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Abstract

The design process of blended inlet body (BIB) for the preliminary design of a near-space high supersonic unmanned aerial 

vehicle (HSUAV) is presented. The mass flow rate and cowl area of inlet at a design point are obtained according to the cruise 

condition of the HSUAV. A mixed-compression axisymmetric supersonic inlet section with a fixed geometry reasonably 

matching the high supersonic cruise state is created by using the inviscid theory of aerodynamics. The inlet section is 

optimized and used as a baseline section for the BIB design. Three BIB concepts for the HSUAV are proposed, and their 

internal aerodynamic characteristics of inlet are evaluated using Euler computational fluid dynamics (Euler CFD) solver. 

The preferred concept is identified, in which the straight leading edge of the baseline HSUAV configuration is modified into 

the convex leading edge to accommodate the inlet and meet the requirements of the cowl area to capture the sufficient air 

flow. The total recovery of inlet for the preferred BIB concept and the aerodynamic characteristics of the modified HSUAV 

configuration are verified using Navier-Stokes computational fluid dynamics (NS CFD) solver. The validation indicates that the 

preferred BIB concept can meet both the requirements of the inlet and aerodynamic performance of the HSUAV.

Key words: ��near-space unmanned aerial vehicle, supersonic inlet, aerodynamic configuration, integrated design, numerical 

simulation

1. Introduction

The high supersonic unmanned aerial vehicle (HSUAV) is an 

unmanned flight vehicle that can cruise at a higher supersonic 

speed (3.0 < Mach < 5.0) [1]. The HSUAV generally uses Rocket 

Based Combined Cycle (RBCC) or Turbine Based Combined 

Cycle (TBCC) [2] as a primary propulsion system, and is superior 

to most of current subsonic and supersonic unmanned aerial 

vehicles (UAV) in terms of penetration ability and survivability. 

In the view of technology readiness, the concept of HSUAV 

powered by RBCC or TBCC is more realistic compared to that 

of hypersonic unmanned aerial vehicles powered by scramjet. 

For instances, the aircraft such as D-21B [3], SR-71 [4] and 

XB-70 [5] powered by RBCC, TBCC and afterburner turbojet 

respectively were able to cruise at Mach number 3.0 or higher. 

One challenge in the HSUAV preliminary design is how to 

design a supersonic inlet that can meet the TBCC operating 

requirements as well as be blended with the aerodynamic 

configuration. This issue is referred as the blended inlet body 

(BIB) design in the HSUAV preliminary design. The reference 

[6] presents a systematic review on various supersonic inlets 

for military aircraft, and their evolution and development. The 

fundamentals, aerodynamic characteristics and operating 

performance of the supersonic inlet have been investigated 

theoretically and experimentally in references [7-9]. But the 

systematic design process for the blended inlet body (BIB) for 
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the HSUAV preliminary design has not been fully reported in 

publications.

This paper aims to develop the design process to cope 

with the BIB design issue in the HSUAV preliminary design, 

and is organized as follows. The concept of HSUAV is briefly 

described in section 2, and design process how the inlet 

is blended with the fuselage is detailed in section 3, and 

the preferred BIB design concept is evaluated in section 4 

followed by the conclusions in section 5.

2. Concept of HSUAV 

The HSUAV is a notional UAV powered by a tandem 

TBCC combining turbojet with ramjet. Its typical mission is 

reconnaissance with cruise speed at Mach 3.5 and operating 

radius of 1500km at the altitude of 25000m. The HSUAV is 

able to take off and land autonomously, and its maximum 

takeoff weight is around 4300kg. 

The baseline aerodynamic configuration of the HSUAV 

is quasi-rhombus platform with aspect ratio less than 1.0, 

as shown in Fig. 1. The HSUAV aerodynamic configuration 

features are: 1) the wing is blended with the body (fuselage); 

2) the aerodynamic configuration is designed such that the 

leading edges is subsonic, and trailing edges is supersonic 

at cruise Mach number M=3.5; 3) the V tail is located in the 

aft-body to provide the suitable controllability and stability 

at both subsonic and supersonic speed; and 4) the inlet and 

nozzle are located at the upper body to enhance the stealth 

performance of the HSUAV.

The task of this research is to design a suitable supersonic 

inlet and blend it into the upper body of the HSUAV.

3. Design Process

In order to find a suitable inlet which can be blended 

into the body of the HSUAV, a design process is developed 

as shown Fig. 2. The ‘Sizing’ portion of the design flowchart 

presents the previous finished work to size HSUAV before the 

BIB design. The ‘BIB Design’ portion of the design flowchart 

is the BIB design process that this paper will focus on.

