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Abstract

Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different 

passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural 

vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling 

is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling 

of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, 

semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to 

the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control 

techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers 

interested in the growing field of vibration damping and control, via shunted piezostructural systems.
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1. Introduction

The attenuation of vibration is desired in many engineering 

fields. Prominent among these are aerospace applications 

[1-5]. Due to technological advancements in the aerospace 

industry, there is an increased trend towards designing large-

scale and light-weight flexible structures, with the ability to 

carry man and material over long distances, at reduced cost. 

However, proper functioning of these flexible structures is 

usually associated with controlling vibrations at low frequency 

modes. The use of conventional vibration damping materials 

is limited, as they require more space and weight, and have 

an inability to control vibration at low frequency. Due to their 

small volume, lightweight, mechanical simplicity, and ease 

of integration with flexible structures, Piezoelectric (PZT) 

materials have emerged as the material of choice for vibration 

control purpose, among various researchers and engineers. 

These so-called smart materials exhibit excellent sensing 

and actuation abilities, along with a high electro-mechanical 

coupling coefficient. Piezoelectric materials work on the 

principle of piezoelectricity. When mechanically strained, 

piezoelectric material generates electric charge or voltage, 

which can be used for sensing purpose. This phenomenon is 

known as the direct piezoelectric effect. On the other hand, 

when an electric field is applied across the piezoelectric 

material, mechanical stress or strain is induced, which can 

be used for actuation purpose. This phenomenon is known as 

the converse piezoelectric effect. 

Vibration control using piezoelectric transducers can be 

categorized into passive, active, semi-passive, or semi-active. 

The simplest among these are passive control systems using 

a piezoelectric patch, shunted by a resistive-inductive RL 

electric network [6-12]; but variation in system parameters 

causes degradation in their control performance. Also, these 

systems require high shunt impedances for low frequency 

vibration attenuation. On the other hand, active control 

systems [13-15], are highly effective for low frequency 

vibration control; however, they require big power amplifiers 

and high performance digital signal processors to drive 

actuators, which is not feasible in most practical situations. 
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Semi-passive and semi-active control systems have recently 

proved to be an attractive option for vibration attenuation, 

to overcome the disadvantages of passive and active control 

systems. Their advantages, compared to active control 

techniques, include more broadband frequency of operation 

over passive control, and less energy consumption.

Over the last two decades, different vibration control 

laws using piezoelectric materials have been extensively 

proposed, and have been used for diverse applications. 

This becomes clear from the following review articles: 

Sunar & Rao [16] gave a comprehensive review of recent 

research activity related to the use of piezoelectricity, in the 

sensing and control of various flexible structures. The article 

comprised 336 references, which are classified according 

to their applications. Tang et al. [17] examined the past 

research efforts, and suggested future prospects regarding 

piezoelectric based semi-active and active-passive hybrid 

structural damping. Benjeddou [18] made the first attempt 

to survey and discuss advances in finite element modeling 

of smart structure during the last decade. Potential gaps 

were identified, and future directions were set. In the past, 

active (piezoelectric) and passive (viscoelastic) controls have 

also been combined, to form hybrid controls for structural 

vibration suppression. This unified approach provided 

broadband control, and benefited from the advantages of 

both active (high performance, adaptability), and passive 

(reliability, low cost, robustness) systems. Benjeddou [19] 

and Trindade & Benjeddou [20] reviewed recent advances 

in geometric configurations, modeling approaches, and 

control algorithms of these hybrid active-passive damping 

treatments. Moheimani [21] presented an overview of 

vibration damping and control using shunted piezoelectric 

transducers, and investigated the similarities between shunt 

damping, and collocated active vibration controllers. He also 

demonstrated that shunted piezoelectric based vibration 

control problem can be viewed as a specific feedback control 

problem. Piezoelectric materials have also extensively 

been used in power harvesting techniques using ambient 

vibration energy. Sodano et al. [22] reviewed piezoelectric 

based energy harvesting using ambient mechanical 

vibration, and investigated power harvesting efficiency, 

discussing power storage and circuitry. In the years 

following the article by Sodano et al. [22], Anton and Sodano 

[23] reviewed research related to improving the efficiency 

of piezoelectric based energy harvesting through physical 

and geometric configurations, adaptive circuitry and energy 

removal techniques. In a recent article, Wang and Inman [24] 

discussed the possibility of using harvested energy through 

piezoelectric means, to provide power to control systems for 

suppressing vibrations. The use of piezoelectric materials 

has also extended to the vibration control of civil structures. 

Song et al. [25] reviewed structural control application of 

piezoelectric materials in beams, trusses, steel frames, 

and cable-stayed bridges. The advantages of piezoelectric 

materials were also discussed, along with the limitations, for 

actual implementation of these materials in civil structures. 

In a two-part article on the state-of-the-art, Fisco & Adeli [26, 

27] reviewed active, semi-active, and hybrid controls, using a 

variety of systems in civil structures, and discussed different 

control strategies.

This article presents a review of vibration control 

laws via shunted piezoelectric transducers, classified as 

passive control, semi-passive control, and semi-active 

control. First, the existing electromechanical modeling 

methods of piezostructural systems shunted by electrical 

networks are briefly reviewed, ranging from lumped to 

distributed parameter modeling. A comprehensive review 

is then initiated, covering different vibration control laws 

via shunted piezoelectric transducers, as reported in the 

literature over the last two decades. This places particular 

emphasis on recent articles, and covers semi-passive and 

semi-active shunt damping techniques with external power 

supply. At this stage, the authors would like to point out that 

there is a difference between semi-passive and semi-active 

control. Some researchers have used both “semi-active” 

and “semi-passive” control to represent different shunt 

damping circuits with external power supply e.g. Qiu et al. 

[80]. However, in this article, an electric shunt circuit will be 

taken as semi-passive, if and only if it does not provide power 

to the system - otherwise it will be considered as semi-active.

2.  Modeling of Shunted Piezostructural Sys-
tems

Both lumped parameter and distributed parameter 

modeling approaches have been utilized by different 

researchers to predict the electromechanical behavior of 

piezostructual systems shunted by electrical networks, 

for optimal damping and control performance. Larson & 

Rogers [30] derived a lumped parameter model to predict 

the frequency changes between resonance states, for a 

state switched piezoelectric based acoustic transducer for 

underwater applications. Davis & Lesieutre [29] developed 

a lumped parameter model of an electrically shunted 

passive vibration absorber, in which effective stiffness of the 

piezoelectric actuator was modified; this, in turn, changed 

the natural frequency of the device, in accordance with 

the variable frequency of the host structure. Mathematical 

expressions for the effective stiffness of piezoelectric 
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elements were also developed. A simple lumped parameter 

model was developed by Badel et al. [31] for a semi-

passive shunt damping system; this was 100 times faster, 

compared to finite element simulations in ANSYS. Lumped 

parameter modeling for piezoelectric shunt damping was 

also effectively utilized by Corr & Clark [28]; Cunefare [32]; 

Niederberger et al. [33]; and Lallart et al. [34], in their work.

