) 

Tau 

(seconds) 

DMOD 

(nmi) 

Altitude Threshold 

(feet) 

TA RA TA RA TA RA(ALIM) 

< 1000 20 N/A 0.30 N/A 850 N/A 

1000 ~ 2350 25 15 0.33 0.20 850 300 

2350 ~ 5000 30 20 0.48 0.35 850 300 

5000 ~ 10000 40 25 0.75 0.55 850 350 

10000 ~ 20000 45 30 1.00 0.80 850 400 

20000 ~ 42000 48 35 1.30 1.10 850 600 

> 42000 48 35 1.30 1.10 1200 700 

 

 

Fig. 1. State Diagram of RA (from the reference [10]) 
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issues not only a RA alert but also additional advisory for 

possible aircraft’s maneuvers, as shown in Fig. 1.

3. Modelling Of 3-D Resolution Method

3.1 Aircraft Dynamics

The aircraft’s horizontal and vertical positions can be 

expressed as
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 is the heading angle of the aircraft.

The aircraft’s turn dynamics can be expressed as

where � is the speed of aircraft, γ is the 

flight path angle, and χ  is the heading 

angle of aircraft. 

The aircraft’s turn dynamics can be 
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where �  is turn radius, �  is bank angle, � 
is the duration of turn maneuver, and P is 

position of the aircraft when the turn is 

complete. 

3.2  State  Propagation  and  Conflict 
Detection 

The uncertainty levels in aircraft’s 

each state can be expressed as follows. 
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aircraft, while the uncertainty level in the 
predicted position (as in Eq. (6)) can be 
found by translating the uncertainties in 
aircraft’s current speed, path angle, and 
heading angle into the aircraft positions, 
which can be found by using the Taylor 
expansion through  Eq. (1)~Eq. (3). The 
uncertainty levels used in Eqs. (7)~(8) 
are practical values for a typical 
commercial aircraft [5]. Once we find the 
probabilistic expression of aircraft future 
locations, the probability of conflict 
between two aircraft can be found as 
follows  
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3.3 3-D Resolution Algorithm

It is necessary to have a clear definition of a conflict. In 

this framework, a ‘Conflict’ is an event in which two or 

more aircraft experience a loss of minimum separation, as 

illustrated in Fig. 2. However, we assume that a ‘Collision’ 

means a physical confrontation of two aircraft. 

If a collision is predicted by the method explained in the 

previous section, the aircraft turn with the bank angle of 

20 degrees, and climbs (or descends) with the rate of 1500 

ft/m. The 20 degrees is the typical value for aircraft’s medium 

turn [5], and 1500 ft/m climb (or descent) rate is the value 

used in the current version of TCAS [6]. As future works, 

different values for the bank angle and the vertical rate 

should be adopted in the proposed algorithm. This process 

is illustrated by the flow chart in Fig. 3, in which Pc is the 

probability of conflict, and τ is the time to the Closest Point 
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where �  is turn radius, �  is bank angle, � 
is the duration of turn maneuver, and P is 
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The equation (7) represents the 
uncertainty in the current location of 
aircraft, while the uncertainty level in the 
predicted position (as in Eq. (6)) can be 
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uncertainty levels used in Eqs. (7)~(8) 
are practical values for a typical 
commercial aircraft [5]. Once we find the 
probabilistic expression of aircraft future 
locations, the probability of conflict 
between two aircraft can be found as 
follows  
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Three different collision avoidance 

algorithms were compared. At first, we 

applied the algorithm in the current 

version of TCAS to each traffic scenario. 

Figures 6~13 show the simulation results. 

Then, we applied the collision avoidance 

algorithm in [5] which considers only 

horizontal maneuver of aircraft by taking 
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resolution with the dynamics of the 

Fig. 3. �3-Dimension Resolution Flow Chart



275

Youngrae Kim    A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance 

http://ijass.org

given criterion for τ.

4. Simulation Results

4.1 Resolution of Conflicts Involving Pair Aircraft

The simulations are conducted with two situations. The 

first is that both aircraft go across a track. The second is that 

both aircraft are facing each other.