The BIB design process consists of the following steps: 

1) The mass flow rate 
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3.1 Determination of mass flow rate of the inlet

The cruise state is usually taken as the design point of 

propulsion system of aircraft. The dynamic equilibrium 

equation at design point is written as
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where T is the installed thrust, W is the instantaneous weight, L is the lift, D is the drag and the subscript 

cruise means the cruise state. The parametric cycle analysis of ideal ramjet is given in reference [12]. Once the 

flight conditions (the ambient pressure, temperature and Mach number) and exit total temperature Tt7 of 

combustion chamber exit of ramjet are known, the specific thrust F m  of ramjet can be estimated, where F 

is the uninstalled thrust and m  is the mass flow rate. Also, installed thrust T and instantaneous weight W at 

the start point of cruise flight and  cruiseL D  are already known. Considering that F may exceed to T by 0 to 

10% depending on the situation and distance from the final point [13], the uninstalled thrust is finally selected 

as F=(1+10%)T at the stage of aircraft preliminary design.  

Based on the above calculations, the mass flow rate inm  of the supersonic inlet at design point can be 

calculated and its value equals to 17.22kg/s. 
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3.2.1 The design requirements of the inlet

According to the mission of the HSUAV, the design 

requirements of the inlet are as follows:

1) Design height: HD=25000m

2) Design Mach number: MD=3.5

3) Total pressure recovery at design point: σ > 0.5
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Ignoring the spillage of external compression three-

dimensional inlet, the inlet at design point should attain the 

maximum total pressure recovery.

3.2.2 The baseline section of the inlet

The HSUAV is designed to fly most of the time at Mach 

number M=3.5 over the whole mission profile. Therefore, 

a fixed mixed-compression axisymmetric supersonic inlet 

is selected for the HSUAV. The two-dimensional section 

profile of the inlet is depicted in Fig. 3, where l7 is the inlet 

total length, lth is the throat section length of inlet, δ1 is 

the first conical half-angle, δt is the total inclined angle to 

the freestream flow direction, ABCDEFG and HIJK are the 

internal and cowl conical curves of inlet respectively. At 

design point the first oblique shock wave produced by 

AB and second isentropic compression shock wave [14] 

produced by BC intersects at point H of the cowl lip. The 

third quasi-isentropic compression reflected shock wave 

produced by HI intersects at point E of starting point of the 

throat section.

To meet the required total pressure recovery at design 

point and the self-start of the inlet at lower supersonic speed, 

the two-dimensional baseline section of the fixed mixed-

compression axisymmetric supersonic inlet is optimized 

under Kantrowitz limit [15] that confirms the throat area Ath. 

The cowl and diffuser exit areas Ac and Ae are determined by 

mass flow rates and Mach numbers at their corresponding 

sections [16].

3.2.3 Optimization of the Inlet Section

To maximize the total pressure recovery at design point, 

the inlet section geometry needs to be optimized. The inlet 

section optimization problem is stated as follows:

Find:  δ1, M2, l1

Maximize:  σ 

Subject to:  ��δ1

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[7.5°,12.0°]	  

M2

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[1.8,2.6]	  

l1

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[1.5,2.2]	  

δt

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[0.0°,30.0°]	  

β3

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[0.0°,90.0°]	  

M3

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[1.1,1.8]	  

σ

7 
 

diffuser exit areas Ac and Ae are determined by mass flow rates and Mach numbers at their corresponding 

sections [16]. 

3.2.3 Optimization of the Inlet Section 

To maximize the total pressure recovery at design point, the inlet section geometry needs to be optimized. 

The inlet section optimization problem is stated as follows: 

Find:  δ1, M2, l1 

Maximize:  σ  

Subject to:  δ1∈[7.5°,12.0°] 

         M2∈[1.8,2.6] 

         l1∈[1.5,2.2] 

         δt∈[0.0°,30.0°] 

         β3∈[0.0°,90.0°] 

         M3∈[1.1,1.8] 

σ∈[0.7276,1.0] 

where l1 is the length between cowl lip and the nose of internal cone (or fuselage), M2 and M3 are the Mach 

numbers vertical to area A1 and normal shock wave respectively, and β3 is the inclined angle of deflected 

oblique shock wave in front of normal shock wave. 