Alternatively, Hagood et al. [7] utilized the distributed 

parameter model, using the generalized version of 

Hamilton’s principle with Rayleigh-Ritz formulations, to 

derive equations of motion of an electroelastic continuum 

containing piezoelectric materials. The application of this 

generalized model was effectively used in a special case 

for a cantilevered piezostructure shunted by electrical 

networks. Euler-Bernoulli beam assumptions have been 

used by Guyomar et al. [35], and Ji et al. [36]; in particular, 

the assumptions were used by Ji et al. [37] to model the 

electromechanical behavior of cantilever piezostructure 

shunted by electrical elements. Erturk and Inman [38] 

identified several oversimplified and incorrect assumptions 

made in the literature relating to the electromechanical 

modeling of piezoelectric energy harvesters, from the use 

of low fidelity models, to incorrect base motion modeling, 

as well as the use of static expression in a fundamentally 

dynamic problem. Corrections were made for piezoelectric 

coupling, and improved distributed parameter modeling 

was derived as an alternative to single-degree-of-freedom 

lumped models, for more accurate model prediction of 

piezoelectric energy harvesters.

The dynamic modeling of cantilever shunted 

piezostructural systems using these two modeling 

approaches, as used in the literature, is briefly introduced 

below.

2.1 Dynamic Modeling of Cantilever Shunted Piezo-
structural Systems

A comprehensive analytical model of the shunted 

piezostructural system is very important, not only for 

optimizing the system’s mechanical to electrical energy 

conversion, but also for optimizing the system design 

parameters for improved performance. A number of 

approaches have been used in the literature to model the 

electromechanical behavior of the cantilever shunted 

piezostructual systems, in order to satisfy the diverse 

research needs. In order to achieve different design goals, 

provide reliable estimation of physical systems, and to satisfy 

various application needs, an analytical model should be as 

simple as possible, yet be sophisticated enough to capture 

various important phenomena.

2.1.1 Discrete or Lumped Parameter Modeling

The electromechanical behavior of a vibrating structure 

containing piezoelectric elements can be modeled as a 

spring-mass-damper system, as shown in Fig. 1 (a). In its 

simplest form, the structure can be modeled as a second 

order model, if it is driven under harmonic excitation around 

one of its resonance frequencies. Assuming linear elastic 

properties for the structure and the piezoelectric elements, 

differential equation (1) can be established,
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where, � represents the equivalent rigid mass, � is the mechanical losses coefficient, 
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(1)

where, M represents the equivalent rigid mass, C is the 

mechanical losses coefficient, KE is the equivalent stiffness 

of the mechanical structure and piezoelectric elements in a 

short-circuited condition, u is the rigid mass displacement, 

and 
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where, �� is the electrically dependent part of the force applied by the piezoelectric 

elements on the structure, � is the force factor, �� is the blocked capacitance of piezoelectric 

elements, and �� is the outgoing current from piezoelectric elements. �, ��, � and �� 

can be determined from the structural and piezoelectric elements characteristics, and the 

geometry. As ∑ �� is the combination of �� and the external applied force on the structure 

i.e. the excitation force �, equation (1) can be written as 
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which represents the differential equation of motion of the electromechanical vibration 

system. 

Multiplying both sides of equation (4) by velocity, and integrating over the time variable, 

gives the following energy equation (5) 

� ���  �� � �
� ��� � � �
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which represents the provided energy, in terms of kinetic energy, potential energy, 

mechanical losses, and transferred energy. Here, the transferred energy represents conversion 

of a part of the mechanical energy to electrical energy. By maximizing this energy, the 

mechanical energy, corresponding to the kinetic and potential energy in the structure, can be 

minimized. Due to its simplicity, this technique has been widely employed in the literature, 

such as in Guyomar et al. [39], and Badel et al. [31]. 
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where, Fp is the electrically dependent part of the force 

applied by the piezoelectric elements on the structure, α is 
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Fig. 1. Schematic representation of the (a) lumped parameter model, and (b) distributed parameter 
model, for piezoelectric shunt damping. 
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Fig. 1. Schematic representation of the (a) lumped parameter model, and (b) distributed parameter model, for piezoelectric shunt damping.
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elements, and Ip is the outgoing current from piezoelectric 

elements. M, KE, α and Co can be determined from the 

structural and piezoelectric elements characteristics, and 

the geometry. As 
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which represents the provided energy, in terms of 

kinetic energy, potential energy, mechanical losses, and 

transferred energy. Here, the transferred energy represents 

conversion of a part of the mechanical energy to electrical 

energy. By maximizing this energy, the mechanical energy, 

corresponding to the kinetic and potential energy in the 

structure, can be minimized. Due to its simplicity, this 

technique has been widely employed in the literature, such 

as in Guyomar et al. [39], and Badel et al. [31].

2.1.2 Continuous or Distributed Parameter Modeling

An alternative modeling approach is distributed 

parameter modeling, using the Euler-Bernoulli beam 

assumptions originally derived by Hagood et al. [7]. This 

has been used by other researchers, including Guyomar 

et al. [40] and Ji et al. [37], for the vibration analysis of a 

piezostructural system shunted by electrical elements. This 

modeling approach uses the Rayleigh-Ritz formulation to 

represent a discretized mechanical system, by reducing its 

mechanical degrees of freedom from an infinite dimension, 

to a finite dimension (Fig. 1 (b)). Neglecting the influence 

of the embedded piezoelectric patch on the stiffness, by 

assuming homogeneous material properties and uniform 
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where, Mi is the modal mass, Ci is the modal damping factor, 

KEi is the modal stiffness, Fei is the modal force of excitation, 

and Fpi is the modal force generated by the piezoelectric 

transducer. In Equation (8), the term containing Ci cannot be 

derived automatically from Equation (6); but it can be added 

artificially, to consider the mechanical damping. The system 

parameters in Equation (8) can be expressed as:
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The damping coefficient Ci must be estimated 

experimentally. Since fp(x, t) is proportional to the voltage 

on the piezoelectric patch, Fpi can be expressed in the 

following form: Fpi=±αV, where the sign depends on the 

poling direction of the piezoelectric material, and α is the 

device coupling coefficient, which is the function of the size, 

location, elastic modulus, and other piezoelectric based 

properties of transducers, as well as the parameters of the 

baseline structure.

By considering the control of resonant vibrations at its first 

natural frequency, the vibrating structure can be simplified 

to a single degree-of-freedom. This allows one to obtain 

the following energy equation, by multiplying both sides of 

equation (8) by the velocity, and integrating over the time 

variable:
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                      (9) 

In the above equation, the index has been omitted. Equation (9) is similar to equation (5), 

representing the external excitation energy in terms of kinetic energy, potential energy, 

mechanical losses and the transferred energy, with explanation similar to that given for 

equation (5). The solution predicted by the distributed parameter model tends to agree more 

precisely with the experimental result. However, due to its potential larger order, it tends to 

complicate the design and the control effort, as compared to the lumped parameter model. 

The following section reviews the literature on the vibration control laws for shunted 

piezostructural systems, along the lines of passive, semi-passive, and semi-active control, 

with their classification based on whether external power is supplied to the piezoelectric 

transducers, or not. 

 

3. Control Laws for Shunted Piezostructural Systems 

3.1 Passive Shunt Damping 

Shunting a piezoelectric transducer with an electrical circuit, and tuning it to dissipate 

mechanical vibrations of the host structure, constitutes a passive shunt damping. Mechanical 

strain energy is converted into electrical energy via the direct piezoelectric effect, which is 

dissipated through joule heating, by a passive electrical network. It is necessary to point out 

at this stage that the term “passive” is used by various researchers in different senses. For 

some, it represents autonomous shunt damping circuits, without external power supply. For 

others, e.g. Anderson & Sumeth [81], an electric shunt circuit is said to be passive, if and 

only if it does not provide power to the system. In this review, the preceding cases will be 

considered as “passive control”, and the succeeding ones as “semi-passive control”. The basic 

configuration of three typical passive shunt damping circuits is shown in Fig. 2. As no 

external power or sensing element is needed for their operation, these systems are inherently 

stable. These vibration control and damping techniques have been used by many researchers 

in the past e.g. by Caruso [41], Hagood et al. [7], Hagood & Crawley [8], Hollkamp [10], 

(9)

In the above equation, the index has been omitted. 

