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Abstract

When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and 

consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering 

ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial 

rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein’s 

experimental data, and the results of the proposed model were well matched. A plant model was also developed from first 

principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for 

this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback 

controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of 

parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in 

this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis 

and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.
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1. Introduction

A coaxial rotor system has two concentric counter-

rotating rotors to produce lift and balance the torque. A tail 

rotor is therefore not necessary. The coaxial rotor helicopter 

is easy to stabilize and control because of its aerodynamic 

symmetry.

The nondimensional quantity of air inflow can be 

considered as uniformly distributed over the rotor disk to 

avoid complexity. However, because of the geometry of the 

blade (twist), blade flapping, change of tip speed along the 

blade radius, generation of vortices and unsteady flow, and 

rotation of the blade through 0°–360° azimuth, the inflow 

distribution is in reality nonuniform. Therefore, in this 

study, nonuniform inflow is considered. In 1926, Glauert 

[1] proposed a first harmonic nonuniform inflow model. 

Longitudinal and lateral weighting factors considered in 

Glauert’s inflow model that were analytically determined 

by many scholars, including Coleman et al. (1945), Drees 

(1949), White and Blake (1979), and Pitt and Peters (1981), 

on the basis of experimental data, are very useful in the 

field of aerodynamics for rotor performance analysis [1, 2]. 

In the present study, Coleman’s longitudinal and lateral 

weighting factors are used for both upper and lower rotor 

inflow analyses and an inflow model is suggested for the 

lower rotor.

Parameter estimation is a curve-fitting technique where 

a cost function is used to minimize the fitting errors of the 

experimental data and predicted responses of the plant. Many 

studies have been carried out where stability and control 

derivatives of the state space model are estimated for both 

helicopter and fixed wing aircraft.
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Such as Mettler et al. and Valavanis identified quasi-

steady derivatives and physical parameters of the single 

rotor unmanned aerial vehicle (UAV) by using the 

Comprehensive Identification from FrEquency Responses 

(CIFER) tool, and developed their controller on the basis 

of the identified state space model; Kenneth explained 

the parameter estimation of an aircraft [3-9]. Conversely, 

very few studies have been conducted on parameter 

estimation and system identification of small coaxial 

rotor helicopters. Furthermore, there is a lack of work on 

lower rotor inflow in the forward flight case. Therefore, the 

main motivation of this study was to propose an inflow 

model for the lower rotor of the coaxial rotor helicopter, 

determine the required power and identify unknown 

parameters, which cannot be measured directly on the 

basis of experimental results and the predicted responses 

from a non-linear mathematical model of the plant in 

forward flight.

We describe the development of a mathematical model 

of a coaxial rotor helicopter, using a first principles 

approach that is based on basic helicopter theory. In 

this approach, thrust and torque were calculated by 

advanced blade element theory (BET) rather than simple 

momentum theory. An inflow model is also proposed 

for the lower rotor of the coaxial rotor helicopter. The 

proposed model was validated against the widely used 

experimental data of Dingeldein by incorporating the 

model into the numerical code. In this study, experiments 

were conducted in forward flight. Unknown parameters 

were estimated and validated on the basis of time domain 

experimental data.

Nomenclature

Cl	 lift coefficient

Ns	 number of segments

p, q, r	 angular velocities around x, y, z axes (rad.s–1)

XSA	 skew angle (rad.)

σ	 rotor solidity

λα	 tip speed ratio

ψa	 azimuth angle (rad.)

θcol	 collective angle (rad.)

Subscripts:

i	 induced

l	 lower rotor

u	 upper rotor

2. Description of the Code

Coaxial rotor dynamics is very complex because the high-

speed downstream and wake of the upper rotor influence 

the lower rotor. A number of methods, such as blade element 

momentum theory (BEMT), momentum theory, and BET, are 

generally used for rotor performance analysis. In the hover 

condition, dynamic behavior predicted by BEMT shows better 

results than simple momentum theory when compared with 

experimental data [10]. However, even though BEMT shows 

better results, BET is used for this study because with BEMT 

it is assumed that the inflow is the same at different azimuth 

angles for a selected radial distance. On the other hand, in the 

case of BET, inflow changes with azimuth angle. Moreover, the 

literature on BEMT specifically covers hover and axial flight, 

whereas this study focuses on forward flight.