The Genetic Algorithm [17, 18] is applied to solve the optimization problem. The optimal solution is 

obtained and listed in Table 1. The parameters values in Table 1 are used to size the section of the inlet. 

Table 1. Parameter Values of Optimized Inlet Section 
 Design Variables Constraints Objectives 
δ1 (°) M2 l1 (m) δt (°) M3 β3 (°) σ 
8.04 2.353 1.924 28.97 1.568 42.73 0.8124 

 

[0.7276,1.0]

where l1 is the length between cowl lip and the nose of 

internal cone (or fuselage), M2 and M3 are the Mach numbers 

vertical to area A1 and normal shock wave respectively, and 

β3 is the inclined angle of deflected oblique shock wave in 

front of normal shock wave.

6 
 

2) Design Mach number: MD=3.5 

3) Total pressure recovery at design point:  > 0.5 

4) Captured mass flow rate at design point: inm =17.22kg/s 

Ignoring the spillage of external compression three-dimensional inlet, the inlet at design point should attain 

the maximum total pressure recovery. 

3.2.2 The baseline section of the inlet 

The HSUAV is designed to fly most of the time at Mach number M=3.5 over the whole mission profile. 

Therefore, a fixed mixed-compression axisymmetric supersonic inlet is selected for the HSUAV. The 

two-dimensional section profile of the inlet is depicted in Fig. 3, where l7 is the inlet total length, lth is the 

throat section length of inlet, δ1 is the first conical half-angle, δt is the total inclined angle to the freestream 

flow direction, ABCDEFG and HIJK are the internal and cowl conical curves of inlet respectively. At design 

point the first oblique shock wave produced by AB and second isentropic compression shock wave [14] 

produced by BC intersects at point H of the cowl lip. The third quasi-isentropic compression reflected shock 

wave produced by HI intersects at point E of starting point of the throat section. 

 

Fig. 3. Baseline Section Profile of the Inlet 

To meet the required total pressure recovery at design point and the self-start of the inlet at lower 

supersonic speed, the two-dimensional baseline section of the fixed mixed-compression axisymmetric 

supersonic inlet is optimized under Kantrowitz limit [15] that confirms the throat area Ath. The cowl and 

Fig. 3. Baseline Section Profile of the Inlet
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The Genetic Algorithm [17, 18] is applied to solve the 

optimization problem. The optimal solution is obtained and 

listed in Table 1. The parameter values in Table 1 are used to 

size the section of the inlet.
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concept blending the inlet section obtained in Sec. 3.2 

into body (or fuselage) of the HSUAV shown in Fig 1. Three 

concepts of the blended inlet body (BIB) will be proposed 

and evaluated. The preferred one will be identified based on 

the evaluations and comparisons for three BIB concepts.

3.3.1 Three Design Concepts for BIB
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CFD analysis process in this study, the example of a dual mode scramjet inlet from the reference [20] is used 

to test the analysis process. The result by the Euler CFD analysis in this study is in agreement with the 
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simulated. The flow fields of two external supersonic compression sections of the inlet are shown in Fig. 5. 

The flow field of the axial section at symmetric plane of the inlet in Fig. 5(a) shows that all external 

compression waves are perfectly attached to the cowl lip. However, when we investigate the static pressure 

contour lines of the axial section at outermost side plane, there exists plenty of overflow which disobeys the 

inlet design-point requirements that all external compression waves are expected to attach to the cowl lip. 

Meanwhile, the flow of axial section at outermost side plane of the inlet accelerates when the air flow passes 

the top of inner cone. Flow accelerating results in unexpected supersonic flow before coming into subsonic 

diffuser. This situation should be avoided in view of inlet operating at design point. 
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 =17.22kg/s in Concept 

II is that the cowl area would be enlarged, but it would lead 

to an encounter with the baseline configuration of HSUAV.

For Concept III, the cowl lip edge is still in the same plane. 

The flow characteristics of the axial section at symmetric 

plane of the inlet are simulated. The simulating results of 

external supersonic compression section of the inlet are 

shown in Fig. 7. The pressure contour lines of Fig. 7 reflect 

that the mass flow ratio is closely equal to one. That means 

the concept III for the BIB design can meet the need of all 

external compression waves attached to the cowl lip.