Equation (9) is similar to equation (5), representing the 

external excitation energy in terms of kinetic energy, 

potential energy, mechanical losses and the transferred 

energy, with explanation similar to that given for equation 



5

Ehtesham Mustafa Qureshi    Vibration control laws via shunted piezoelectric transducers: A review

http://ijass.org

(5). The solution predicted by the distributed parameter 

model tends to agree more precisely with the experimental 

result. However, due to its potential larger order, it tends to 

complicate the design and the control effort, as compared to 

the lumped parameter model.

The following section reviews the literature on the 

vibration control laws for shunted piezostructural systems, 

along the lines of passive, semi-passive, and semi-active 

control, with their classification based on whether external 

power is supplied to the piezoelectric transducers, or not.

3.  Control Laws for Shunted Piezostructural 
Systems

3.1 Passive Shunt Damping

Shunting a piezoelectric transducer with an electrical 

circuit, and tuning it to dissipate mechanical vibrations of 

the host structure, constitutes a passive shunt damping. 

Mechanical strain energy is converted into electrical energy 

via the direct piezoelectric effect, which is dissipated 

through joule heating, by a passive electrical network. It is 

necessary to point out at this stage that the term “passive” 

is used by various researchers in different senses. For some, 

it represents autonomous shunt damping circuits, without 

external power supply. For others, e.g. Anderson & Sumeth 

[81], an electric shunt circuit is said to be passive, if and only 

if it does not provide power to the system. In this review, 

the preceding cases will be considered as “passive control”, 

and the succeeding ones as “semi-passive control”. The 

basic configuration of three typical passive shunt damping 

circuits is shown in Fig. 2. As no external power or sensing 

element is needed for their operation, these systems are 

inherently stable. These vibration control and damping 

techniques have been used by many researchers in the past 

e.g. by Caruso [41], Hagood et al. [7], Hagood & Crawley [8], 

Hollkamp [10], Hollkamp & Starchville [42], Konak et al. [43], 

Richard et al. [44], Tang & Wang [45], Thorp et al. [46], and Wu 

& Bicos [47]. It is worth mentioning here that these systems 

can be configured into resistance (R), inductance (L), and 

capacitance (C), or a combination of these, as well as various 

series and parallel circuit combinations, for various shunt 

damping techniques.

The simplest of these configurations is resistive shunt 

damping, as shown in Fig. 2 (a), in which structural vibration 

is damped through the dissipation of mechanical energy into 

heat, as explained by Johnson [48]. 

Forward [6] is regarded as the pioneer in putting forward 

the idea of using piezoelectric transducers shunted by 

electrical networks to damp structural vibrations. He used an 

inductive (LC) shunt, as shown in Fig. 2 (b), for narrow-band 

attenuation of resonant mechanical excitation. Vibration 

damping was achieved by canceling the inherent capacitive 

reactance of the piezoelectric transducer through the 

inductive shunt. Later, Hagood & von Flotow [9] interpreted 

the LC resonant circuit operation as analogous to that of 

a tuned mass damper. Moreover, they added a resistive 

element in the existing LC shunt circuit, to make a RLC tuned 

shunt circuit. By adopting an appropriate value of R, and 

choosing the value of L according to the following equation 

(10), the vibration attenuation associated with a particular 

mode can be achieved.
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problems. For instance, Wu [49] suggested that by replacing a series  shunt with a 

parallel one, similar vibration damping performance can be achieved, together with the 

performance being less sensitive to changes in resistive element. By using many shunt 

branches, the single mode shunt damping technique can also be applied for multimode 

suppression. For example, Hollkamp [10] suggested a resonant shunt circuit with many 

parallel  shunt branches, with the very first branch as the  circuit, as shown in Fig. 3. 

Hollkamp’s circuit behaves similar to that of Hagood & von Flotow’s [9] circuit for single 

mode vibration control, while it can be extended to other modes, with the subsequent addition 

of parallel  shunt branches, as per requirement. Similarly, dell’Isola et al. [50] 

distributed an array of piezoelectric transducers shunted with  circuits on the host beam, 
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of the vibrating structure, and Cp is the capacitance of the 

piezoelectric transducer. Inspired by the work of Hagood 

& von Flotow [9], other researchers also advanced research 

work that addressed a variety of similar problems. For 

instance, Wu [49] suggested that by replacing a series RL shunt 

with a parallel one, similar vibration damping performance 

can be achieved, together with the performance being less 

sensitive to changes in resistive element. By using many 
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the RL circuit, as shown in Fig. 3. Hollkamp’s circuit behaves 
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similar to that of Hagood & von Flotow’s [9] circuit for single 

mode vibration control, while it can be extended to other 

modes, with the subsequent addition of parallel RLC shunt 

branches, as per requirement. Similarly, dell’Isola et al. [50] 

distributed an array of piezoelectric transducers shunted 

with RL circuits on the host beam, for multimode vibration 

suppression.

Fig. 2 (c) represents a capacitive shunt circuit, where 

the vibration absorber is tuned by changing the structural 

effectiveness. However, little research has addressed the 

passive capacitive shunt to date. Actively tuned capacitive 

shunts were investigated by Edberg & Bicos [82], and Davis 

& Lesieutre [29].

3.2  Semi-Passive Shunt Damping and the Switch-
ing Mechanism

As no external power is supplied, passive shunt damping 

techniques exhibit a stable nature. But these techniques are 

not very practical and effective, especially in those cases 

where there is a requirement of large amplitude vibration 

attenuation, where broadband vibration control is required, 

where structural resonant frequencies are low, where the 

structural modeling is not completely known, or the system 

disturbance is unknown. Also, these techniques are sensitive 

to changes in system parameters due to environmental 

variation and loads, which cause degradation in their 

control performance. Therefore, to overcome the drawbacks 

associated with passive damping techniques, the so-called 

semi-passive and semi-active shunt damping techniques 

were developed. As mentioned earlier, in semi-passive 

control, the shunt circuit does not provide power to the system. 

Basically, vibration attenuation is achieved nonlinearly in 

these techniques, using an electronically operated switch, to 

adaptively tune the shunt parameters to match the resonance 

frequencies of the vibrating structure. Fig. 4 shows various 

switching techniques used in the literature, which are: (a) 

state switch: switching the shunt circuit from open circuit to 

short circuit; (b) synchronized switched damping (SSD) on 

a resistance (SSDS); (c) synchronized switched damping on 

an inductance (SSDI): as compared to the inductive shunt as 

shown in Fig. 2 (b), very small inductance in needed in this 

case; (d) synchronized switched damping on voltage source 

(SSDV); (e) synchronized switched damping on negative 

capacitance (SSDNC); and (f) synchronized switched 

damping on negative capacitance and inductance (SSDNCI). 