We used the following procedure. First, different linear 

nonuniform inflow models were analyzed. Subsequently, 

the best-fitted longitudinal and lateral weighting factors 

were used to predict the thrust and torque produced by the 

upper rotor. An inflow model for the lower rotor was then 

developed and the thrust and torque were predicted. Finally, 

unknown parameters for the coaxial rotor helicopter were 

identified by using flight test data.

Figure 1 shows the configuration of a coaxial rotor 

helicopter; Fig. 2 presents a flowchart of the process 

followed to calculate thrust and torque coefficients CT and 

Cp, respectively. During numerical simulation, the rotor 

blade was divided into 100 segments. In this study, the thrust 

coefficient for the rotor, CT, is calculated by means of BET. The 

inflow ratio (λ) can be estimated in different ways, including 

by determining blade forces or by using different inflow 

models available in helicopter aerodynamics [1]. In the first 

case, the out-of-plane and in-plane components of velocity 

are determined. Inflow is the ratio of the out-of-plane and 

in-plane components of velocity as well as a function of 

the radial position of the blade under consideration. In the 

 

Fig.1. Coaxial rotor helicopter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ��Coaxial rotor helicopter
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second case, Glauert’s basic inflow model in forward flight 

is used where longitudinal and lateral weighting factors 

represent the distinction of the present nonuniform inflow 

model (λu) from the uniform inflow model (λ0) derived by 

momentum theory. This model was applied for calculating 

the inflow of the upper rotor in forward flight. Glauert’s 

inflow equation is

whereas this study focuses on forward flight. 

We used the following procedure. First, different linear nonuniform inflow models were analyzed. 

Subsequently, the best-fitted longitudinal and lateral weighting factors were used to predict the thrust 

and torque produced by the upper rotor. An inflow model for the lower rotor was then developed and 

the thrust and torque were predicted. Finally, unknown parameters for the coaxial rotor helicopter 

were identified by using flight test data. 

Figure 1 shows the configuration of a coaxial rotor helicopter; Fig. 2 presents a flowchart of the 

process followed to calculate thrust and torque coefficients CT and Cp, respectively. During numerical 

simulation, the rotor blade was divided into 100 segments. In this study, the thrust coefficient for the 

rotor, CT, is calculated by means of BET. The inflow ratio () can be estimated in different ways, 

including by determining blade forces or by using different inflow models available in helicopter 

aerodynamics [1]. In the first case, the out-of-plane and in-plane components of velocity are 

determined. Inflow is the ratio of the out-of-plane and in-plane components of velocity as well as a 

function of the radial position of the blade under consideration. In the second case, Glauert’s basic 

inflow model in forward flight is used where longitudinal and lateral weighting factors represent the 

distinction of the present nonuniform inflow model (u) from the uniform inflow model (0) derived 

by momentum theory. This model was applied for calculating the inflow of the upper rotor in forward 

flight. Glauert’s inflow equation is 

2
0 (1 cos sin ) ( / 2)lon lat

u x a y aK r K r         , (1) 

where Kx
lon and Ky

lat are the longitudinal and lateral weighting factors, respectively, and r (= y/R1) is 

the nondimensional radial position of the blade element. Weighting factors proposed by Coleman are 

tan( / 2)lon
x SAK X , (2) 

0lat
yK  .

 (3) 

Figure 3 shows the induced power comparison deduced by using different inflow models against 

the theoretical data of Prouty [11]. It was found that the results of Coleman’s model gave the best fit 

to the theoretical data. At high speed, all inflow models show discrepancies, among which the 
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(3)

Figure 3 shows the induced power comparison deduced 

by using different inflow models against the theoretical data 

of Prouty [11]. It was found that the results of Coleman’s 

model gave the best fit to the theoretical data. At high 

speed, all inflow models show discrepancies, among which 

the constant momentum induced velocity case shows 

maximum discrepancy because it is more suited to the low-

speed condition.

Figure 4 shows a comparison of different inflow models 

with the inflow measurements of Elliott et al. (1988), for 

both longitudinal and lateral coordinates [12]. According 

to Elliott et al., rectangular and linear twisted blades were 

used and measurements were made by laser velocimeter 

(LV) one chord height above the tip path plane (TPP). 