After the investigation of the simulation results for three 

BIB concepts, the comparisons of features for three BIB 

concepts are listed in Table 3 in terms of maximum mass flow 

rate, the spillage, the flow uniform and compatibility with 

baseline configuration of the HSUAV. From the comparisons, 

the concept III is certainly the preferred one among three 

concepts. Therefore the concept III is selected for the BIB 

design. The overall HSUAV configuration with the BIB of the 

concept III is depicted in Fig. 8.
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inlet is shown in Fig. 6, where the first oblique shock wave is not attached to the cowl lip, but the second 

isentropic compression waves are attached to the cowl lip. However, the mass flow ratio of the inlet is far less 

than 1.0 due to the first oblique shock wave away from the cowl lip. The lower mass flow ratio means that the 

inlet cannot capture the required mass flow rate. A way to sustain the required mass flow rate inm =17.22kg/s 

in Concept II is that the cowl area would be enlarged, but it would lead to an encounter with the baseline 
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For Concept III, the cowl lip edge is still in the same plane. The flow characteristics of the axial section at 

symmetric plane of the inlet are simulated. The simulating results of external supersonic compression section 

of the inlet are shown in Fig. 7. The pressure contour lines of Fig. 7 reflect that the mass flow ratio is closely 

equal to one. That means the concept III for the BIB design can meet the need of all external compression 

waves attached to the cowl lip. 

Fig. 6. ��Flow Field Simulation of External Compression Section for Con-
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Fig. 7. Flow Field Simulation of External Compression Section for Concept III at Design 

Point 

 

Fig. 7. ��Flow Field Simulation of External Compression Section for Con-
cept III at Design Point
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4. Further Evaluation of the Preferred Concept

4.1 Total Pressure Recovery of Inlet at Design Point

A higher fidelity code (NS CFD solver) is used to evaluate 

the total pressure recovery of the axial section at symmetric 

plane of the inlet for the concept III. The 2-D structured grid 

is meshed for the axial section of the inlet. The k-ω turbulence 

model and the Reynolds-averaged NS (RANS) equations 

are employed in the simulation. The AUSM scheme is used 

for spatial discretization, and implicit MUSCL scheme is 

implemented for time integration. The method of NS CFD 

analysis in this paper was validated by the example of the 2D 

supersonic inlet with the simulation and experiment results 

provided by the reference [21].

The flow fields are depicted in Fig. 9. It shows that the shock 

wave is pushed to outside of the inlet entrance when the back 

pressure of diffuser exit is 38 times ambient pressure. That 

means the inlet is operating at subcritical state. But when the 

back pressure of diffuser exit is 37 times ambient pressure, 

all external compression waves are attached to the cowl lip 

and the shock train is terminated over the half throat length. 

The inlet is very close to operating at design point. The area-

weighted average Mach number at diffuser exit is M5=0.2262 

and the total pressure recovery is σ=0.5072.

The value of total pressure recovery predicted by NS CFD 

is much lower than that from one-dimensional isentropic 

theory. The reason is that the effects of viscosity, separation 

of boundary layer, shock/boundary-layer interaction are 

not considered when the initial baseline section of the inlet 

is created (see in Fig. 3.). However, the baseline section of 

the inlet at design point has been established to satisfy the 

requirements of blending the inlet into body of HSUAV at the 

stage of preliminary design.

4.2 Aerodynamic Characteristics of Overall Configu-
ration

Since the straight leading edge of the baseline configuration 

is modified into the convex leading edge in the preferred 

concept (see Fig. 8), it is necessary to evaluate the effect 

of the modification on aerodynamic characteristics of the 

overall configuration of the HSUAV. NS CFD solver is applied 

to evaluate impact of the modification on the aerodynamic 

characteristics. The 3-D unstructured grid is meshed for 

the modified configuration. The k-ω turbulence model and 

the RANS equations are used in the simulation. The AUSM 

scheme is used for spatial discretization, and implicit First-

Order Upwind scheme is implemented for time integration. 

The NS CFD analysis process of the aerodynamic simulation 

in this study was validated by the example of the AFRL 1303 

UCAV model from the reference [22]. The result from the NS 

CFD analysis in this study is reasonably consistent with the 

experimental data in the reference [22].

Figure 10 shows the lift-drag ratio L/D with angle 

of attack α at cruise speed M=3.5 for the baseline and 

modified configuration. The lift-drag ratio of the modified 

configuration is 6.25% reduction than that of baseline one. 

The main reasons are: 1) the wave drag is increased due to 

the convex leading edge in the front body of the modified 

configuration; 2) the increased exposed surface area due to 

convex leading edge of the modified configuration results in 

larger friction drag. 