These semi-passive and semi-active control techniques 

are basically nonlinear techniques, due to the switching 

mechanism used for vibration control. Also, energy transfer 

between the electrical and mechanical domains is dealt with 
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Fig. 4. Schematic diagram of (a) state switch, (b) SSDS, (c) SSDI, (d) SSDV, (e) SSDNC, and (f) 
SSDNCI 
PZT: piezoelectric material; SSDS: synchronized switched damping on resistance; SSDI: 
synchronized switched damping inductance; SSDV: synchronized switched damping on voltage 
source; SSDNC: synchronized switched damping on negative capacitance; SSDNCI: synchronized 
switched damping on negative capacitance and inductance. 
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PZT: piezoelectric material; SSDS: synchronized switched damping on resistance; SSDI: synchronized switched damping on inductance; 
SSDV: synchronized switched damping on voltage source; SSDNC: synchronized switched damping on negative capacitance; SSDNCI: syn-
chronized switched damping on negative capacitance and inductance.
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in these techniques. The techniques are reviewed as follows:

3.2.1 State Switching

As shown in Fig. 4 (a), the state switching technique uses 

the concept of energy dissipation through piezoelectric 

materials, which have the ability to change their equivalent 

effective stiffness, according to the type of electrical 

connection (Ramaratnam & Jalili [51]; Richard et al. 

[44]). More specifically, when the piezoelectric material 

is connected in an open circuit, it possesses a particular 

stiffness; and when it is short circuited, it possesses a 

different stiffness, in particular, a relatively low stiffness. 

When during excitation, the system moves away from 

equilibrium position, its potential energy increases, and 

is maximized at the maximum displacement point. At this 

point, the system is switched to low stiffness state, causing 

a lowering of potential energy; this, in turn, causes energy 

dissipation in the system. When the system starts moving 

towards the equilibrium position, the reduced potential 

energy is then converted into kinetic energy again. Thus, the 

overall energy available for the next half cycle is always lower 

than the previous cycle; and the whole process is repeated 

again, until vibration attenuation is achieved.

Larson & Rogers [30] originally used the concept of 

state switching to develop a high-power, low frequency, 

broadband acoustic transducer for underwater applications. 

The stiffness, and consequently the natural frequency of 

the acoustic transducer, was changed, to match it with the 

changing frequency of the high amplitude signal. Later, 

Clark [52] used the same technique to dissipate energy 

from the vibrating system, by switching the shunted piezo-

electrical network between high stiffness (open-circuit) and 

low stiffness (short or resistive-circuit) states. The actuator 

stores the system’s energy during movement, and is held in 

a high stiffness state. The stored energy is then dissipated, by 

switching the actuator to a low stiffness state, just before the 

system is ready to receive the stored energy back from the 

actuator. Numerical simulations conducted for a cantilever 

beam showed that the vibration suppression is dependent 

on the effective stiffness change. Clark [53] extended this 

approach to numerically study three different piezoelectric 

shunt circuit configurations, i.e. a passive resistive shunt, 

state-switched open-to-short-circuit, and state-switched 

open-to-resistive circuit. Note that he used “state switch” 

to represent not only open-to-short-circuit switching (Fig. 

4 (a)), but also open-to-resistive switching. However, for 

convenience, “state switch” is denoted in this paper by 

switching from open to short circuit, as shown in Fig. 4 

(a); and “SSDS” is denoted by synchronized switching on 

resistive shunt (Fig. 4 (b)). Simulations were performed for 

both the impulse response and harmonic response cases. It 

was found that for the impulse response, as compared to the 

state switch and SSDS, damping performance of the passive 

resistive shunt (Fig. 2 (a)) was slightly better for the optimized 

cases; but the performance deteriorated significantly, when 

the resistors were no longer optimized. For the harmonic 

response, passive resistive shunt systems performed well 

in the high frequency range, and near resonance; while 

state switch and SSDS performed well in the low frequency 

region, where stiffness is a more dominant factor in the 

response. Therefore, it was concluded that the state switch 

and SSDS outperformed passive resistive shunt systems, and 

could be an alternate to active vibration control systems, in 

certain frequency ranges. The idea was extended to the case 

in which additional stiffness was added to the system, in the 

form of the piezoelectric patch and cantilever beam. Effective 

stiffness change up to a factor of 2 and 1.8 was observed, 

when the piezoelectric transducer was operated in d33 and 

d31 modes, respectively, for the layered beam. Increasing 

the piezoelectric coupling coefficient increases the stiffness 

change of the system. Clark used the term “adaptive passive” 

or “semi-active” to represent this state switching technique 

[53]; but we classified this technique as semi-passive, since 

external power is supplied only for the switch to operate, and 

is not for the system. 

Corr & Clark [28] compared the performance of passive 

resonant shunt technique with state switching and SSDI 

techniques, both numerically and experimentally. They 

derived the optimal shut time period for the SSDI technique 

as
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                      (11) 

where,  is the shut switch time period,  is the inductance of the shunt circuit, and 

 is the capacitance of the piezoelectric transducer. From the numerical and experimental 

results, as shown in Table 1, it was concluded that both the resonant shunt and SSDI 

techniques performed better that the state switching technique. It was hard to tell whether 

SSDI would always perform better than the resonant shunt. However, the use of the 0.1H 

inductor in SSDI, as compared to the 287 H inductor used in the resonant shunt technique, 

made SSDI more suitable for practical applications. 

The experimental comparison for each method was conducted for the third vibration mode 

of a clamped-clamped beam, as shown in Table 1. The optimal resistance and inductance for 

the resonant shunt was first calculated using the relations given by Hagood & von Flotow [9]. 

They were then tuned to yield the smallest structural response at the third mode. 

Experimental results showed that the state switching technique did not perform well (~2 dB 

reduction). The SSDI, however, did just as well as the resonant shunt technique (~12 dB 

reduction), but with a much smaller shunt inductance (~20 times smaller). The SSDI was also 

easier to tune, and was less susceptible to system changes, than the resonant shunt technique. 

(11)

where, ∆Tshut is the shut switch time period, L is the 

inductance of the shunt circuit, and Co is the capacitance 

Table 1. Numerical and experimental shunt circuit parameters, in Corr & Clark [28].
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Table 1. Numerical and experimental shunt circuit parameters, in Corr & Clark [28]. 

 Resonant 
Shunt State Switching SSDI 

Resistance_Numerical (Ω) 2900 1E-06 70 
Inductance_Numerical (H) 287 0 0.10 
Resistance_Experimental (Ω) 815 0.008 66 
Inductance_Experimental (H) 10.5 0 0.50 
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of the piezoelectric transducer. From the numerical and 

experimental results, as shown in Table 1, it was concluded 

that both the resonant shunt and SSDI techniques 

performed better that the state switching technique. It was 

hard to tell whether SSDI would always perform better than 

the resonant shunt. However, the use of the 0.1H inductor 

in SSDI, as compared to the 287 H inductor used in the 

resonant shunt technique, made SSDI more suitable for 

practical applications.

The experimental comparison for each method was 

conducted for the third vibration mode of a clamped-

clamped beam, as shown in Table 1. The optimal resistance 

and inductance for the resonant shunt was first calculated 

using the relations given by Hagood & von Flotow [9]. They 

were then tuned to yield the smallest structural response at 

the third mode. Experimental results showed that the state 

switching technique did not perform well (~2 dB reduction). 

The SSDI, however, did just as well as the resonant shunt 

technique (~12 dB reduction), but with a much smaller shunt 

inductance (~20 times smaller). The SSDI was also easier to 

tune, and was less susceptible to system changes, than the 

resonant shunt technique. Note that an upper bound for 

the inductance was set, to ensure that the electrical natural 

frequency was at least ten times faster than the vibration 

mode of interest. A lower bound for the inductance was 

introduced and set in Corr & Clark [54], in order to avoid the 

chatter effect.