Three different collision avoidance algorithms were 

compared. First, we applied the algorithm in the current 

version of TCAS to each traffic scenario. Figures 6~13 

show the simulation results. Then, we applied the collision

is a given criterion for Pc and τ* is a 

given criterion for τ. 
 

 

Fig. 3. 3-Dimension Resolution Flow Chart 

 

 

4. Simulation Results 

4.1  Resolution  of  Conflicts  Involving 
Pair Aircraft 

The simulations are conducted with 

two situations. The first is that both 

aircraft go across a track. The second is 

that both aircraft are facing each other. 

 

 
 

Fig.4. Situation 1 of pair aircraft 

 

 

 

 

 

 

Table 2. Initial condition of Situation 1 

 Aircraft A Aircraft B 

Initial (0, 0, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 000 270 

 

 
 

Fig. 5. Situation 2 of pair aircraft 

 

Table 3. Initial condition of Situation 2 

 Aircraft A Aircraft B 

Initial (-12, 12, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 090 270 

Three different collision avoidance 

algorithms were compared. At first, we 

applied the algorithm in the current 

version of TCAS to each traffic scenario. 

Figures 6~13 show the simulation results. 

Then, we applied the collision avoidance 

algorithm in [5] which considers only 

horizontal maneuver of aircraft by taking 

into account the aircraft’s turn dynamics. 

Figures 14~21 show the simulation 

results. Lastly, we applied the proposed 

method of collision avoidance which is the 

combination of vertical resolution 

advisory in TCAS and the horizontal 

resolution with the dynamics of the 

Fig. 4. �Situation 1 of pair of aircraft

Table 2. Initial condition of Situation 1

is a given criterion for Pc and τ* is a 

given criterion for τ. 
 

 

Fig. 3. 3-Dimension Resolution Flow Chart 

 

 

4. Simulation Results 

4.1  Resolution  of  Conflicts  Involving 
Pair Aircraft 

The simulations are conducted with 

two situations. The first is that both 

aircraft go across a track. The second is 

that both aircraft are facing each other. 

 

 
 

Fig.4. Situation 1 of pair aircraft 

 

 

 

 

 

 

Table 2. Initial condition of Situation 1 

 Aircraft A Aircraft B 

Initial (0, 0, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 000 270 

 

 
 

Fig. 5. Situation 2 of pair aircraft 

 

Table 3. Initial condition of Situation 2 

 Aircraft A Aircraft B 

Initial (-12, 12, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 090 270 

Three different collision avoidance 

algorithms were compared. At first, we 

applied the algorithm in the current 

version of TCAS to each traffic scenario. 

Figures 6~13 show the simulation results. 

Then, we applied the collision avoidance 

algorithm in [5] which considers only 

horizontal maneuver of aircraft by taking 

into account the aircraft’s turn dynamics. 

Figures 14~21 show the simulation 

results. Lastly, we applied the proposed 

method of collision avoidance which is the 

combination of vertical resolution 

advisory in TCAS and the horizontal 

resolution with the dynamics of the 

is a given criterion for Pc and τ* is a 

given criterion for τ. 
 

 

Fig. 3. 3-Dimension Resolution Flow Chart 

 

 

4. Simulation Results 

4.1  Resolution  of  Conflicts  Involving 
Pair Aircraft 

The simulations are conducted with 

two situations. The first is that both 

aircraft go across a track. The second is 

that both aircraft are facing each other. 

 

 
 

Fig.4. Situation 1 of pair aircraft 

 

 

 

 

 

 

Table 2. Initial condition of Situation 1 

 Aircraft A Aircraft B 

Initial (0, 0, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 000 270 

 

 
 

Fig. 5. Situation 2 of pair aircraft 

 

Table 3. Initial condition of Situation 2 

 Aircraft A Aircraft B 

Initial (-12, 12, 1) (12, 12, 1) 

Velocity 300 knot 380 knot 

Vertical 1,500 ft/m 1,500 ft/m 

Bank angle 20° 20° 

Heading 090 270 

Three different collision avoidance 

algorithms were compared. At first, we 

applied the algorithm in the current 

version of TCAS to each traffic scenario. 