Because a forward flight experiment was conducted, the 

rotor shaft was tilted for the trim condition. During the 

test, a rotor rotational speed of 2113 rpm was maintained 

and the nominal thrust coefficient was 0.0064. Fig. 4(a) 

shows that the major inconsistencies are near the rotor 

hub and at the tip because of the fuselage below the rotor 

hub and generation of vortices near the tip. In forward 

flight, inflow at the leading edge of the disk is less than at 

the tailing edge; experimental data show that at low speed 

flight inflow is negative near the tip at azimuth angle ψa = 

180°, but increases and becomes positive at high speed. 

Fig. 4(b) shows the inflow distribution at advance ratio μ = 

0.23. Fig. 4(c) and (d) show nonuniform as well as uniform 

inflow distribution. The results of Coleman’s model show 

uniform inflow because the lateral weighting factor Ky
lat = 0. 

If it is assumed that Ky
lat = –2μ, as in the Drees model, then 

inflow results become linear nonuniform. However, from 

experimental data, it is clear that for lateral coordinates 

the inflow distribution is approximately symmetric. In the 

case of a single rotor helicopter, a swash plate mechanism 

provides more collective angle at an azimuth angle of 270° 

than at an azimuth angle of 90° and produces the same 

thrust, whereas a coaxial rotor helicopter uses two counter-

New Figures:

Fig.2. Flow chart to estimate thrust and torque coefficients

Fig. 2. ��Flow chart to estimate thrust and torque coefficients
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rotating rotors and swash plate mechanisms to minimize 

the lift difference between the advancing and retreating 

sides and to maintain symmetric lift distribution and lateral 

stability. Therefore, in this study, Coleman’s model was used 

where the lateral weighting factor is zero; this model is also 

easier to implement in code than other models such as the 

Mangler and Squire method and the vortex method.

After the inflow ratio calculation was completed, the 

segment thrust and power coefficients, dcT and dcp, were 

estimated. The required induced power is proportional 

to the blade angle of attack and inversely proportional to 

the airspeed; that is, induced power is directly influenced 

by inflow, whereas profile power is proportional to the 

frictional resistance of the blade and airspeed. The BET code 

presented here is capable of taking into consideration blade 

twist and taper. The blade’s section thrust, and the induced 

and profile power coefficients are calculated with Eqs. (4)–

(6), respectively [1].

presented here is capable of taking into consideration blade twist and taper. The blade’s section thrust, 

and the induced and profile power coefficients are calculated with Eqs. (4)–(6), respectively [1]. 
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Here, Fcf is the Prandtl tip loss factor, K is the induced power factor that incorporates actual effects 

such as tip losses and swirl effect, Kint is the induced power interference factor, u (u/r) is the induced 

inflow angle, and D1 and D2 are the drag coefficients. At the tip of each blade, vortices are formed that 

produce local inflow. As a result, lifting potential is reduced near the tips. This tip loss is considered 

by incorporating the Prandtl tip loss factor in the thrust coefficient equation. The Prandtl tip loss 

factor can be described as follows [1]: 
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where the number of blades in each rotor Nb = 2. Thrust and power coefficients were calculated for all 

segments separately. Subsequently, total thrust and power coefficients of the upper rotor were 

estimated with Eqs. (8) and (9), respectively [10]. 
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Finally, the upper rotor thrust, Tu = CT,uAu(ΩRu)2, and the torque, Qu = CQ,uAu(ΩRu)2Ru (with torque 

coefficient, CQ,u ≡ Cp,u) were calculated. 

The lower rotor was placed at the vena contracta of the upper rotor. The nondimensional radial 

distance rd of the vena contracta is equal to 0.7071 when it is fully contracted. However, in the hover 

condition, if it is assumed that the wake of the upper rotor influences the lower rotor up to 82% from 

its center point, then it shows better agreement [10]. In this study, it was found that rd = 0.82 is not 

reasonable when the helicopter is in the forward flight condition. In forward flight, the rotor wake 

(4)

presented here is capable of taking into consideration blade twist and taper. The blade’s section thrust, 

and the induced and profile power coefficients are calculated with Eqs. (4)–(6), respectively [1]. 
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where the number of blades in each rotor Nb = 2. Thrust and power coefficients were calculated for all 

segments separately. Subsequently, total thrust and power coefficients of the upper rotor were 

estimated with Eqs. (8) and (9), respectively [10]. 
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Finally, the upper rotor thrust, Tu = CT,uAu(ΩRu)2, and the torque, Qu = CQ,uAu(ΩRu)2Ru (with torque 

coefficient, CQ,u ≡ Cp,u) were calculated. 