Cunefare [32] applied the technique of state switching 

for the purpose of vibration control of beams subjected 

to harmonic point-force excitation. A switchable stiffness 

was integrated with the spring element for a vibration 

absorber, which caused instantaneous “retuning” of the 

state-switched absorber to a new frequency. Holdhusen & 

Cunefare [55] compared this state switched absorber with 

the classical vibration absorber, in terms of damping effect, 

and concluded that highest relative performance of the state 

switched absorber, as compared to the classical vibration 

absorber, occurred at low values of damping. Corr & Clark 

[56] expanded the SSDI technique for multimode vibration 

control, based on the rate of change of energy in controlled 

modes. The technique was numerically and experimentally 

tested on a six degree-of-freedom spring-mass system, and a 

clamped-clamped aluminum beam, respectively. Simulation 

and experimental results showed that this technique was 

able to dissipate energy in multimodes, both simultaneously 

and selectively. Experimental results also showed that for a 

beam under a constant random disturbance, the vibration 

attenuation achieved was 11 dB for a single mode, and 7 dB 

for multiple modes.

3.2.2  Synchronized Switched Damping on Resistance 
(SSDS)

Richard et al. [83, 44] originally introduced the concept 

of SSD, by switching the resistive shunt from open to 

short circuit, in synchronicity with the structural motion 

(Fig. 5 (a)). SSD on resistive shunt will be called SSDS, to 

distinguish it from other SSD techniques e.g. SSDI, SSDV 

etc. In this SSDS technique, the voltage on the piezoelectric 

element attached to the vibrating structure, which is the 

image of the structure’s displacement, is switched to zero, 

when the displacement reaches a predetermined threshold. 

The switching action was performed through a pair of 

N-Channel MOSFET transistors T1 and T2, and a pair of fast 

recovery diodes D1 and D2, wired as in Fig. 5, where, Vgs is the 

transistors drive signal. As a consequence of this switching, 

the resulting voltage on the piezoelectric element is 

distorted and time-shifted from the structural displacement, 

thus creating a kind of controlled viscous damping. Using 

a basic spring mass model, the distorted and time-shifted 

piezoelectric output voltage V(t) was modeled as, 
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performed for both the harmonic and transient excitations. It was revealed that the shortest 

shunt time interval results in the most efficient damping. In the SSDS harmonic excitation 

experiment, a 20% decrease in the maximum amplitude of first mode at 10.5 Hz resonance 

frequency was achieved for a 54 kΩ resistor; while twice the damping was achieved, as 

compared to the adapted resistive shunt. In the SSDS transient experiment, a 30% faster 

settling time was achieved, as compared to the open circuit one; while this time is only 18% 

faster in the case of the adapted resistive shunt circuit, in comparison with the open circuit. 

3.2.3 Synchronized Switched Damping on Inductance (SSDI) 

Later, Richard et al. [57] extended the SSD technique to include an inductance in the shunt 

circuit connected to the piezoelectric transducer, which is known as the SSDI technique (Fig. 

5 (b)). Connecting an inductance in the shunt circuit results in an oscillating network. If 

properly designed and tuned, this allows the inversion of voltage on the piezoelectric 

electrodes. In this case, the voltage is optimized, and being 90 degree out of phase with the 

structure motion, enhances the damping mechanism. A simple microcontroller was used to 

generate a controlled width pulse, to drive a pair of NMOS transistors in synchronicity with 

the structure motion (Fig. 5 (b)). Using a simple spring-mass system, the electric charge ���� 

appearing on the piezoelectric electrodes was modeled as, 
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structural displacement. Harmonic and transient experiments were performed for three 
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resistive, SSDS, and SSDI techniques were compared. The results showed far better damping 
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where, j=√(-1), α is the electromechanical coupling coefficient 

of piezoelectric transducer, β is the harmonic amplitude, 
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Fig. 5. The use of switching for (a) SSDS, in Richard et al. [44], and (b) SSDI, in Richard et al. [57].  
PZT: piezoelectric material. 
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Fig. 5.  The use of switching for (a) SSDS, in Richard et al. [44], and (b) SSDI, in Richard et al. [57].   
PZT: piezoelectric material.
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phase angle 
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electrodes. In this case, the voltage is optimized, and being 90 degree out of phase with the 
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where, �� is the piezoelectric capacitance, ���� is the piezoelectric output voltage, � is 

the electromechanical coupling coefficient of the piezoelectric transducer, and ���� is the 

structural displacement. Harmonic and transient experiments were performed for three 

different cantilever beams, and the maximum damping performance of passive adapted 

resistive, SSDS, and SSDI techniques were compared. The results showed far better damping 

performance of SSDI, as compared to the other two techniques, for all beams; with a 

, increasing the harmonic amplitude β, or 
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time interval results in the most efficient damping. In the 

SSDS harmonic excitation experiment, a 20% decrease in 

the maximum amplitude of first mode at 10.5 Hz resonance 

frequency was achieved for a 54 kΩ resistor; while twice the 

damping was achieved, as compared to the adapted resistive 

shunt. In the SSDS transient experiment, a 30% faster settling 

time was achieved, as compared to the open circuit one; 

while this time is only 18% faster in the case of the adapted 

resistive shunt circuit, in comparison with the open circuit.

3.2.3  Synchronized Switched Damping on Inductance 
(SSDI)

Later, Richard et al. [57] extended the SSD technique 

to include an inductance in the shunt circuit connected to 

the piezoelectric transducer, which is known as the SSDI 

technique (Fig. 5 (b)). Connecting an inductance in the 

shunt circuit results in an oscillating network. If properly 

designed and tuned, this allows the inversion of voltage 

on the piezoelectric electrodes. In this case, the voltage 

is optimized, and being 90 degree out of phase with the 

structure motion, enhances the damping mechanism. A 

simple microcontroller was used to generate a controlled 

width pulse, to drive a pair of NMOS transistors in 

synchronicity with the structure motion (Fig. 5 (b)). Using 

a simple spring-mass system, the electric charge Q(t) 

appearing on the piezoelectric electrodes was modeled as,
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beams, and the maximum damping performance of 

passive adapted resistive, SSDS, and SSDI techniques 

were compared. The results showed far better damping 

performance of SSDI, as compared to the other two 

techniques, for all beams; with a maximum damping of 

6 dB for an epoxy beam, to 16.5 dB for a steel beam, using 

the SSDI technique. Table 2 gives global results for the three 

beams, in terms of resonant frequency, electromechanical 

coupling coefficient, transducer capacitance, critical 

damping resistance, maximum damping, and time constant.

Ducarne et al. [58] compared the control performance 

of SSDS and SSDI for both free and forced response. Some 

theoretical results are summarized in Table 3. Here, the 

added damping 
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response was also analyzed by the authors. This led to the 

following general conclusion: that the coupling factor is the 

only free parameter that has an influence on the performance 

of the SSD devices; and it has to be maximized, for enhanced 

Table 2. Experimental parameters and damping results for SSDI, in Richard et al. [57].
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Table 2. Experimental parameters and damping results for SSDI, in Richard et al. [57]. 