Figures 6~13 show the simulation results. 

Then, we applied the collision avoidance 

algorithm in [5] which considers only 

horizontal maneuver of aircraft by taking 

into account the aircraft’s turn dynamics. 

Figures 14~21 show the simulation 

results. Lastly, we applied the proposed 

method of collision avoidance which is the 

combination of vertical resolution 

advisory in TCAS and the horizontal 

resolution with the dynamics of the 

Fig. 5. �Situation 2 of pair of aircraft

aircraft’s bank turn. Figures 22~29 show the simulation results. 
 TCAS Algorithm with Vertical Advisory  

- Situation 1 

 

Fig. 6. Vertical resolution 3-D View 

 

Fig. 7. Altitude of both aircraft 

 

Fig. 8. Range of both aircraft 

 

Fig. 9. Required time of resolution 

- Situation 2 

-10
-5

0
5

10
15

0
5

10

15
20
0

0.5

1

1.5

2

West-East(nmi)South-North(nmi)

A
lti

tu
de

(n
m

i)

AircraftA
AircraftB

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time(sec)

A
lti

tu
de

(n
m

i)

AircraftA
AircraftB

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

Time(sec)

D
is

ta
nc

e(
nm

i)

0 20 40 60 80 100 120 140 160 180 200

0

1

Time(sec)

R
es

ol
ut

io
n 

A
dv

is
or

y

Fig. 7. �Altitude of both aircraft

aircraft’s bank turn. Figures 22~29 show the simulation results. 
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aircraft’s bank turn. Figures 22~29 show the simulation results. 
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Fig. 24. �Range of both aircraft

 

Fig. 18. Horizontal resolution 3-D view 

 

Fig. 19. Horizontal resolution top view 

 

Fig. 20. Range of both aircraft 

 

Fig. 21. Required time of resolution 
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Fig. 22. 3-Dim. resolution 3-D view 

 

Fig. 23. Altitude of both aircraft 
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Fig. 25. �Required time of resolution

 

Fig. 26. 3-Dim. resolution 3-D view 

 

Fig. 27. Altitude of both aircraft 

 

Fig. 28. Range of both aircraft 

 

Fig. 29. Required time of resolution 

As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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Fig. 28. �Range of both aircraft 

Fig. 26. 3-Dim. resolution 3-D view 

 

Fig. 27. Altitude of both aircraft 

 

Fig. 28. Range of both aircraft 

 

Fig. 29. Required time of resolution 

As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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Fig. 29. Required time of resolution

avoidance algorithm in [5], which considers only horizontal 

maneuver of the aircraft, by taking into account the 

aircraft’s turn dynamics. Figures 14~21 show the simulation 

results. Lastly, we applied the proposed method of collision 

avoidance, which is the combination of the vertical 

resolution advisory in TCAS and the horizontal resolution 

with the dynamics of the aircraft’s bank turn. Figures 22~29 

Proposed 3- Dimensional Resolution Algorithm 
- Situation 1

- Situation 2
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show the simulation results. 

As shown in Figs. 8, 12, 16, 20, 24, and 28, the horizontal 

resolution algorithm could provide the largest separation 

between aircraft, among the three methods of collision 

avoidance, for both scenarios in Tables 2 and 3. However, 

the horizontal resolution algorithm requires the longest 

time of resolution, as shown in Figs. 9, 13, 17, 21, 25, and 

29.

On the other hand, the TCAS algorithm only, with vertical 

maneuver of aircraft, provides a shorter time of resolution, 

but it maintains far smaller separation between aircraft 

than the horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could provide more 

balanced performances. As shown in Tables 4 and 5, the 

proposed algorithm requires the shortest time of resolution, 

while a relatively large separation between aircraft can also 

be maintained, compared to the two previous collision 

avoidance algorithms.

Each of the aircraft trajectories for the three different 

algorithms in both scenarios are shown in Figs. 6~7, 10~11, 

14~15, 18~19, 22~23 and 26~27.