The lower rotor was placed at the vena contracta of the upper rotor. The nondimensional radial 

distance rd of the vena contracta is equal to 0.7071 when it is fully contracted. However, in the hover 

condition, if it is assumed that the wake of the upper rotor influences the lower rotor up to 82% from 

its center point, then it shows better agreement [10]. In this study, it was found that rd = 0.82 is not 

reasonable when the helicopter is in the forward flight condition. In forward flight, the rotor wake 
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presented here is capable of taking into consideration blade twist and taper. The blade’s section thrust, 

and the induced and profile power coefficients are calculated with Eqs. (4)–(6), respectively [1]. 
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coefficient, CQ,u ≡ Cp,u) were calculated. 

The lower rotor was placed at the vena contracta of the upper rotor. The nondimensional radial 

distance rd of the vena contracta is equal to 0.7071 when it is fully contracted. However, in the hover 

condition, if it is assumed that the wake of the upper rotor influences the lower rotor up to 82% from 

its center point, then it shows better agreement [10]. In this study, it was found that rd = 0.82 is not 
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Fig. 4. ��Experimental and theoretical data comparison of mean longitudinal inflow ratio at (a) μ= 0.15, (b) μ= 0.23; Experimental and theoretical 
data comparison of mean lateral inflow ratio, at (c) μ= 0.23, (d) μ= 0.3.
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presented here is capable of taking into consideration blade twist and taper. The blade’s section thrust, 

and the induced and profile power coefficients are calculated with Eqs. (4)–(6), respectively [1]. 
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such as tip losses and swirl effect, Kint is the induced power interference factor, u (u/r) is the induced 

inflow angle, and D1 and D2 are the drag coefficients. At the tip of each blade, vortices are formed that 

produce local inflow. As a result, lifting potential is reduced near the tips. This tip loss is considered 

by incorporating the Prandtl tip loss factor in the thrust coefficient equation. The Prandtl tip loss 
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where the number of blades in each rotor Nb = 2. Thrust and power coefficients were calculated for all 

segments separately. Subsequently, total thrust and power coefficients of the upper rotor were 

estimated with Eqs. (8) and (9), respectively [10]. 
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Finally, the upper rotor thrust, Tu = CT,uAu(ΩRu)2, and the torque, Qu = CQ,uAu(ΩRu)2Ru (with torque 

coefficient, CQ,u ≡ Cp,u) were calculated. 

The lower rotor was placed at the vena contracta of the upper rotor. The nondimensional radial 

distance rd of the vena contracta is equal to 0.7071 when it is fully contracted. However, in the hover 

condition, if it is assumed that the wake of the upper rotor influences the lower rotor up to 82% from 

its center point, then it shows better agreement [10]. In this study, it was found that rd = 0.82 is not 

reasonable when the helicopter is in the forward flight condition. In forward flight, the rotor wake 
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the lower rotor up to 82% from its center point, then it 

shows better agreement [10]. In this study, it was found 

that rd = 0.82 is not reasonable when the helicopter is in 

the forward flight condition. In forward flight, the rotor 

wake skew angle increases as the speed increases. As a 

result, the vena contracta moves backward. The shape 

of the vena contracta also changes. Since the position of 

the vena contracta changes with helicopter speed, rd is a 

function of speed. Therefore, it was assumed that rd = 0.8–

1.849µ (advance ratio from 0.007 to 0.3) when the azimuth 

angle is 180° and reaches 1 at an azimuth angle of 0°. The 

backwash of the upper rotor flows through Ad, the area of 

the lower rotor. As a result, the inflow ratio of this area will 

be different from the unaffected disk area. In this study, 

the upper rotor’s downstream and free stream velocity 

effects are considered. If r ≤ rd, then the inflow distribution 

in forward flight is

skew angle increases as the speed increases. As a result, the vena contracta moves backward. The 

shape of the vena contracta also changes. Since the position of the vena contracta changes with 

helicopter speed, rd is a function of speed. Therefore, it was assumed that rd = 0.8–1.849µ (advance 

ratio from 0.007 to 0.3) when the azimuth angle is 180° and reaches 1 at an azimuth angle of 0°. The 