Reference name (material) Beam 1 
(epoxy) 

Beam 2 
(aluminum) 

Beam 3 
(steel) 

Short-circuit frequency (Hz) 10.33 13.09 12.75 
Open-circuit frequency (Hz) 10.38 13.17 12.89 
Coupling coefficient 0.103 0.11 0.148 
Capacitance (nF) 280 190 90 
Adapted shunt resistor (kΩ) 54 61 139 
Maximum damping (dB)—adapted resistive -0.5 -2 -6 
Maximum damping (dB)—switch on short circuit -1.3 -3.7 -8.4 
Maximum damping (dB)—switch on an inductor -6 -10.5 -16.5 
Time constant (s)—open circuit 0.8 1.5 6.5 
Time constant (s)—switch on short circuit 0.6 0.7 1.3 
Time constant (s)—switch on an inductor 0.4 0.3 0.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Summary of the main characteristics of SSDS and SSDI systems in free and forced response, in Ducarne et al. [58].
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vibration suppression. Therefore, it is possible to optimize 

every electrical parameter of the circuit against any value 

of coupling factor kr, for enhanced damping performance. 

To evaluate the control performance of forced response, a 

performance index Ap of amplitude attenuation is defined as,
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shunt circuit is said to be semi-passive, if and only if it does 

not provide power to the system; otherwise, it is classified 

as semi-active. Based upon this classification, various semi-

active damping techniques are reviewed, as follows.

Using only a single piezoelectric patch, Fleming & 

Moheimani [79] developed an online adaptive shunt damping 

circuit for multimode vibration control. They provided the 

desired terminal impedance of an arbitrary shunt network, 

through a voltage-controlled current source and digital 

signal processor (DSP) system. Their experimental testing 

showed reliable estimation of the performance functions, 

and optimal tuning of the circuit parameters for a randomly 

excited simply supported beam. In addition, a reduction in 

magnitude of up to 22 and 19 dB for the second and third 

modes of this beam was achieved.

3.3.1  Synchronized Switched Damping on Voltage Source 
(SSDV)

The output voltage of the piezoelectric transducer can be 

further increased, by adding a voltage source Vsw in the shunt 

circuit of SSDI, giving rise to SSDV technique, as shown in 

Fig. 4 (d), thus improving the damping performance. This 

concept was introduced and investigated by Petit et al. 

[59], in comparison with SSDS and SSDI techniques, both 

theoretically and experimentally. The damping coefficient 

was derived as a function of the system electromechanical 

coupling coefficient. It was shown that for SSDS and SSDI 

techniques, the damping performance is strongly correlated 

with the electromechanical coupling coefficient. But for the 

case of weakly coupled structures, SSDV can compensate 

for the drawback, by artificially increasing the voltage on 

the piezoelectric transducer, thus improving the damping. 

The switches were driven by a controller, which could 

detect the minimum and maximum voltage V. Experiments 

were performed on a cantilever beam, which verified the 

theoretical derivations. The SSDI technique was applied for 

bimodal vibration attenuation of a steel cantilever beam. The 

modes’ relative amplitudes were used as an index to evaluate 

the damping performance, which showed approximately 10 

dB of damping for both modes simultaneously. Finally, a 

clamped steel plate under broadband excitation was also 

tested, by using an SSDI technique. Experimental results 

showed that significant vibration reduction (between 2 to 

9 dB) for various modes was achieved, for frequencies lying 

between 180 Hz and 280 Hz.

In the conventional SSDI technique, the voltage is 

inversed at each displacement extremum, which is 

optimal for single mode vibration attenuation; but for the 

case of multimode excitation, this may not be true. To 

address this issue, Guyomar & Badel [60] developed an 

efficient probabilistic SSDI multimode vibration reduction 

technique, by allowing the piezoelectric voltage to reach a 

statistically probable value, before processing the voltage 

inversion. This technique simultaneously optimized both the 

displacement based and energy based vibration damping; 

this was unlike the control law based on mode selection 

method, as used by Corr & Clark [56], which could not 

simultaneously optimize the displacement and the energy 

based vibration damping. The probabilistic control law, 

unlike the control law by modes selection, does not require 

any filtering devices for modes selection, or any information 

related to the structural modes; and therefore no time shift 

occurs between strain and the filtered voltage, resulting in 

an efficient switching sequence, and consequently, efficient 

damping performance. The optimized displacement and 

energy damping for the probabilistic approach were -8.5 and 

-6.3dB, in comparison to -3.0 and -4.3 dB, respectively, when 

switched on all voltage extrema.

Lefeuvre et al. [61] added two voltage sources in the SSDV 

technique shown in Fig. 4 (d), to enhance the damping 

performance of the previous SSD techniques. Theoretical 

and Experimental results on a steel cantilever beam 

demonstrated a 83 % reduction in piezoelectric material 

volume for the same vibration attenuation of -24 dB, by 

adding two voltage sources of 10V each, in the switching 

circuit. Badel et al. [62] and Lallart et al. [63] found out that 

if the control force induced by the piezoelectric transducer 

is larger than the excitation force, the SSDV system becomes 

unstable. To avoid this instability, they proposed an 

enhanced SSDV (SSDVenh) technique, by using an adaptive 

continuous voltage source, instead of a constant continuous 

voltage source, as used in the classical SSDV technique. This 

permits the piezoelectric control force to match the force of 

excitations. Guyomar et al. [39] implemented an SSDV with 

single voltage source, to control the resonance frequency of 
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the oscillating system, by controlling the structural stiffness. 

This technique relied on connecting the piezoelement to 

the electrical network, when the displacement or the strain 

crosses the zero value; unlike the classical SSDV technique, 

in which the switching occurs at the voltage extreme. 

Theoretical results were validated through the experiment, 

allowing the stiffness to be controlled within a wide range of 

value. 

Guyomar et al. [64] proposed an enhanced SSDI technique, 

by analyzing the voltage or displacement signal in a give time 

window, and statistically determining the probable voltage 

or displacement level threshold from both the average, and 

the standard deviation, of the signal during the observed 

period. This allowed voltage switching only above the 

defined threshold, thus avoiding unnecessary switching at 

every instant, and thus improving damping performance. 

It was shown that the relevant switching instants could 

be more accurately identified by either a probability or a 

statistical analysis of the strain signal. Numerical methods 

could easily be used for the calculation of the average or rms 

value of a given signal. Also, for the best damping results, 

either the image of the strain i.e. the displacement, or its 

square, could be used. In this way, approximately 10 dB of 

global displacement could be achieved - nearly twice the 

value obtained from the classical SSDI technique. 

In the classical SSDI techniques, the piezoelement 

is switched on the resonant electrical network at each 

detected extremum, resulting in the artificial increase of 

the electromechanical coupling coefficient. However, as 

discussed by Guyomar & Badel [60], switching on each 

extremum is not the optimal solution for damping; it results 

in decreasing the damping in the lower vibration modes, 

which are often more energetic and better coupled than 

the higher modes. To address this issue, Lallart et al. [65] 

developed an adaptive SSDI technique, in which switching 

occurs only after a threshold value (matched on the voltage) 

is reached. The adaptive SSDI technique resulted in the 

vibration damping of more than 10% of the first and second 

modes, as compared to the classical SSDI technique.

Guyomar et al. [40] carried out an experimental study 

using SSDI technique, to analyze the effect of variations of 

excitation force amplitude and frequency on the damping 

performance of piezoelectric transducers. The vibration 

damping sensitivity w.r.t. the size of piezoelectric transducers 

in the lower and higher values of the above parameters was 

also studied. The switching sequence was implemented based 

on statistical analysis of the voltage or displacement signal. 