One of the aerodynamic requirements in “Sizing” of the 

design process as shown in Fig 2 is that the maximum lift to 

drag ratio of the HSUAV should be larger than 4.3. The NS 

Table 3. Comparisons of BIB Concepts at Design Point

12 
 

0.51        0.75       1.13        1.83        2.56       4.72        8.63      14.12
p/p0

1 40 1 88 2 09 2 33 2 50 3 13 3 66
M

 

Figure 7. Flow Field Simulation of External Compression Section for Concept III at Design Point 

After the investigation of the simulation results for three BIB concepts, the comparisons of features for 

three BIB concepts are listed in Table 3 in terms of maximum mass flow rate, the spillage, the flow uniform 

and compatibility with baseline configuration of the HSUAV. From the comparisons, the concept III is 

certainly the preferred one among three concepts. Therefore the concept III is selected for the BIB design. The 

overall HSUAV configuration with the BIB of the concept III is depicted in Fig. 8. 

Table 3. Comparisons of BIB Concepts at Design Point 

Concept Mass Flow Rate Spillage Uniform Compatibility 
I 0.220 Larger Bad Hard 
II 0.652 Large Good Easy 
III 0.996 Small Good Easy 

 

 

Fig. 8. The HSUAV Configuration with BIB of Concept III  

4. Further Evaluation of the Preferred Concept 

4.1 Total Pressure Recovery of Inlet at Design Point 
12 

 

0.51        0.75       1.13        1.83        2.56       4.72        8.63      14.12
p/p0

1 40 1 88 2 09 2 33 2 50 3 13 3 66
M

 

Figure 7. Flow Field Simulation of External Compression Section for Concept III at Design Point 

After the investigation of the simulation results for three BIB concepts, the comparisons of features for 

three BIB concepts are listed in Table 3 in terms of maximum mass flow rate, the spillage, the flow uniform 

and compatibility with baseline configuration of the HSUAV. From the comparisons, the concept III is 

certainly the preferred one among three concepts. Therefore the concept III is selected for the BIB design. The 

overall HSUAV configuration with the BIB of the concept III is depicted in Fig. 8. 

Table 3. Comparisons of BIB Concepts at Design Point 

Concept Mass Flow Rate Spillage Uniform Compatibility 
I 0.220 Larger Bad Hard 
II 0.652 Large Good Easy 
III 0.996 Small Good Easy 

 

 

Fig. 8. The HSUAV Configuration with BIB of Concept III  

4. Further Evaluation of the Preferred Concept 

4.1 Total Pressure Recovery of Inlet at Design Point 

Fig. 8. ��The HSUAV Configuration with BIB of Concept III 

13 
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CFD analysis shows that the maximum lift to drag ratio of the 

modified configuration is larger than 4.3 even though there 

is 6.25% reduction compared to the baseline configuration, 

which means the modified configuration is acceptable 

from the viewpoint of the aerodynamic requirement. 

Actually, the modified configuration is a compromise 

between the aerodynamic performance and the inlet design 

requirements.

Figure 11 depicts the lift coefficient CL of the HSUAV 

with angle of attack α at low speed M=0.3 by the numerical 

simulation. The lift curves of the baseline and modified 

configurations are very similar, and the value of maximum 

lift coefficient of the modified one is slightly higher than that 

of the baseline one.

5. Conclusions

Blending an inlet into the body is a crucial issue in the 

preliminary design of the HSUAV. A method for the blended 

inlet body (BIB) design was established to solve the issue 

in this paper. Three BIB design concepts were proposed 

and evaluated. The preferred BIB concept was identified, in 

which the straight leading edge of the baseline configuration 

was modified into the convex leading edge to accommodate 

the inlet and meet the requirement of inlet entrance area to 

capture sufficient mass flow rate at design point.

The preferred BIB concept was further verified by the more 

elaborate simulations (NS CFD). The results indicate that 

the value of the total pressure recovery for the preferred BIB 

concept is 0.5072, and should be enhanced in subsequent 

detail design. It is suggested that the techniques such as 

boundary layer suction and effect of changes in throat length 

relative to shock train length should be applied if the total 

pressure recovery for the preferred BIB concept is expected to 

be further improved. The simulations also show that the lift-

drag ratio of the modified configuration at the cruise speed 

is slightly decreased compared to the baseline configuration, 

however its maximum lift coefficient at the low speed are 

slightly better than that of the baseline one.

In conclusion, the preferred concept is a promising BIB 

design of the HSUAV, and is worth to be further investigated 

in subsequent detail design stage.
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