backwash of the upper rotor flows through Ad, the area of the lower rotor. As a result, the inflow ratio 

of this area will be different from the unaffected disk area. In this study, the upper rotor’s downstream 

and free stream velocity effects are considered. If r  rd, then the inflow distribution in forward flight 

is 
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Eq. (10) is proposed for the prediction of the lower rotor inflow. This equation is applicable for the 

region that is affected by the downstream of the upper rotor. Here, the second term (u/2) on the right-
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which is the same as the inflow calculation of the upper rotor. For this condition, only clean air 

influences the disk. Fig. 5(a) shows the position of the vena contracta in hover mode and Fig. 5(b) 

illustrates the position in forward flight. Because this study focuses on the forward flight condition, 

the hover mode will not be discussed in detail. 

Figure 6 shows the predicted inflow distributions of the upper and lower rotors in the longitudinal 

and lateral directions (Harrington rotor 1: CT = 0.0048, solidity,  = 0.054). Except for the small 

portion at an azimuth angle a = 180° (Fig. 6(a)), the inflow for both cases at the lower rotor is higher 

than for the upper rotor because the lower rotor is affected by the downstream of the upper rotor. As a 

result, the thrust and torque produced by the upper rotor become greater than those produced by the 

lower rotor. Therefore, the lower rotor must maintain a higher collective angle to balance the torque 

(Fig. 7(a)). In the case of the coaxial rotor helicopter, the upper and lower rotors are connected to each 

other by a linkage (Fig. 7(b)). The manufactured helicopter model is fitted with an actuator for 
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portion at an azimuth angle a = 180° (Fig. 6(a)), the inflow for both cases at the lower rotor is higher 

than for the upper rotor because the lower rotor is affected by the downstream of the upper rotor. As a 

result, the thrust and torque produced by the upper rotor become greater than those produced by the 

lower rotor. Therefore, the lower rotor must maintain a higher collective angle to balance the torque 
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Fig.4. Experimental and theoretical data comparison of mean longitudinal inflow ratio at (a) μ= 0.15, (b) 

μ= 0.23; Experimental and theoretical data comparison of mean lateral inflow ratio, at (c) μ= 0.23, (d) μ=

0.3.
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Fig.6. Coaxial rotor helicopter inflow distribution in (a) longitudinal and (b) lateral direction at µ= 0.15
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μ= 0.23; Experimental and theoretical data comparison of mean lateral inflow ratio, at (c) μ= 0.23, (d) μ=
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Fig. 6. Coaxial rotor helicopter inflow distribution in (a) longitudinal and (b) lateral direction at µ= 0.15
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the hover mode will not be discussed in detail.

Figure 6 shows the predicted inflow distributions of 

the upper and lower rotors in the longitudinal and lateral 

directions (Harrington rotor 1: CT = 0.0048, solidity, σ = 

0.054). Except for the small portion at an azimuth angle ψa 

= 180° (Fig. 6(a)), the inflow for both cases at the lower rotor 

is higher than for the upper rotor because the lower rotor is 

affected by the downstream of the upper rotor. As a result, 

the thrust and torque produced by the upper rotor become 

greater than those produced by the lower rotor. Therefore, 

the lower rotor must maintain a higher collective angle 

to balance the torque (Fig. 7(a)). In the case of the coaxial 

rotor helicopter, the upper and lower rotors are connected 

to each other by a linkage (Fig. 7(b)). The manufactured 

helicopter model is fitted with an actuator for changing 

the collective angle of both rotors simultaneously and an 

actuator for altering the collective angle of the lower rotor 

only to produce the same torque as the upper rotor, but in 

the opposite direction. The rudder input is the difference in 

the blade pitch angles between the lower and upper rotors 

(θrud = θcol,l – θcol,u); the heading of the helicopter is changed by 

varying this value.

Figure 8 shows a comparison between the predicted 

results of momentum theory, BET, the proposed inflow 

model, and experimental data of a coaxial rotor helicopter 

at a thrust coefficient of 0.0048 in forward flight [1, 13, 14]. 