This statistical technique is easier to implement for any type 

of excitation force, and handles the trigger of an extremum 

in a better way. The experiments were carried out using two 

configurations of piezoelectric transducers, mounted on a 

cantilever beam. Each configuration consisted of a total of 12 

and 24 transducers mounted equally on opposite sides of the 

beam. It was observed that the piezoelectric transducers with 

larger surface size gave better damping performance for low 

excitation frequencies, and that transducers with less surface 

size gave better damping attenuation for high excitation 

frequencies. Also, increasing the force amplitude increases 

the damping performance of piezoelectric transducers, but 

is limited by the size of piezoelectric surface area.

Neubauer & Wallaschek [66] studied SSDI and enhanced 

SSDV techniques, both analytically and experimentally, 

to determine the optimal switching sequence and optimal 

frequency ratio between the electrical resonance and 

mechanical excitation. It was shown that the enhanced SSDV 

technique performed similar to the SSDI technique, but 

with an increased force factor for the piezoelectric element. 

Harari et al. [67] improved the classical SSDI semi-active 

control technique for broadband vibration attenuation, by 

using a modal observer, similar to that used in active control 

techniques. The observer required identification of the 

structure’s modal characteristics, but nevertheless showed 

good robustness. The combination of the semi-active and 

active techniques required low power for its operation, 

Table 4. Comparison of the 3 methods: Modal active control, semi-active control, and semiactive-modal control, in Harari et al. [67].
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Table 4. Comparison of the 3 methods: Modal active control, semi-active control and semi-active-
modal control, in Harari et al. [67]. 

  Modal active 
control 

Semi-active 
control 

Proposed control:
semi-active 

modal control 
Performance Monomode resonance 

control Very good Good Good 

Wide bandwidth excitation Very good Poor Good 
Modes targeting ability Very good Poor Good 
Type of control Global Local Global 
Modal model Yes No Yes 

Energy Actuation energy  High Null Null 
Control processing energy High Low High 

Robustness Stability robustness  Poor Very good Very good 
Performance robustness Poor  Very good Good 
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and no amplifiers were required to drive the actuators. The 

authors compared the modal active control, semi-active 

SSDI, and hybrid SSDI-modal control techniques, as shown 

in Table 4. 

Lallart et al. [34] presented a new semi-active vibration 

control technique, called blind switch damping (BSD), in 

which the piezoelectric element was switched on a short 

circuit, or the magnitude of piezovoltage was artificially 

increased, by switching on piecewise constant, or adaptive, 

voltage sources. BSD technique allowed the control of 

reinjected harmonics, requiring lower power for the system 

to operate, as compared to the conventional SSD techniques. 

On the other hand, BSD showed low damping effect for 

equivalent parameters, as compared to the SSD methods.

The control performance of SSDV technique is strongly 

dependent on the value of the voltage source in the shunting 

circuit. Ji et al. [36] improved the previous SSDV techniques, 

by adaptively adjusting the voltage coefficient that controls 

the damping effectiveness. An improved switch control 

algorithm was developed that prevented the switch from 

over-frequent switching, thus ensuring system stability. The 

switch remains in an inactive state for a certain time period, 

and prevents any switching action, even when the extrema 

are detected; unlike the previous SSDV techniques, which 

caused switching at each detected extremum, thus causing 

system instability, and reduced damping performance. 

Ji et al. [68] applied the adaptive SSDV technique for the 

vibration control of a composite beam, using the least mean 

square (LMS) algorithm to adjust the voltage source. The 

LMS algorithm was applied to the classical SSDV method, to 

directly adjust the voltage; and to the enhanced SSDV method, 

to adaptively adjust the voltage coefficient. It was found 

that the LMS-classical SSDV needed less energy, than the 

LMS-enhanced SSDV method. Therefore, it is more efficient 

to directly adjust the voltage, than to adjust the voltage 

coefficient. The control results for the first vibration mode of 

the beam indicated that directly adjusting the voltage source, 

and adaptive adjustment of the voltage coefficient, resulted 

in almost the same vibration damping, with the LMS-based 

method showing better results than the derivative-based 

method. Ji et al. [69] developed an improved SSDI technique, 

based on a displacement threshold switch for multimode 

vibration control. The new switching algorithm prevented 

the switch from over-frequent switching, thus increasing the 

converted energy, and improving the damping performance. 

The switching algorithm was applied to control the two 

vibration modes of a composite beam. The experimental 

results showed that the proposed method improved 

the damping of the first mode from 3.7 dB to 18.2 dB, as 

compared to the classical SSDI technique; while the damping 

performance dropped to 2.6 dB from 3.46 dB for the second 

mode, when the two modes were excited simultaneously. Ji 

et al. [37] presented an improved version of both the classical 

SSDI and SSDV techniques, based on an energy threshold, 

to control multimode vibration excitation. The new 

switching control strategy was based on setting a threshold 

on the displacement increments between two neighboring 

switching points to suppress the voltage inversion on some 

of the displacement extrema. That is, voltage inversion 

take place only on those extrema whose distance from the 

neighboring extrema are larger than a defined threshold; 

thus increasing the total converted energy, and improving 

damping. The improved SSDI using the new control strategy 

exhibited better damping performance than the classical 

SSDI techniques, especially for the first vibration mode. 

Meanwhile, the improved SSDV, using an adaptive voltage 

source in combination with the new control strategy, also 

gave much better control performance than the classical 

SSDV techniques. Experimental results showed much better 

control performance for the first mode in the two-mode 

control, than in the single-mode control. 

Ji et al. [70] developed a self-sensing SSDI technique, 

by using a single piezoelectric element as both a sensor 

and actuator, thus reducing the total number of required 

piezoelectric elements. The noise generated in the sensor 

signal due to the impact of voltage inversions caused 

extra switching, and therefore deteriorated the damping 

performance. This issue was effectively addressed by 

developing a simple switch control algorithm that prevented 

over-frequent switching, resulting in improved damping 

performance, as compared to the classical SSDI technique. 

Ji et al. [71] theoretically and numerically studied the 

influence of switching phase delay and switching frequency 

on the converted energy in a piezoelectric actuator, using the 

switched voltage control system. Theoretical and numerical 

results on a 2-DOF model using an SSDI technique showed 

that the control performance deteriorated with increasing 

phase delay, and the force generated by the switched voltage 

becomes a force of excitation, when the phase exceeds π/2. 

The result also showed that the control effect can only be 

achieved at some specific frequencies, which could be an 

important factor for multimode vibration control, meaning 

that damping on a particular mode cannot be achieved, 

if the voltage is switched on another mode. Statistical 

analysis showed that random switching of piezoelectric 

voltage does not produce any damping. Improved damping 

performance for real systems could be obtained, by 

suppressing the switching action induced by sensor noise. 