4.2 Resolution of Conflicts Involving Multiple Aircraft

In this section, the conflict situation with multiple 

aircraft is considered. 50 aircraft are involved, and the 

conflicts among these aircraft are resolved with the three 

different resolution algorithms explained in the previous 

sections. Table 6 is a summary of the simulation condition 

involving multiple aircraft. Figures 30~33, figures 34~37, 

and figures 38~41 show the aircraft resolution trajectories 

for the TCAS algorithm, the horizontal resolution 

algorithm, and the proposed 3-dimensional resolution 

algorithm, respectively.

As shown in Table 7, the greatest occurrence of RA is 

in the TCAS algorithm, and the smallest occurrence of RA 

is in the horizontal resolution algorithm. This means that 

the horizontal resolution algorithm can solve heavy traffic 

with the smallest avoidance maneuvers, compared with the 

others.

However, in terms of the conflicts occurred, the proposed 

3-dimensional resolution algorithm has shown improved 

performance, i.e., a reduced number of average conflicts, 

compared to both the TCAS algorithm and the horizontal 
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As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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Table 5. Simulation result of situation 2

Minimum Range 0.2311 nmi 15.0231 nmi 3.7565 nmi 

Minimum Vertical 

Range 
0.2311 nmi 0 nmi 0.1656 nmi 

Minimum Horizontal 

Range 
0 nmi 15.0231 nmi 3.7258 nmi 

Required Time of 

Resolution 
28 sec 33 sec 19 sec 
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involved, and the conflicts among these aircraft are resolved with three different resolution 

algorithms explained in the previous sections. Table 6 is the summary of simulation 
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Fig. 28. Range of both aircraft 

 

Fig. 29. Required time of resolution 

As shown in Figs. 8, 12, 16, 20, 24, and 
28, the horizontal resolution algorithm could 
provide the largest separation between aircraft 
among the three methods of collision avoidance 
for both scenarios in Tables 2 and 3. However, 
the horizontal resolution algorithm requires the 
longest time of resolution, as shown in Figs. 9, 
13, 17, 21, 25, and 29. 

On the other hand, the TCAS algorithm 
only with vertical maneuver of aircraft provides 
shorter time of resolution, but it maintains far 
smaller separation between aircraft than the 
horizontal resolution algorithm. The proposed 

3-dimensional resolution algorithm could 
provide more balanced performances. As shown 
in Tables 4 and 5, the proposed algorithm 
requires the shortest time of resolution while a 
relatively large separation between aircraft can 
also be maintained compared to the two 
previous collision avoidance algorithms. 

Each aircraft trajectories for three 
different algorithms in both scenarios are shown 
in Figs. 6~7, 10~11, 14~15, 18~19, 22~23 and 
26~27. 
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involved, and the conflicts among these aircraft are resolved with three different resolution 

algorithms explained in the previous sections. Table 6 is the summary of simulation 

condition involving multiple aircraft. Figures 30~33, figures 34~37, and figures 38~41 show 
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algorithm, and the proposed 3-dimensional resolution algorithm, respectively. 
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Fig. 30. 3-D view(Simulation t=100s) 

 

 

Fig. 31. Top view(Simulation t=100s) 

 

Fig. 32. 3-D view(Simulation t=500s) 

 

Fig. 33. Top view(Simulation t=500s) 
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Fig. 30. �3-D view (Simulation t=100s)

 

Fig. 30. 3-D view(Simulation t=100s) 

 

 

Fig. 31. Top view(Simulation t=100s) 

 

Fig. 32. 3-D view(Simulation t=500s) 

 

Fig. 33. Top view(Simulation t=500s) 
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As shown in Table 7, the greatest 

occurrence of RA is in the TCAS 

algorithm, and the smallest occurrence of 

RA is in the horizontal resolution 

algorithm. This means that horizontal 

resolution algorithm can solve heavy 

traffic with the smallest avoidance 

maneuvers compared with others. 