Both the induced power and profile power were estimated 

by simple momentum theory as well as by BET. The thrust 

and power coefficients of the lower rotor were calculated 

by the proposed inflow model. The results of BET, with the 

developed inflow model included, show better agreement 

with the experimental data than those obtained with 

momentum theory. The required power of the coaxial rotor 

is higher than that of an equivalent single rotor because of 

the interference effects and drag losses of the two rotors. The 

installed motor power of the developed unmanned coaxial 

rotor helicopter is 3.0 hp, whereas the estimated power 

consumption is 2.8 hp at µ = 0.1 and Kint = 1.35. This indicates 

a good prediction capability of the numerical code.

Figure 9 shows the roll controller of the developed plant 

model where roll command, roll angle, and roll rate are 

Fig.9. Roll controller

Fig.10. Developed coaxial rotor model in Matlab-Simulink

Fig. 9. Roll controller
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Fig.7. Collective control and swash plate mechanism 
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the inputs to the controller [15–17]. The maximum travel 

of the roll actuator control rod is 14°. Three nonlinear 

tracking controllers are designed based on the nonlinear 

plant model and collective input data are not manipulated 

by any controller. Proportional integral derivative-based 

feedback loops for cyclic and rudder commands in 

percentages are

changing the collective angle of both rotors simultaneously and an actuator for altering the collective 

angle of the lower rotor only to produce the same torque as the upper rotor, but in the opposite 

direction. The rudder input is the difference in the blade pitch angles between the lower and upper 

rotors (rud = col,l – col,u); the heading of the helicopter is changed by varying this value. 

Figure 8 shows a comparison between the predicted results of momentum theory, BET, the 

proposed inflow model, and experimental data of a coaxial rotor helicopter at a thrust coefficient of 

0.0048 in forward flight [1, 13, 14]. Both the induced power and profile power were estimated by 

simple momentum theory as well as by BET. The thrust and power coefficients of the lower rotor 

were calculated by the proposed inflow model. The results of BET, with the developed inflow model 

included, show better agreement with the experimental data than those obtained with momentum 

theory. The required power of the coaxial rotor is higher than that of an equivalent single rotor 

because of the interference effects and drag losses of the two rotors. The installed motor power of the 

developed unmanned coaxial rotor helicopter is 3.0 hp, whereas the estimated power consumption is 

2.8 hp at µ = 0.1 and Kint = 1.35. This indicates a good prediction capability of the numerical code. 

Figure 9 shows the roll controller of the developed model where roll command, roll angle, and roll 

rate are the inputs to the controller [15–17]. The maximum travel of the roll actuator control rod is 14°. 

Three nonlinear tracking controllers are designed based on the nonlinear model and collective input 

data are not manipulated by any controller. Proportional integral derivative-based feedback loops for 

cyclic and rudder commands in percentages are 
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where cmd, cmd, and cmd are the stick commands, and E, E, and E are the Euler’s pitch, roll angle, 

and yaw angle, respectively. Gain values (Klat, Klon, and Krud) of the proposed controller are estimated 

in this study. Fig. 10 illustrates the block diagram of the coaxial rotor helicopter in Simulink. For this 

study, a thrust and torque block set, flapping dynamics block set, force and moment block set, and a 
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where cmd, cmd, and cmd are the stick commands, and E, E, and E are the Euler’s pitch, roll angle, 

and yaw angle, respectively. Gain values (Klat, Klon, and Krud) of the proposed controller are estimated 

in this study. Fig. 10 illustrates the block diagram of the coaxial rotor helicopter in Simulink. For this 
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direction. The rudder input is the difference in the blade pitch angles between the lower and upper 

rotors (rud = col,l – col,u); the heading of the helicopter is changed by varying this value. 

Figure 8 shows a comparison between the predicted results of momentum theory, BET, the 

proposed inflow model, and experimental data of a coaxial rotor helicopter at a thrust coefficient of 

0.0048 in forward flight [1, 13, 14]. Both the induced power and profile power were estimated by 

simple momentum theory as well as by BET. The thrust and power coefficients of the lower rotor 

were calculated by the proposed inflow model. The results of BET, with the developed inflow model 

included, show better agreement with the experimental data than those obtained with momentum 
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developed unmanned coaxial rotor helicopter is 3.0 hp, whereas the estimated power consumption is 

2.8 hp at µ = 0.1 and Kint = 1.35. This indicates a good prediction capability of the numerical code. 
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where cmd, cmd, and cmd are the stick commands, and E, E, and E are the Euler’s pitch, roll angle, 
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(27)

Here, Xf, Yf and Zf are fuselage drag forces along the x, y, 

and z axes, respectively; β1c, β1s are longitudinal and lateral 

flapping angles, respectively; h is rotor height from the CG; 

and Kβ is a rotor hub torsional stiffness factor.