Ji et al. [72] presented a theoretical and numerical analysis 

of the energy conversion of SSDI and SSDV switch-voltage 
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control techniques with arbitrary switching frequencies. A 

general expression was derived for the switched voltage on 

the piezoelectric actuator. Performance of both the SSDI and 

SSDV techniques with arbitrary switching frequencies were 

analyzed, and expressed in the form of a performance index 

in decibel, defined as,

21 
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where, �� is the structural coupling coefficient, �� is the mechanical quality factor, � 

represents the voltage inversion efficiency, �� is the switching period, � = 1,2,…. and � is 

the voltage coefficient. A large value of performance index corresponds to higher control 

performance. The result indicated that the voltage magnitude on the piezoelectric actuator is 

maximized, when the piezoelectric is switched at every odd number of displacement extrema. 
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Hence, the circuit functions as a negative capacitance 

-Cn=-(R2Cg)⁄R1. The value of negative capacitance can be 

changed, by changing the value of R1, R2 or Cg. The SSDNC 

technique was compared with the classical SSDI technique 

for the single-mode and two-mode vibration control of a 

composite beam. Experimental results demonstrated the 

effectiveness of the SSDNC technique over classical SSDI 

technique, especially in the single-mode control of the first 

resonance mode. In a similar treatment, Cheng et al. [74] 

demonstrated the effectiveness of the SSDNC technique, in 

comparison with the SSDI and negative capacitance passive 

shunt. In a work similar to Ji et al. [72], Ji et al. [75] used an 

SSDNC technique with an arbitrary switching frequency 

for the vibration control problem, and compared the result 

to the SSDI technique. Both theoretical and numerical 

results demonstrated better control performance of SSDNC, 

as compared to SSDI, for most non-optimal switching 

frequencies.

3.3.3  Synchronized Switched Damping on Negative Ca-
pacitance and Inductance (SSDNCI)

Mokrani et al. [76] improved the damping performance, 

by combining the adaptive nature of SSDI, and enhanced 

performance of a negative capacitance, in a technique called 

synchronized switch damping on negative capacitance and 

inductance (SSDNCI) (see Fig. 4 (f )). Adding a negative 

capacitance cancels the capacitance of the piezoelectric 

transducer, thus improving damping. The negative 

capacitance in series and in parallel configuration with the 

piezoelectric transducer was studied, and equivalent system 

parameters were established, as highlighted in Table 5. 

The damping ratios for SSDI and SSDNCI were derived as,
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 for parallel 

configuration, and β=C/Cn for series configuration. 

Equations 18 and 19 show that the performance of both the 

SSDI and SSDNCI has strong parametric dependence, i.e. 

the damping performance is predicted in terms of electrical 

damping of the shunt circuit, and the ratio between the 

synthesized negative capacitance, and the capacitance of the 

stand-alone piezoelectric transducer. The damping ratios 

of SSDI and SSDNCI were experimentally determined, as 

follows,
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piezoelectric transducer. The damping ratios of SSDI and SSDNCI were experimentally 

determined, as follows, 





This demonstrated the enhanced damping performance for SSDNCI, as compared to SSDI 

technique, thus confirming the theoretical predictions. Han et al. [77] used an SSDNCI 

technique for the vibration suppression, by connecting a negative capacitance in parallel to 

the SSDI network. The negative capacitance works during both states of the switching 

process, by building up the voltage on the piezoelectric transducer while the switch is open, 

and increasing the voltage inversion while the switch is closed. Numerical analysis was 

performed on a single-degree-of-freedom oscillator. The energy dissipation was derived as a 

function of the capacitance ratio , i.e the ratio between negative capacitance and 

piezoelectric capacitance; and resulted in a damping that was  times the original 

SSDI damping. Measurement on a clamped cantilever beam was used to validate the 

analytical results, which reported a 220% increase in energy dissipation, as compared to 

standard SSDI technique. 

A summary of the control performance of SSDS, SSDI, SSDV, SSDVenh and SSDNC in 

forced response is summarized in Table 6, based on the performance index  of amplitude 

attenuation, as defined in equation (14). Here,  is the damping coefficient of the 

mechanical system,  denotes the frequency of vibration,  represents the force factor,  

is the capacitance of the piezoelectric element,  represents the voltage inversion 

coefficient,  indicates the external voltage source,  designates the voltage coefficient, 

and  represents the negative capacitance of the shunt circuit. 

 

4. Conclusion and Future Direction 

A possible alternative that has emerged to both passive and active vibration control 

techniques is structural vibration control using piezoelectric based switched shunt circuit 

techniques. These semi-passive and semi-active control techniques benefit from the 

advantages of both active control i.e. high performance and adaptability, and passive control 

i.e. reliability and robustness, thus giving improved damping and control performance for 

broadband vibration excitation, under environmental variations. The main purpose of this 

article is to review control methods for the vibration suppression of piezostructural systems 
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was used to validate the analytical results, which reported 

a 220% increase in energy dissipation, as compared to 

standard SSDI technique.

A summary of the control performance of SSDS, SSDI, 

SSDV, SSDVenh and SSDNC in forced response is summarized 

in Table 6, based on the performance index Ap of amplitude 

attenuation, as defined in equation (14). Here, C is the 

damping coefficient of the mechanical system, ω denotes 

the frequency of vibration, α represents the force factor, Cp 

is the capacitance of the piezoelectric element, 
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voltage source, β designates the voltage coefficient, and Cn 

represents the negative capacitance of the shunt circuit.

4. Conclusion and Future Direction

A possible alternative that has emerged to both passive 

and active vibration control techniques is structural 

vibration control using piezoelectric based switched shunt 

circuit techniques. These semi-passive and semi-active 

control techniques benefit from the advantages of both 

active control i.e. high performance and adaptability, and 

passive control i.e. reliability and robustness, thus giving 

improved damping and control performance for broadband 

vibration excitation, under environmental variations. The 

main purpose of this article is to review control methods 

for the vibration suppression of piezostructural systems 

based upon the switched shunt circuit. First, the existing 

electromechanical modeling methods as used in the 

literature are reviewed, ranging from lumped parameter, 

to distributed parameter modeling, in mathematical and 

dynamic form. Then, a comprehensive literature review 

of vibration control laws using shunted piezostructural 

systems, ranging from passive to semi-passive, and semi-

active control, was done, based on the classification of 

whether external power is supplied to the structures or not. 

In particular, recent articles investigating semi-passive and 

semi-active techniques based on SSD were given special 

attention. The aim of this article is to provide the required 

background material for researchers interested in the 

growing field of structural vibration damping and control, 

via piezoelectric based switched shunt circuit techniques. 

In this regard, a few points need to be mentioned for future 

directions, and practical application of these semi-passive 

and semi-active structural vibration control techniques.

Switch control laws for broadband vibration control:  

As discussed above, several switch control laws have been 

proposed for multimode vibration control; but these laws 

are limited to controlling few structural modes, with limited 

control performance. In an actual scenario, a structure 

is subjected to several vibration modes, due to varying 

environmental conditions and loads; therefore, more 

efficient switch control laws are needed to improve control 

performance, and provide higher robustness for broadband 

vibration.

Design of the low power shunt circuit: Usually, the power 

consumed by a switched shunt circuit is quite low, i.e. smaller 

than one milli-watt; but much higher power is consumed by 

the powerful digital signal processor (DSP), which is used to 

control the switch. As compared to active control techniques, 

much smaller power is consumed by semi-passive and semi-

active control techniques; nevertheless, power consumption 

could be an important issue in many practical applications, 

especially in the aerospace field. 

Self-powered switch control systems: A few researchers 

have attempted to develop self-powered switch control 

systems, e.g. Lallart et al. [84], Richard et al. [85], 

Niederberger & Morari [86], and Delpero et al. [87]; but these 

systems used an analog switch control mechanism, which is 

not so efficient for broadband vibration control. Therefore, 

for efficient self-powered switch control systems, more 

sophisticated switch control laws are needed, in future. As 

complicated switch control laws consume more power, and 

more powerful DSP is required for their operation, a balance 

should be maintained between the energy consumption, 

and the control performance, of a self-powered switch 

control system.
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