However, in terms of the conflicts 

occurred, the proposed 3-dimensional 

resolution algorithm has shown the 

improved performance, i.e., the reduced 

number of average conflicts, compared to 

both the TCAS algorithm and the 

horizontal resolution algorithm. Note that 

there was no collision occurred in our 

simulation, but conflicts, i.e., the cases 

where the distance between two aircraft 

is less than the separation standard, which 

in fact occurred. 
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resolution algorithm. Note that no collision occurred in our 

simulation, but conflicts, i.e. the cases where the distance 

between two aircraft is less than the separation standard, did 

in fact occur.

5. Conclusion

In the paper, a 3-dimensional resolution algorithm for 

aircraft collision detection and avoidance is presented. 

The algorithm calculates the probability of collision under 

the presence of uncertainty in the aircraft’s state variables. 

If the algorithm judges that a collision between aircraft 

is to occur, the aircraft is asked to perform avoidance 

maneuvers in both vertical and horizontal directions at 

the same time. 

For verifying the performance of the algorithm, 

simulations with various traffic scenarios were performed. 

The results show that the proposed 3-dimensional 

resolution algorithm may provide improved performances 

over the other two previously proposed collision avoidance 

algorithms, while more extensive simulation should further 

be performed. 

Future work should further evaluate performances of 

the proposed method, with traffic scenarios involving more 

realistic airspace environments. More study is necessary 

to investigate how to extend the time horizon of detecting 

a collision by effectively taking the aircraft’s intent into 

account. 
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Fig. 38. 3-D view(Simulation t=100s) 

 

Fig. 39. Top view(Simulation t=100s) 

 

Fig. 40. 3-D view(Simulation t=500s) 

 

Fig. 41. Top view(Simulation t=500s) 

 

 

As shown in Table 7, the greatest 

occurrence of RA is in the TCAS 

algorithm, and the smallest occurrence of 

RA is in the horizontal resolution 

algorithm. This means that horizontal 

resolution algorithm can solve heavy 

traffic with the smallest avoidance 

maneuvers compared with others. 

However, in terms of the conflicts 

occurred, the proposed 3-dimensional 

resolution algorithm has shown the 

improved performance, i.e., the reduced 

number of average conflicts, compared to 

both the TCAS algorithm and the 

horizontal resolution algorithm. Note that 

there was no collision occurred in our 

simulation, but conflicts, i.e., the cases 

where the distance between two aircraft 

is less than the separation standard, which 

in fact occurred. 
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Fig. 40. 3-D view (Simulation t=500s)
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Fig. 41. Top view(Simulation t=500s) 
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Fig. 41. Top view (Simulation t=500s)

Table 7. Simulation result

 

Average 

Number of 

RA 

Standard 

Deviation of 

RA  

Average 

Number of 

Conflict 

Standard 

Deviation of 

Conflict 

TCAS Algorithm 93.85 9.8968 7.98 2.4535 

Horizontal 

Resolution 

Algorithm 

53.99 6.8261 4.59 2.0305 

3-Dimensional 

Resolution 

Algorithm 

65.46 7.7439 2.96 1.8198 

 
 
 

5. Conclusion 

 
In the paper, the 3-dimensional 

resolution algorithm for aircraft collision 

detection and avoidance is presented. The 

algorithm calculates the probability of 

collision under the presence of 

uncertainty in aircraft’s state variables. If 

the algorithm judges that a collision 

between aircraft is to occur, the aircraft is 

asked to perform avoidance maneuvers in 

both vertical and horizontal directions at 

the same time.  

 For verifying performance of the 

algorithm, simulations with various traffic 

scenarios were performed. The results 

show that the proposed 3-dimensional 

resolution algorithm may provide the 

improved performances than the other 

two previously proposed collision 

avoidance algorithms, while more 

extensive simulation should further be 

performed.  

Future work should further evaluate 

performances of the proposed method 

with traffic scenarios involving more 

realistic airspace environments. More 

study is necessary to investigate on how 

to extend the time horizon of detecting a 

collision by effectively taking aircraft’s 

intent into account.  
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