3. System Parameter Identification

System parameter estimation plays an important role 

because it can significantly affect the controller design of 

modern complex dynamic systems such as helicopters, 

airplanes, and space shuttles. The miniature coaxial 

rotor helicopter used in this study has many physical and 

aerodynamic parameters. Several of the parameters were 

measured directly and some were estimated using the flight 

test data. Measured and estimated parameters for the coaxial 

Fig.9. Roll controller

Fig.10. Developed coaxial rotor model in Matlab-SimulinkFig. 10. Developed coaxial rotor model in Matlab-Simulink
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rotor model are presented in Tables 1 and 2, respectively. The 

blades were neither twisted nor tapered. The blade radius, lift 

curve slope, and chord for the lower rotor were the same as 

for the upper rotor. Experiments were conducted and flight 

data were collected for parameter estimation. Collective, 

longitudinal and lateral cyclic, and rudder were the inputs to 

the actuators. A flight control computer (FCC) was integrated 

in the system for manipulating inputs of the controller and 

for data storage. During forward flight tests, a GPS-INS sensor 

was used to acquire attitude, velocity, and position data of the 

helicopter. Fig. 11(a) shows the schematic of the flight system; 

Fig. 11(b) shows the FCC of the coaxial rotor helicopter. Fig. 12 

illustrates a state of the helicopter during the flight test.

The parameter estimation, optimization, and validation 

for the coaxial rotor helicopter were performed by using the 

Matlab Simulink parameter estimation toolbox along with 

the developed plant model. Collected data of inputs to the 

actuators as well as flight conditions were considered during 

simulation. However, external disturbances such as air 

turbulence were neglected. For computational optimization, 

several methods are widely used such as gradient descent, 

nonlinear least squares, and pattern search [20]. Selecting the 

appropriate method for a specific problem is very important. 

Since helicopter dynamics are completely nonlinear, the 

nonlinear least squares method is suitable for this purpose. 

However, it was found in this study that simulation results 

often fell into local minima. In contrast, the derivative-free 

pattern search method gives the global minimum results. 

The pattern search technique follows exploratory and 

pattern move steps. Updated base points of the pattern are 

calculated with Eq. (28):pattern are calculated with Eq. (28): 

( 2) ( 1) ( 1)[ ]n n n nx x x x     , (28) 

where xn (n = 1, 2,...) is the initial point and  is the step size. Among the derivative-based, derivative-

free, and metaheuristic algorithms, the algorithm chosen for an optimization task depends on the type 

of problem, the proper and efficient performance of the algorithm, and the desired quality of the 

solution. Although the trust-region reflective algorithm, which estimates the objective function on the 

basis of a truncated Taylor expansion, is a powerful algorithm, it cannot solve underdetermined 

systems of the nonlinear least squares method. Furthermore, the trust-region reflective algorithm gives 

local solutions; it was therefore not used. Conversely, the genetic algorithm gives global minima, 

supports linear, nonlinear, and bound constraints, and uses multiple agents for search. This algorithm 

follows different steps, such as crossover and mutation, to select the best-fit solution. Hence, during 

parameter estimation, the pattern search method and genetic algorithm were chosen. 

 

4. Results and Discussion 

Figure 13 shows the longitudinal cyclic input, Euler angle, body rate response, and forward velocity 

determined from flight data, along with simulated results from the parameter estimation. The 

estimated responses show some discrepancies from actual measurements because of nonlinearity 

caused by the feedback controller and limitations of the developed numerical inflow model. Although 

the pitch rate from the experimental data and simulation data show some instability of the system, the 

velocity is well predicted. 

A validation task was also performed to verify the predicted values of the unknown parameters. A 

different data set was used for validation. Fig. 14 shows the validation results, where the first row 

shows the input to the model, and the other rows show the predicted responses and experimental data. 

According to Fig. 14, if the longitudinal input is within 0 to –30.6%, then the pitch attitude shows 

little discrepancy. In this case, the system velocity reaches 5.52 m.s–1. The estimation as well as 

validation results show small inconsistencies with the experimental data because of the system’s 

vibration and external disturbances such as wind. 

(28)

where xn (n = 1, 2,...) is the initial point and δ is the step 

size. Among the derivative-based, derivative-free, and 

metaheuristic algorithms, the algorithm chosen for an 

optimization task depends on the type of problem, the proper 

and efficient performance of the algorithm, and the desired 

quality of the solution. Although the trust-region reflective 

algorithm, which estimates the objective function on the 

Table 1. Measured parameters 
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Fig.12. Coaxial rotor helicopter in flying mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. ��Coaxial rotor helicopter in flying mode

(a)

(a)

(b)

Fig.11. ��(a) Schematic of flight system, (b) Flight Control Computer and 
sensor module
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basis of a truncated Taylor expansion, is a powerful algorithm, 

it cannot solve underdetermined systems of the nonlinear 

least squares method. Furthermore, the trust-region 

reflective algorithm gives local solutions; it was therefore not 

used. Conversely, the genetic algorithm gives global minima, 

supports linear, nonlinear, and bound constraints, and uses 

multiple agents for search. This algorithm follows different 

steps, such as crossover and mutation, to select the best-fit 

solution. Hence, during parameter estimation, the pattern 

search method and genetic algorithm were chosen.

4. Results and Discussion

Figure 13 shows the longitudinal cyclic input, Euler 

angle, body rate response, and forward velocity determined 

from flight data, along with simulated results from the 

parameter estimation. The estimated responses show 

some discrepancies from actual measurements because 

of nonlinearity caused by the feedback controller and 

limitations of the developed numerical plant model. 

Although the pitch rate from the experimental data and 

simulation data show some instability of the system, the 

velocity is well predicted.

A validation task was also performed to verify the 

predicted values of the unknown parameters. A different 

data set was used for validation. Fig. 14 shows the validation 

results, where the first row shows the input to the plant, 

and the other rows show the predicted responses and 

experimental data. According to Fig. 14, if the longitudinal 

input is within 0 to –30.6%, then the pitch attitude shows 

little discrepancy. In this case, the system velocity reaches 

5.52 m.s–1. The estimation as well as validation results show 

small inconsistencies with the experimental data because 

of the system’s vibration and external disturbances such as 

wind.

Figures 13 and 14 show that there are uneven fluctuations 

in the experimental data and slight discrepancies between 

experimental and simulation data, which result from sensor 

data-acquisition error and wind gust [21]. The developed 

numerical plant model does not consider wind gust or load 

disturbances [16] and the controller has limitations. For 

the heading, sensor error is 1–2°. Oscillation errors of the 

experimental data and predicted errors from the plant model 

can be reduced by using a high-accuracy GPS-INS sensor, 

and by modifying the developed plant by, for example, 

including load disturbances.

5. Conclusion

This paper describes the implementation of BET code, 

investigates and proposes a nonuniform inflow model for 

the lower rotor of a coaxial rotor helicopter, and validates the 

model against experimental data. A plant model of the coaxial 

rotor helicopter was also developed in Matlab Simulink for 

the analysis of the system attitude, parameter estimation, and 

controller design in forward flight. A GPS-INS sensor module 

was incorporated in the helicopter to collect the helicopter 

state data in real time. An attitude controller was included 

in the flight control system to tackle the large deviation of 

attitude response. System parameters were estimated and 

validated by using different flight data sets. Both sets of 

results show good agreement with the experimental data. 

Therefore, the research technique applied in this study can 

be used for further study of nonuniform inflow models and 

 

 

 

 

Fig.13. Comparison of the predicted and experimental data responses during forward flight 
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Fig. 13. ��Comparison of the predicted and experimental data respons-
es during forward flight

 

 

 

 

Fig.14. Validation of the predicted values of different unknown parameters 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

Lo
n 

%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

 E
 (d

eg
) Exp. pitch angle

Predicted pitch angle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

q 
(d

eg
 s-

1) Exp. pitch rate
Predicted pitch rate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

0

50

Time ( sec )

r (
de

g 
s-

1) Exp. yaw rate
Predicted yaw rate

Fig. 14. ��Validation of the predicted values of different unknown pa-
rameters
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system performance. The parameter estimation technique 

can be useful for estimating unknown parameters during 

controller design for unmanned aerial vehicles.
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